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Abstract. In this paper, we present a method by which one can strip
primes from the level of a vector-valued genus 2 Siegel modular form
while preserving a congruence modulo this prime. An application of this
result to four-dimensional Galois representations will also be presented.

1. Introduction

Throughout, we fix a rational prime ` ≥ 5 and let GQ denote the absolute

Galois group Gal(Q/Q). Furthermore, we fix embeddings of Q into Q` and

into C.

In [23], J-P. Serre poses two conjectures which provid precise conditions

under which a Galois representation of the form

(1.1) ρ : GQ → GL2(F`)

arises from a cuspidal elliptic eigenform. The “weak” conjecture simply

states when such an eigenform exists, while the “strong” conjecture gives the

precise character, level, and weight of such an eigenform. Through the late

eighties and early nineties a large body of work was dedicated to showing

that the weak conjecture implies the strong conjecture. Hence, one now

simply refers to both as Serre’s conjecture. The reader is referred to [9] for

a nice overview of these results. Among this body of work, we have the

following theorem due to Ribet which provides a “level stripping” result

for Galois representations of the above type, and serves as the primary

motivation for the results in this paper.

Theorem 1. [22, Theorem 2.1]

Suppose that ρ is as in Equation 1.1 and arises from an elliptic eigenform

of level `rN with r > 0 and (N, `) = 1. Then, ρ arises from an elliptic

eigenform of level N .

It should also be noted that this theorem holds for ` = 3 as well and was

further extended to the case ` = 2 by Hatada in [11] using slightly different
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methods. Finally, as one of the monumental achievements in modern number

theory, we have that Serre’s conjecture is now a theorem due to Khare and

Wintenberger, see [15],[16].

In recent work of Herzig and Tilouine, see [12], a “Serre type” conjecture

is made for Galois representations of the form

ρ : GQ → GSp4(F`).

For a precise statement of this conjecture the reader is referred to Section

4. In this setting, the Galois representations are conjectured to arise from

vector-valued Siegel modular forms of genus 2. While the conjecture in this

setting is not as precise as Serre’s conjecture concerning the character, level,

and weight, Herzig and Tilouine do mention that the level should be prime

to `. Bearing this in mind, the main result of this paper is a level strip-

ping result for Siegel modular forms analogous to Theorem 1. Such results

have been previously been obtained by Taylor in [27] under an ordinarity

condition, by Brown and the author in [7] for Siegel modular forms which

are lifted from elliptic modular forms, and by the author in [14] for scalar

valued Siegel modular forms.

In particular, the level-stripping result of this paper and the subsequent

application to Galois representations can be viewed as a direct generaliza-

tion of the results in [14] to the vector-valued setting. The techniques used to

prove the main results in this paper are identical to the techniques employed

in [14], but the primary obstacle lies in the fact that the arithmetic of vector-

valued Siegel modular forms can be quite a bit more delicate. Furthermore,

it is important to remark that this paper seeks to correct a mistake which

was overlooked in [14]. For more details see the end of Section 3.3. Finally,

it is the goal of the author to provide convenient references for arithmetic

results which may be common knowledge to the experts, but have yet to

explicitly appear in the literature for vector-valued Siegel modular forms

with level.

2. Background

In this section we will introduce some basic facts about vector-valued

Siegel modular forms of genus 2. For more details the interested reader is

referred to [3] for a thorough treatment of scalar valued forms of arbitrary

level and [30] for a quite readable exposition of the theory of arbitrary genus

vector-valued forms in the level 1 setting.

Let h2 denote the genus 2 Siegel upper half plane, and let GSp+
4 (R)

denote the set of 4 × 4 symplectic matrices with real entries and positive
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similitude factor. Note, we will denote the similitude factor by µ throughout.

We have an action of GSp+
4 (R) on h2 given by,

γ · Z = (aZ + b)(cZ + d)−1, for Z ∈ h2, γ =

(
a b
c d

)
∈ GSp+

4 R).

In order to define vector-valued Siegel modular forms, we will need to

generalize the notion of the “automorphy factor” from the classical theory

of modular forms. To this end, consider an irreducible representation,

ρ : GL2(C)→ GL(V ),

with V some finite dimensional C-vector space. Representations of this type

have been completely classified and are, in fact, in bijective correspondence

with tuples of the form (k1, k2) ∈ Z2 with k1 ≥ k2 by Proposition 15.47 in

[10]. We call (k1, k2) the highest weight vector of ρ.

To be more precise, we let V ′ = Cx1 ⊕ Cx2 be the standard representa-

tion of GL2(C). Then, the highest weight vector (k1, k2) corresponds to the

representation Symk1−k2(V ′) ⊗ detk2(V ′), where Symk(V ′) is the kth sym-

metric power of V ′, which we can identify with the space of degree k1 − k2

homogeneous polynomials in C[x1, x2].

With V as above, let F : h2 → V be a holomorphic function. Then, for

γ ∈ GSp+
4 (R), we define the weight ρ slash operator by

(F |ργ)(Z) = ρ(cZ + d)−1F (γ · Z).

We are interested in functions which are invariant under the action of

certain subgroups of GSp+
4 (R) by the slash operator. In particular, we define

Sp4(Z) to be elements of GSp+
4 (R) which have integral entries and lie within

the kernel of the similitude factor. This group serves as the analogue to

the group SL2(Z) in the setting of elliptic modular forms. We also have

the analogues of the level N congruence subgroups in this setting, i.e., the

subgroups

Γ2
0(N) =

{(
a b
c d

)
∈ Sp4(Z) : c ≡ 02 (mod N)

}
,

Γ2
1(N) =

{(
a b
c d

)
∈ Γ2

0(N) : a ≡ d ≡ 12 (mod N)

}
,

where we are writing the entries as 2× 2 blocks.

We are now prepared to define Siegel modular forms.

Definition 2. LetN be a positive integer, χ be a Dirichlet character modulo

N , and V a finite dimensional complex vector space. Let F : h2 → V

be a holomorphic function and ρ : GL2(C) → GL(V ) be an irreducible
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representation. Then, we say that F is a Siegel modular form of character

χ, genus 2, level N , and weight ρ if

F |ργ = χ(γ)F , for all γ ∈ Γ2
0(N),

where we set χ(γ) = χ(det d). We denote the space of all such functions as

M2
ρ (N,χ).

If dimC(V ) > 1 then the modular forms in the definition above are

typically referred to as vector-valued Siegel modular forms in the literature,

and if dimC(V ) = 1 then they are typically called classical or scalar-valued

Siegel modular forms.

We have that for F ∈M2
ρ1

(N,χ) and G ∈M2
ρ2

(N,χ), the product

F (Z)G(Z) := F (Z)⊗C G(Z)

is in M2
ρ1⊗ρ2(N,χ), where if (k1, k2) and (k′1, k

′
2) are the highest weight vec-

tors of ρ1 and ρ2, respectively, then the highest weight vector of ρ1 ⊗ ρ2 is

(k1 + k′1, k2 + k′2). Hence, ⊕
ρ

M2
ρ (N,χ)

is a graded C-algebra, where the sum is taken over all irreducible represen-

tations of GL2(C).

It follows from the transformation property satisfied by F ∈ M2
ρ (N,χ)

and the Koecher principle that F admits a Fourier expansion of the form

F (Z) =
∑
T∈Λ2
T≥0

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V,

where Λ2 denotes the set of all 2× 2 half-integral symmetric matrices, i.e.,

2T is an integral matrix with even diagonal entries, T ≥ 0 means that T is

positive definite, and Tr(TZ) is the trace of the matrix TZ. Furthermore,

if aF |ργ(T ) = 0 for every γ ∈ Sp4(Z) when T is not strictly positive definite,

we say that F is a cusp form. We denote the subspace of cusp forms by

S2
ρ(N,χ).

Next, we recall some facts from the theory of Hecke operators for Siegel

modular forms. Let F ∈ M2
ρ (N,χ). We define the weight ρ double coset

operator by

F [Γ2
0(N)αΓ2

0(N)]ρ =
∑
i

χ(det(aαi))F |ραi,

where the summation runs over a complete set of representatives for

Γ2
0(N)\Γ2

0(N)αΓ2
0(N).



LEVEL STRIPPING FOR SIEGEL MODULAR FORMS 5

We have a natural multiplication of these double coset operators given by

F [(Γ2
0(N)αΓ2

0(N)) · (Γ2
0(N)βΓ2

0(N))]ρ =
∑
i,j

χ(det(aαiβj))F |ραiβj,

which makes the collection of double coset operators into an algebra over

Q, which is called the Hecke algebra, and denoted H(Γ2
0(N)). The following

proposition is quite helpful in working with elements of the Hecke algebra.

Proposition 3. [30, Prop. 16.4] Let α ∈ GSp+
4 (Q) ∩ M4(Z). Then, the

double coset Γ2
0(N)αΓ2

0(N) has a unique representative of the form

γ = diag(a1, a2, d1, d2)

with integers aj, dj satisfying aj > 0, ajdj = µ(γ) for j = 1, 2 and a2|d2, a1|a2.

For a prime p, if we define Hp(Γ
2
0(N)) to be the subring of double

cosets in H(Γ2
0(N)) whose representatives have only powers of p in the

denominators of the entries, then this proposition gives us that any element

of H(Γ2
0(N)) can be written as a finite product of elements, each com-

ing from a distinct Hp(Γ
2
0(N)). In other words, we have a decomposition

H(Γ2
0(N)) = ⊗′pHp(Γ

2
0(N)), where ⊗′p is called the restricted tensor prod-

uct, and means that all but finitely many elements of the product should be

the identity. We will also use HZ
p (Γ2

0(N)) to denote the subring of Hp(Γ
2
0(N))

whose representatives have only integral entries. We call HZ
p (Γ2

0(N)) the lo-

cal Hecke algebra at p. Let HZ(Γ2
0(N)) = ⊗′pHZ

p (Γ2
0(N)). Concerning the

generators of HZ
p (Γ2

0(N)), we have the following theorem.

Theorem 4. [30, Thm. 9] The local Hecke algebra at p, for p - N , is a

Z-algebra generated by the following elements

T (p) = Γ2
0(N)

(
I2 02

02 pI2

)
Γ2

0(N),

and,

Ti(p
2) = Γ2

0(N)


I2−i 0 0 0

0 p1i 0 0
0 0 p2I2−i 0
0 0 0 pIi

Γ2
0(N),

for i = 1, 2. Furthermore, Hp(Γ
2
0(N)) = HZ

p (Γ2
0(N))[1/T2(p2)].

Note, from Lemma 4.2 in [3] we have that the spaces M2
k (N,χ), S2

k(N,χ)

are stable under the action of the Hecke operators, and it is not difficult to

see that this proof extends to arbitrary weight ρ.

Moreover, adapting the scalar weight techniques from [3] to our vector-

valued setting, we immediately obtain the following theorem, which gives

an explicit action of the Hecke operators on Fourier coefficients.
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Theorem 5. Let F ∈ M2
ρ (N,χ). Then, we have the following expression

for aT (p)F (T ),

χ(p2)aF

(
T

p

)
+ p3ρ(diag(p, p))−1aF (pT )

+ pχ(p)
∑

D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
.

and for aT1(p2)F (T ),

χ(p2)
∑

D∈S(p)

ρ(D)−1

(
aF

(
DT TD

p2

)
+ p3χ(p)ρ(diag(p, p))−1aF (DT TD)

)

+ pχ(p2)

 ∑
D∈S(p)

ρ(D)−1aF

(
DT TD

p

)2

−
∑

D∈S(p2)

ρ(D)−1aF

(
DT TD

p2

)
− (p+ 1)χ(p)ρ(diag(p, p))−1af (T ).

Note, as the verification of this theorem is quite lengthy and fairly rou-

tine, we have simply included the proof of this result in Section 5 so as not

to take the reader too far afield.

In addition to the Hecke operators, the space S2
ρ(N,χ) also comes equipped

with an inner product, known as the Petersson inner product. The reader is

referred to [25] for the formulation in the setting of arbitrary genus vector-

valued Siegel modular forms, where one needs to change the domain inte-

grated over in the case of non-trivial level.

Let V = Cx1 ⊕ Cx2 be the standard representation of GL2(C). This

space comes with a natural inner product given by

〈a1x1 + a2x2, b1x1 + b2x2〉 = a1b1 + a2b2,

which induces an inner product on Symk1−k2(V ) given by

〈v1 . . . vk1−k2 , w1 . . . wk1−k2〉 =
1

(k1 − k2)!

∑
σ∈Sk1−k2

k1−k2∏
j=1

〈vσ(j), wj〉,

where vi, wi ∈ V . From [25] we have that this inner product satisfies

(1) 〈v, w〉 = 〈w, v〉, for all v, w ∈ Symk1−k2(V ).

(2)

〈ρ(γ1)v, ρ(γ2)w〉 = 〈ρ(Tγ2γ1)v, w〉

for all γ1, γ2 ∈ GL2(C), v, w ∈ Symk1−k2(V ), where

ρ : GL2(C)→ GL(Symk1−k2(V )).
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Using this, we define the Petersson inner product of F,G ∈M2
ρ (N,χ), with

at least one a cusp form, to be

〈F,G〉Γ2
1(N) = ∗

∫
Γ2
1(N)\h2

〈ρ(Z)F (Z), G(Z)〉 det(Im(Z))−3dZ,

where Γ2
1(N)\h2 is a fundamental domain for Γ2

1(N), and the normalizing

factor ∗ is given by
1

[Sp4(Z) : {±I4}Γ2
1(N)]

.

From [4] we have that the Hecke operators are self-adjoint with respect to

this inner product in the level 1, arbitrary genus case. Furthermore, using

the formulas derived in Theorem 5, this can be shown to hold for level

N and genus 2 for all Hecke operators in HZ
N(Γ2

0(N)) := ⊗′p-NHZ
p (Γ2

0(N)).

These formulas are precisely the same, regardless of the level, so the self-

adjointness follows immediately. From this, it follows that S2
ρ(N,χ) has an

orthogonal basis which consists of simultaneous eigenvectors for T (p) and

Ti(p
2) for i = 1, 2 and for all p - N . We refer to such an eigenvector as

an eigenform. Note, by our definition of modular forms, any element of

M2
ρ (N,χ) is automatically an eigenvector for the Hecke operators T2(p2) for

p - N and has eigenvalue given by χ(p) up to some normalization factor.

We can also associate an L-function to a genus 2 Siegel modular form

as well. Assume that F ∈ S2
ρ(N,χ) is an eigenform, with ρ having highest

weight vector (k1, k2). Then, the associated L-function is given by

L(s, F ) =
∏
p-N

Lp(p
−s, F )−1

∏
p|N

(1− λF (p)p−s)−1,

with

Lp(X,F ) = 1− λF (p)X + (λF (p)2 − λF (p2; 1)− χ(p2)pk1+k2−4)X2

− χ(p2)λF (p)pk1+k2−3X3 + χ(p4)p2k1+2k2−6X4,

where T (p)F = λF (p)F and T1(p2)F = λF (p2; 1)F . Note, there are actually

two distinct L-functions associated to F , however, the L-function presented

above, referred to as the spinor L-function, is all we will be concerned with.

By Theorem 1 in [1], it is known that this L-function is absolutely convergent

in some right half plane and satisfies a functional equation in the scalar

weight case.

3. Level stripping of Siegel modular forms

In this section, the goal is to prove our level stripping result. Before this

is possible, we need quite a few preliminaries that will go in to the proof.
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3.1. Arithmetic properties of Siegel modular forms. In this section,

we give some important arithmetic properties of Siegel modular forms, and

cuspidal eigenforms in particular, which will be needed for discussing con-

gruences.

In order to discuss arithmetic properties of Siegel modular forms, we

need to consider Siegel modular forms with Fourier coefficients lying in a

certain ring. We make this precise here and set some notation. Recall, we

can identify the representation space V with the homogeneous polynomials

C[x1, x2] of degree k1 − k2, where (k1, k2) is the highest weight vector of

ρ. For any subring R ⊂ C, let VR denote the homogeneous polynomials in

R[x1, x2] of degree k1 − k2. Let S2
ρ(N,χ)R denote the subset of S2

ρ(N,χ)

whose elements have Fourier coefficients in VR at each cusp. Note, in [13], it

is shown that vector-valued modular forms satisfy a “q-expansion principle,”

i.e., if the Fourier coefficients at one cusp lie in VR then so do the Fourier

coefficients at all of the other cusps.

We begin with the following lemma which will be needed throughout

this section. Note the proof follows immediately from the explicit formulas

given in Theorem 5.

Lemma 6. Let F ∈ S2
ρ(N,χ)Q(χ). Then, TF ∈ S2

ρ(N,χ)Q(χ), for any

T ∈ HZ
N(Γ2

0(N)), where Q(χ) is defined to be the number field obtained

by adjoining all of the values of χ to Q.

We should also mention that similar results have been obtained in [13]

using techniques from arithmetic geometry.

Using this lemma, we obtain the following result concerning the field of

definition of the Hecke eigenvalues for a given eigenform.

Proposition 7. Let F ∈ S2
ρ(N,χ) be an eigenform. Define Q(λF ) to be the

field generated by adjoining all of the eigenvalues of F with respect to the

Hecke operators T (p) and Ti(p
2) for 1 ≤ i ≤ 2 and p - N . Then, Q(λF )/Q

is a totally real finite extension.

Note, this result is certainly well known to the experts, but we record

the proof for the sake of completeness in the literature.

Proof. For any t ∈ HZ
N(Γ2

0(N)), let λ(t) satisfy tF = λ(t)F . Note, λ(t) is

algebraic as it is the root of the characteristic polynomial of t, and as t is

self-adjoint, we have that λ(t) is totally real.

To obtain that Q(λF )/Q is a finite extension, we proceed as in the proofs

of Theorem 1 in [18] where this lemma is proven for classical Siegel modular
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forms of arbitrary genus and of level 1 and Theorem 1 in [26] where this

lemma is proven for vector valued Siegel modular forms of genus 2 and level

1.

By Lemma 2.1 in [27], we have that

S2
ρ(N,χ)OK ⊗OK C = S2

ρ(N,χ),

where OK is the ring of integers of some finite abelian extension K/Q.

Without loss of generality, we assume that Q(χ) ⊆ K.

Let Aut(C/K) denote the field automorphisms of C which fix elements

of K. Let σ ∈ Aut(C/K). We define

F σ(Z) =
∑
T

σ(aF (T )) exp(Tr(TZ)),

and σ acts on aF (T ) by considering aF (T ) ∈ C[x1, x2] and acting on the the

coefficients, i.e., for aF (T ) =
∑

i,j aijx
i
1x

j
2 we have σ(aF (T )) :=

∑
i,j σ(aij)x

i
1x

j
2.

We can decompose F as the sum

F =
∑
n

cn(Fn ⊗ zn),

where cn ∈ OK , zn ∈ C, and Fn ∈ S2
ρ(N,χ)OK . Recall, by Lemma 6, we

have that tFn ∈ S2
ρ(N,χ)OK for any t ∈ HZ

N(Γ2
0(N)). Furthermore, for any

t ∈ HZ
N(Γ2

0(N)), we have

tF =
∑
n

cn(tFn ⊗ zn).

It follows that (tF )σ = t(F σ) for any t ∈ HZ
N(Γ2

0(N)). In particular, tF σ =

σ(λF (t))F σ. We notice from this that F σ ∈ S2
ρ(N, σ ◦χ) and that Q(λFσ) =

σ(Q(λF )).

Let Bχ denote a basis of eigenforms for S2
ρ(N,χ) and set

B :=
⋃

χ (mod N)

Bχ,

where the union is over all Dirichlet characters modulo N . Note, B is a finite

set. From the discussion above, we have a map

Aut(C/K)→ S|B|,

where S|B| is the symmetric group on |B| letters. Thus, the action of Aut(C/K)

on each the direct sum over χ of all S2
ρ(N,χ) factors through a finite quo-

tient. Hence, Q(λF )/Q is a finite extension. �

Finally, to conclude this section, we have the following result concerning

the field of definition of the Fourier coefficients of an eigenform.
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Lemma 8. Let F ∈ S2
ρ(N,χ) be an eigenform and let K denote Q(λF , χ),

i.e., the field obtained by adjoining all of the values of χ to Q(λF ). Set

S2
ρ(N,χ;F ) =

{
G ∈ S2

ρ(N,χ) : λG(t) = λF (t) for all t ∈ HZ
N(Γ2

0(N))
}
.

Then,

S2
ρ(N,χ;F ) = S2

ρ(N,χ;F )OKL ⊗OKL C,

where OKL is the ring of integers of the compositum of K and L where L/Q
is some finite extension.

Proof. Recall, by Lemma 2.1 in [27] we have

S2
ρ(N,χ) = S2

ρ(N,χ)OL ⊗OL C,

where we are using the same notation which was defined before Corollary 6

and L/Q is a finite abelian extension. We assume that L contains the values

of χ. Let {F1, . . . , Fr} be an OL-basis for S2
ρ(N,χ)OL . By Theorem 6, we

have that

tFi =
r∑
j=1

cij(t)Fj, for all t ∈ HZ
N(Γ2

0(N)),

where cij(t) ∈ OL.

For each z = (z1, . . . , zr) ∈ Cr we put

f(z) =
r∑
i=1

ziFi.

We set V (F ) = {z ∈ Cr : f(z) ∈ S2
ρ(N,χ;F )}. Note, V (F ) is a finite

dimensional C-vector space and we denote the dimension by d. It is clear

that f defines a C-linear isomorphism

f : V (F )→ S2
ρ(N,χ;F ).

Take S to be a generating set for HZ
N(Γ2

0(N)) as a Z-algebra , which we

know is finite because HZ
N(Γ2

0(N)) ↪→ EndC(S2
ρ(N,χ)). For z ∈ V (F ) it is

clear that tf(z) = λF (t)f(z) for all t ∈ S, i.e.,

r∑
i=1

cij(t)zi = λF (t)zi.

Since the coefficients λF (t), cij(t) are in KL, there exists a basis {v1, . . . , vd}
of V (F ) such that vj ∈ (KL)r. Take a non-zero γj ∈ OKL such that v′j =

γjvj ∈ OrKL. Then, f(v′j) ∈ Snk (N,χ;F )OKL and V (F ) =
⊕d

i=1 Cv′i. �
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3.2. Congruences of genus 2 Siegel modular forms. In this section we

define two distinct notions of congruences between genus 2 Siegel modular

forms. We then show a relationship between the two notions.

Let F and G be genus 2 eigenforms of level N and M respectively.

For any prime p - MN , we let λF (p), λF (p2; i), λG(p), λG(p2; i) denote the

eigenvalues of F and G with respect to T (p) and Ti(p
2) for i = 1, 2, i.e.,

T (p)F = λF (p)F , Ti(p
2)F = λF (p2; i)F,

T (p)G = λG(p)G, Ti(p
2)G = λG(p2; i)G.

We let Q(λF , λG) denote the compositum of Q(λF ) and Q(λG), where Q(λF )

and Q(λG) were defined in Proposition 7. By Proposition 7, Q(λF , λG) is a

totally real number field. Let Σ denote a finite set of primes. Then, we write

F ≡Σ G (mod `) if for all primes p /∈ Σ we have

λF (p) ≡ λG(p) (mod ν), λF (p2; i) ≡ λG(p2; i) (mod ν) for i = 1, 2,

where ν is a prime lying above ` in Q(λF , λG). This is referred to as a

congruence of eigenvalues.

Our second notion will be the congruence of Fourier coefficients, which

we define as in [6]. Define the following field,

Q(F ) =
∏
T∈Λ2

Q(aF (T )),

where

Q(aF (T )) := Q

({
aij : aF (T ) =

∑
i,j

aijx
i
1x

j
2

})
.

As in Section 2, we have identified V with the homogeneous polynomials

of degree k2 − k1 in C[x1, x2], where (k1, k2) is the highest weight vector

of ρ. Then, Lemma 8 gives that after some normalization, we may assume

that Q(F ) is a finite extension. We make the same assumption for the field

Q(G).

Define the `-adic valuation of F as

ord`(F ) = inf
T∈Λ2

{ordν(aF (T ))} ,

where

ordν(aF (T )) = min
i,j

{
ordν(aij) : aF (T ) =

∑
i,j

aijx
i
1x

j
2

}
,

and ν is a prime lying above ` in Q(F ). Using this, we say that F and G have

congruent Fourier coefficients, denoted F ≡fc G (mod `r), if ord`(F −G) ≥
r.
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For the genus 1 case, it is clear that these two notions of congruence are

equivalent, as the Fourier coefficients of a normalized elliptic eigenform are

precisely the eigenvalues. This equivalence is not necessarily true for any

higher genus. However, we do have the following lemma, which gives that a

congruence of Fourier coefficients implies a congruence of eigenvalues.

Lemma 9. Let F,G be as defined above and let Σ be the set of rational

primes dividing MN . If F ≡fc G (mod `) then F ≡Σ G (mod `).

Proof. This proof follows the same argument as in Theorem A.1 in [21],

however we include it here to emphasize that this result works for vector-

valued forms of arbitrary level, not just the classical forms of level one case

as was proven in [21].

Set K to be the compositum of Q(F ) and Q(G). Also, we adjoin the

values of the characters of F and G if necessary and continue to denote

this field by K. Let c ∈ K so that at least one component of one Fourier

coefficient of cF is an `-unit, i.e., for some T ∈ Λ2 and i, j ∈ N we have that

ordν(aij) = 0, where aF (T ) =
∑

i,j aijx
i
1x

j
2 and ν is a prime lying above

` in K. Without loss of generality, we replace F and G by cF and cG,

respectively. Denote this component by aF (T )ij. Let t ∈ HZ
N(Γ2

0(N)) with

tF = λF (t)F and tG = λG(t)G. Define the form H = F −G. Then,

λF (t)F − λG(t)G = t(F −G) = tH.

By Theorem 6, we have that Q(tH) ⊆ K. Hence,

λF (t)aF (T )ij ≡ λG(t)aG(T )ij (mod ν),

where ν is a prime lying above ` in K. Since aF (T )ij is an `-unit and

aF (T )ij ≡ aG(T )ij (mod ν), we have that λF (t) ≡ λG(t) (mod ν), which

completes the proof. �

3.3. The U(`) operator. In this section, we introduce a certain operator

on the space of Siegel modular forms which is analogous to the UN
` operator

in [20] and then give the relevant properties which will be important for

our purposes. Furthermore, we will provide a correction to the proof of the

main result in [14].

We define the operator U(`) by its action on Fourier expansions,

U(`) :
∑

0≤T∈Λ2

aF (T ) exp(Tr(TZ)) 7→
∑

0≤T∈Λ2

aF (`T ) exp(Tr(TZ)).

For our main result we will need the following two properties of the U(`)

operator.
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Lemma 10. [5, Thm 3.1]

If `||M , the operator U(`) is an injective map from M2
ρ (M,χ) to itself.

Proof. We give a sketch of the proof here, as the result is only shown for

the scalar weight case in [5].

Let F ∈ M2
ρ (M,χ) with `||M . Following d) in Remark 1 of [5], we

consider the operator

tF = F |
∑

M∈M2(F`)
M=TM

(
0 −I2

I2 M

)
.

Note that this is the operator denoted τ(1, n) in [5]. This operator is invert-

ible by Proposition 2.1 in [5].

From Equation 3.2 in [5], we can decompose t as follows

tF = F |
∑

M∈M2(F`)
M=TM

(
0 −I2

I2 M

)

= p3−kF |W`|U(`),

where

W` =

(
02 −I2

`I2 02

)
.

Note, W` is an involution. Furthermore, W` normalizes the group Γ2
0(M),

which gives that F |W` ∈ M2
ρ (M,χ). Combining this with the invertibility

of t, we have that U(`) is injective. �

Lemma 11. If `2|M and χ is defined modulo M
`

, the operator U(`) maps

M2
ρ (M,χ) to M2

ρ (M/`, χ).

Proof. Here we have adapted a proof of Andrianov from [2].

Let F ∈M2
ρ (M,χ). From [5] we have that the operator U(`) is given by,

U(`)F = `3
∑
S

F |
(

1 S
0 `

)
,

where the summation runs over all symmetric matrices in M2(Z/`Z). We

have

U(`)F = `3
∑
S

F |
(

1 S
0 `

)
= `3F |

(
1 0
0 `

)∑
S

(
1 S
0 1

)
.

Define the following subgroup of Γ2
0(M/`),

Γ(M/`, `) :=

{(
A B
C D

)
∈ Γ2

0(M/`) : B ≡ 0 (mod `)

}
.
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Then, for γ ∈ Γ(M/`, `) we have

F |
(

1 0
0 `

)
|
(
aγ bγ
cγ dγ

)
= F |

(
aγ bγ
`cγ `dγ

)
= F |

(
aγ

bγ
`

`cγ dγ

)
|
(

1 0
0 `

)
= χ(γ)F |

(
1 0
0 `

)
.

Note, a complete set of right coset representatives for

Γ(M/`, `)\Γ2
0(M/`)

is given by {(
1 S
0 1

)
: TS = S, S ∈M2(Z/`Z)

}
.

Let γ ∈ Γ0(M/`), and let S ∈ M2(Z/`Z) be symmetric. Set S ′ to be

the unique symmetric matrix in M2(Z/`Z) which is congruent to (aγ +

Scγ)
−1(bγ + Sdγ) (mod `). Then, from Lemma 13 in [2], there exists γS ∈

Γ(M/`, `) such that (
1 S
0 1

)
γ = γS

(
1 S ′

0 1

)
.

Note, such a γS also satisfies χ(γ) = χ(γS). Thus,

U(`)F |γ = `3
∑
S

F |
(

1 0
0 `

)(
1 S
0 1

)
γ

= `3
∑
S

F |
(

1 0
0 `

)
γS

(
1 S ′

0 1

)
= `3χ(γS)F |

(
1 0
0 `

)∑
S′

(
1 S ′

0 1

)
= χ(γ)U(`)F.

This completes the proof. �

Corollary 12. Let F ∈ S2
ρ(N`

r, χ) be an eigenform with χ defined modulo

N , r > 1, and ` - N . Then, for some ρ′ and some χ′ defined modulo N ,

there is a form G ∈ S2
ρ′(N`

r−1, χ′) satisfying

F ≡fc G (mod `).

Proof. We begin by letting σ ∈ Gal(Q(F )/Q) be a Frobenius element for ν

a prime over ` in Q(F ), i.e., σx ≡ x` (mod ν) for all x ∈ OQ(F ). By realizing

σ as an element of Aut(C), we can apply Theorem 1 in [26] to see that F σ−1
,
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as defined in the proof of Lemma 7, is an eigenform in S2
ρ(N`

r, σ−1 ◦ χ).

Define a form G = U(`)(F σ−1
)`. Then, we have

U(`)(F σ−1

)` ≡ U(`)
∑
T>0
T∈Λ2

σ−1(aF (T ))` exp(`Tr(TZ)) (mod ν)

=
∑
T>0
T∈Λ2

σ−1(aF (T ))` exp(Tr(TZ))

≡
∑
T>0
T∈Λ2

aF (T ) exp(Tr(TZ)) (mod ν).

Thus, G is congruent in Fourier coefficients to F . Moreover, by Lemma 11,

G ∈ S2
ρ′(N`

r−1, χ′) for some ρ′ and χ′. �

We remark here on a mistake in the proof of Theorem 8 in [14]. In

this proof, the author makes use of of the property given in Lemma 11.

However, it was brought to the attention of the author by R. Schmidt, that

it is possible that upon applying the U(`) operator, the resulting form may

be identically zero. The previous corollary allows the author to avoid this

error.

3.4. Main Result. In this section, we will prove the following theorem.

Note, the corresponding result for scalar valued forms can be found in [14].

Theorem 13. Let F ∈ S2
ρ(`

rN,χ) be an eigenform with the highest weight

vector of ρ satisfying k2 ≥ 3 and χ defined modulo `N with ` - N . Let Σ be

the set of rational primes which divide `N . Then, for some χ′ and ρ′, there

exists an eigenform G ∈ S2
ρ′(N,χ

′) such that F ≡Σ G (mod `).

Proof. Throughout we are working with genus 2 Siegel modular forms, so

we will drop the superscript. Furthermore, throughout the proof we will not

be explicit about the weights of the intermediate forms, but we will make a

note about the final weight ρ′ at the end. Finally, we will tacitly take finite

extensions of Q as needed.

As χ is a character modulo `N we obtain a factorization χ = ωiκ, where

ω is the unique character of conductor ` and order `−1, i.e., the Teichmüller

character, and κ is a character modulo N .

Let E ∈ Mk(`, ω
−i) be a form from the sequence in Theorem 1.2 in [17]

such that E ≡fc 1 (mod `). Consider the product of Siegel modular forms

FE.
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We first want to show that this product transforms correctly under the

action of Γ0(`r) ∩ Γ1(N). Let γ ∈ Γ0(`r) ∩ Γ1(N). Then,

(F (Z)E(Z))|γ = κωi(γ)ω−i(γ) det(cZ + d)−kρ(cZ + d)−1F (γZ)E(γZ)

= F (Z)E(Z).

Thus, the product is a form of the desired level and of character κ. We will

denote the weight of this form by ρ′. Furthermore, as E ≡fc 1 (mod `) we

have that

FE ≡fc F (mod `).

Thus, FE is an eigenform when reduced modulo ν for a prime ν lying above

` in Q(F ), and Lemma 9 gives us

FE ≡Σ F (mod `).

LetOν be an extension of Z` which has ν as its maximal ideal. As Sρ′(N`
r, κ)

is a finite, free Oν module, we can apply the Deligne-Serre lifting lemma

(Lemme 6.11, [8]) to obtain an eigenform F1 ∈ Sρ′(N`r, κ) such that

F1 ≡Σ F (mod `).

We can now apply Corollary 12 repeatedly to F1 in order to obtain a

form F2 ∈ Sρ′(N`, χ
′) for some ρ′ and χ′, which is congruent in Fourier

coefficients modulo ` to F . By the same argument used above we can find

an eigenform in Sρ′(N`, χ
′) satisfying this same congruence.

Before proceeding, we state the following lemma whose proof is precisely

the same as the proof of Proposition 3.1 in [6].

Lemma 14. Let F ∈ S2
ρ(N`, χ) be an eigenform with associated character

χ defined modulo N . Then, for some ρ′ there exists G ∈ S2
ρ′(N,χ) such that

F ≡fc G (mod `).

Applying this lemma to F2 to obtain a form F3 ∈ Sρ′(N,χ
′) which is

congruent in Fourier coefficients to F modulo ν. Just as before, this yields

the desired eigenform G.

Finally, with regards to the weight ρ′ of G, if we let the highest weight

vector of ρ be (k1, k2), then the highest weight vector of ρ′ is

(`(k1 + i`m1 + `m2−1(`− 1)), `(k2 + i`m1 + `m2−1(`− 1)),

where m1 and m2 are both sufficiently large integers. In particular, we have

that

(k′1, k
′
2) ≡ (k1 + i, k2 + i) (mod `− 1),

where (k′1, k
′
2) is the highest weight vector of ρ′. �
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4. Application to Galois representations

In this section, we present an application of Theorem 13 which provides

evidence for a conjecture of Herzig and Tilouine.

We begin with the following result which gives the existence of a Galois

representation attached to a cuspidal Siegel eigenform of genus 2 as well

as the characteristic polynomial of the images of the Frobenius elements

with respect to this representation. Note that this result is stated in [24],

however the proof is essentially due to Laumon in [19] and Weissauer in

[31],[32]. The last reference is necessary to conclude that the associated

Galois representation is symplectic in the case that the Siegel eigenform

does not arise as a Saito-Kurokawa lift.

Theorem 15. Let F ∈ S2
ρ(M,χ) be an eigenform with ρ having highest

weight vector (k1, k2) which satisfies k2 ≥ 3. Let K = Q(λF ) and let ν be

a prime lying above ` in K. Then, there exists a continuous, semi-simple

Galois representation

ρF,ν : GQ → GL4(OKν )

such that for all primes p - `M we have

det(X · 14 − ρF,ν(Frobp)) = Lp(X,F ).

and ρF,ν is unramified at p, and we remind the reader that Lp(X,F ) is the

local factor at p of the spinor L-function as defined in Section 2.

Throughout the remainder of the section, we will suppose that F is not a

Saito-Kurokawa lift, so that we may assume the image of ρF,ν is contained in

GSp4(OKν ). Furthermore, we will denote the weight ρ by its highest weight

vector (k1, k2) in order to avoid confusion.

As we our representation takes values in GSp4(OKν ), we may form the

residual representation of ρF,ν at `, i.e., the representation

ρF,ν : GQ → GSp4 (OKν/νOKν ) ↪→ GSp4(F`),

by reducing the image of ρF,ν modulo ν. We will take the semisimplification

of the residual representation and continue to denote it as ρF,ν . We say that

any representation arising in this way is modular.

With this in mind, we can ask when is a representation ρ : GQ →
GSp4(F`) modular?

In a partial answer to this question, Herzig and Tilouine have given

conditions under which ρ is conjectured to be modular. The reason this is a

partial answer is that Herzig and Tilouine restrict to the ordinary setting.
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In order to state precisely the conjecture of Herzig and Tilouine we need a

bit of background. For more details the reader is referred to [12].

First, we say that ρ is odd if µ ◦ ρ(c) = −1, where c ∈ GQ is complex

conjugation and µ is the similitude factor. Note, to see that this is necessary

for a representation to be modular, the reader is referred to Section 9 of [28].

Second, we need the following definition.

Definition 16. Let F ∈ S2
(k1,k2)(M,χ) be an eigenform. We say that F is

ordinary at ` if it satisfies one of the following two equivalent conditions

(1) ord`(λF (`)) = 0 and ord`(λF (`2; 1)) = k2 − 3.

(2) The roots of the characteristic polynomial of ρF,ν(Frob`), which we

denote by r1, r2, r3, r4, satisfy

ord`(r1) = 0, ord`(r2) = k2 − 2, ord`(r3) = k1 − 1, ord`(r4) = k1 + k2 − 3.

Note that the equivalence in the above definition comes directly from

the characteristic polynomial in Theorem 15.

Let Dν be the decomposition group of ` in GQ, where ν is any prime

lying above ` in Z. Let χ` denote the `-adic cyclotomic character and for

an `-adic number u, we set ε(u) to be the unramified character of Dν which

sends Frob` to u. Then, for F ordinary at `, we have from [29] that

ρF,ν |Dν ∼


χk1+k2−3
` ε

(
r4

`k1+k2−3

)
∗ ∗ ∗

0 χk1−1
` ε

(
r3

`k1−1

)
∗ ∗

0 0 χk2−2
` ε

(
r2

`k2−2

)
∗

0 0 0 ε(r1)

 ,

where ∼ denotes that the representations are isomorphic.

With this in mind, for a representation

ρ : GQ → GSp4(F`),

we will say ρ is ordinary at ` if up to conjugation we have

ρ|Dν ∼


χe3` ε(u3) ∗ ∗ ∗

0 χe2` ε(u2) ∗ ∗
0 0 χe1` ε(u1) ∗
0 0 0 χe0` ε(u0)

 ,

where χ` is the reduction of χ` modulo `, the exponents satisfy e3 ≥ e2 ≥
e1 ≥ e0, ε is as above, and u3, u2, u1, u0 ∈ Fx

`. We denote such a represen-

tation by (ρ, {ej}). After twisting by an appropriate power of χ` we may

assume e0 = 0 and that ej ≤ j(` − 2) for j = 1, 2, 3. This brings us to the

next definition.
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Definition 17. For a representation (ρ, {ej}), we say that the exponents

{ej} are `-small if we can twist ρ by a power of χ` so that 0 = e0 ≤ e1 ≤
e2 ≤ e3 < `− 1.

Furthermore, if we can write e1 = k2−2 and e2 = k1−1 for some integers

k1 ≥ k2 ≥ 3 then we call (k1, k2) the modular weight of (ρ, {ej}) .

We are now prepared to state the following conjecture.

Conjecture 18. [12, Conj. 0] Let (ρ, {ej}) be an irreducible, odd Galois

representation which is ordinary at ` and has modular weight (k1, k2). Sup-

pose further that the exponents {ej} are `-small. Then, ρ is modular of level

N with ` - N .

As evidence for this conjecture, we can state the following corollary which

follows from Theorem 13.

Corollary 19. Suppose that ρ is modular of level `rN and character χ of

conductor `N with ` - N . Then, ρ is modular of level N .

Proof. Suppose that ρ arises from F ∈ S2
(k1,k2)(`

rN,χ). Then, we can apply

Theorem 13 to obtain a representation ρ′ of level N such that the char-

acteristic polynomials of ρ(Frobp) and ρ′(Frobp) are equal for all p - `N .

Thus, the characteristic polynomials of ρ and ρ′ are equal everywhere by

the Chebotarev Density Theorem. The Brauer-Nesbitt Theorem gives that

ρ is isomorphic to ρ′. �

Note, this result allows one to remove the ` - N condition from Conjec-

ture 18 after placing the necessary restriction on the corresponding charac-

ter.

To conclude the section, we make a brief comment concerning the `-

small condition on the exponents. In a recent paper, Yamauchi presents the

following theorem.

Theorem 20. [33, Thm. 1.1] Let ρ be an irreducible, odd Galois represen-

tation. Assume that ρ is modular. Then, there is some integer 0 ≤ α ≤ `−2

and a (mod `) eigenform F of weight (k, k) or (k + 1, k), for k ≥ 1, such

that F is not identically zero and ρ ∼= χα` ⊗ ρF .

We should stress that that the eigenform F in the theorem is only defined

modulo `. Hence, it may not be realizable as a genuine eigenform. However,

in the discussion following this theorem in [33], Yamauchi mentions that a

forthcoming result of Boxer may allow one to show that k ≤ ` + 1, and

then he provides an argument which would allow one to lift the form F to
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characteristic zero, i.e., to realize F as a genuine eigenform. If one had such

a result, then the condition on the exponents being `-small in Conjecture

18 could be removed.

5. Action of Hecke operators on Fourier Coefficients

In this section, we provide explicit formulas for the action of Hecke op-

erators on genus 2 Siegel modular forms. In particular, we provide a proof

of Theorem 5. We will adapt techniques used by Andrianov in [3] for scalar

weight modular forms to the vector valued setting.

First, we derive a basic property of Fourier coefficients, which will help

motivate our technique. Let F ∈ M2
ρ (N,χ). As we have seen, the Fourier

expansion of F of the form

F (Z) =
∑
T∈Λ2

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V,

where ρ : GL2(C) → GL(V ). Furthermore, each Fourier coefficient is given

by the integral ∫
X (mod 1)

F (Z) exp(−Tr(TZ))dX,

where we write Z = X + iY , dX is the Euclidean volume of the space of X

coordinates, and the integral runs over −1/2 ≤ Xij ≤ 1/2 for all i, j. This

integral formula allows us to derive the following relationship between the

Fourier coefficients of F ,

aF (MT TM) =

∫
X (mod 1)

F (Z) exp(−Tr(MT TMZ))dX

=

∫
X (mod 1)

F (Z) exp(−Tr(T TMZM))dX

= χ(det(M))ρ(M)

∫
X (mod 1)

F (TMZM) exp(−Tr(T TMZM))dX

= χ(det(M))ρ(M)aF (T ),

where M ∈ GL2(Z). Note, to move from the second line to the third line

we use that

F (Z) = χ(det(M))ρ(M)F (TMZM),

which follows from the transformation property of F and noticing that(
TM 0

0 M−1

)
∈ Γ2

0(N).

In summary, the desired property of the Fourier coefficients of F is

(5.1) aF (MT TM) = χ(det(M))ρ(M)aF (T ), for all M ∈ GL2(Z).
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With this property in mind, we define a more general space of functions.

Let F(V ) denote the space of holomorphic functions F : h2 → V which

have a Fourier expansion of the form

F (Z) =
∑
T∈Λ2

aF (T ) exp(Tr(TZ)) with aF (T ) ∈ V.

Let ε be a character of the group GL2(Z). Define a subspace Fε(V ) ⊂ F(V )

by considering only functions F ∈ F(V ) which satisfy

ε(M)F ((TMZ +M ′)M) = F (Z), for all

(
TM M ′

0 M−1

)
∈ P4,

where P4 is the Siegel parabolic subgroup. To summarize, we have defined

the space Fε(V ) to behave like modular forms with respect to the Siegel

parabolic subgroup, rather than congruence subgroups. Using an argument

as in the preceding paragraph we have that for F ∈ Fε(V ), the Fourier

coefficients satisfy

aF (MT TM) = ε(M)aF (T ),

where M ∈ GL2(Z). Note, by Equation 5.1, we have that M2
ρ (N,χ) ⊆ Fε(V )

if ε(M) = χ(det(M))ρ(M). Throughout, we will fix a ρ, χ and set ε = χρ.

As our functions in Fε(V ) behave like modular forms with respect to the

Siegel parabolic subgroup, it makes sense to define the double coset operator

in this setting

P4αP4 : Fε(V )→ Fε(V ),

given by

F [P4αP4]ε =
∑
i

χ(αi)F |εαi,

where we are summing over a complete set of coset representatives for

P4\P4αP4, α ∈ GSp+
4 (Q) satisfies cα = 0, and the slash operator is de-

fined to be

(F |εγ)(Z) = ρ(dγ)
−1F (γZ).

In [3], Andrianov defines a map, ι, from HZ(Γ2
0(N)) to the double coset

operators of the type listed above. This map is defined by

ι :
∑
i

Γ2
0(N)αi 7→

∑
i

P4αi.

The benefit of this map lies in the following lemma, which provides us with

a compatibility between the Hecke operators on M2
ρ (N,χ) and the double

coset operators on Fε(V ).

Lemma 21. Let F ∈M2
ρ (N,χ). Then,

TF = ι(T )F , for every T ∈ HZ(Γ2
0(N)).
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Proof. Note, this is stated as part of Lemma 4.12 from [3], we simply restate

it here to emphasize that we are interested in vector valued modular forms,

not just the scalar valued case.

The lemma follows from the fact that we can find coset representatives,

{αi} for T which have cαi = 0 for all i. �

With this lemma in mind, we use explicit coset representatives computed

for double cosets of the form P4\P4αP4 to compute formulas for the action

of elements of HZ(Γ2
0(N)). In fact, it is enough for our purposes to give

coset representatives for ι applied to the generators of HZ
p (Γ2

0(N)) taken

from Theorem 4 for each p - N . First, we give the image of these generators

as double cosets, then we will give their explicit decompositions.

Lemma 22. [3, Lemma 3.64]

ι(T (p)) = [P4 diag(p, p, 1, 1)P4] + [P4 diag(p, 1, 1, p)P4]

+ [P4 diag(1, 1, p, p)P4],

ι(T1(p2)) =
1

p
[P4 diag(p, p, 1, 1)P4][P4 diag(p, 1, 1, p)P4]

+
1

p
[P4 diag(p, 1, 1, p)P4][P4 diag(1, 1, p, p)P4]

+
1

p
[P4 diag(p, 1, 1, p)P4]2 − [P4 diag(p2, 1, 1, p2)P4]

− p+ 1

p3
[P4 diag(p, p, 1, 1)P4][P4 diag(1, 1, p, p)P4],

ι(T2(p2)) =
1

p3
[P4 diag(p, p, 1, 1)P4][P4 diag(1, 1, p, p)P4].

Combining Lemma 3.60 and Proposition 3.61 from [3], we obtain the

following left coset decompositions for the double coset operators in the

previous lemma,

P4\P4 diag(p, p, 1, 1)P4 = P4

(
pI2 02

02 I2

)
,

P4\P4 diag(1, 1, p, p)P4 =
⋃

B=TB∈M2(Z)/pZ)

P4

(
I2 B
02 pI2

)
,

P4\P4 diag(p, 1, 1, p)P4 =
⋃

D∈S(p)
B(D) (mod D)

P4

(
p TD−1 B

02 D

)
,

P4\P4 diag(p2, 1, 1, p2)P4 =
⋃

D∈S(p2)
B(D) (mod D)

P4

(
p2 TD−1 B

02 D

)
,
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where S(d) = SL2(Z)\ SL2(Z) diag(1, d) SL2(Z),B(D) =
{
B : TBD = TDB

}
,

and B ≡ B′ (mod D) if (B −B′)D−1 ∈M2(Z).

With these left cosets, we are able to compute the action of each of these

double cosets on the Fourier coefficients of elements of M2
ρ (N,χ). We will

only require the action for primes not dividing N .

Lemma 23. Let F ∈M2
ρ (N,χ) and let p - N be a prime. Then,

(1) aF [P4 diag(p,p,1,1)P4]ε(T ) = χ(p2)aF

(
T
p

)
.

(2) aF [P4\P4 diag(1,1,p,p)P4]ε(T ) = p3ρ(diag(p, p))−1aF (pT ).

(3) aF [P4\P4 diag(p,1,1,p)P4]ε(T ) = pχ(p)
∑

D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
(4) aF [P4\P4 diag(p,1,1,p)P4]ε(T ) = p2χ(p2)

∑
D∈S(p2)

ρ(D)−1aF

(
DT TD

p2

)
.

We set aF (T ) = 0 if T 6∈ Λ2.

Proof. This is essentially the proof of Lemma 4.14 in [3].

Number 1 follows immediately. Number 2 follows by decomposing(
I2 B
02 pI2

)
=

(
I2 02

02 pI2

)(
I2 B
02 I2

)
,

applying the definition of the slash operator, and noticing that there are p3

elements of M2(Z/pZ) which are symmetric.

To show the formula in Number 3, we begin by applying the appropriate

left coset representatives to the Fourier expansion to obtain that

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1
∑
T∈Λ2

aF (T ) exp(Tr(T (p (TD−1Z +B)D−1))

is equal to

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1
∑
T∈Λ2

aF

(
DT TD

p

)
exp(Tr(TZ)) exp

(
Tr

(
DT TDBD−1

p

))
.

Thus, by fixing T , we have that aF [P4\P4 diag(1,1,p,p)P4]ε(T ) is equal to

χ(p)
∑

D∈S(p)
B(D) (mod D)

ρ(D)−1aF

(
DT TD

p

)
exp

(
Tr

(
DT TDBD−1

p

))
.

Furthermore, in the proof of Lemma 4.14 in [3], it is shown that for any

D ∈ S(p) we have ∑
B(D) (mod D)

exp

(
Tr

(
DT TDBD−1

p

))
= p.
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Thus, our expression becomes

aF [P4\P4 diag(1,1,p,p)P4]ε(T ) = pχ(p)
∑

D∈S(p)

ρ(D)−1aF

(
DT TD

p

)
,

as desired. Note, the proof of Number 4 follows precisely the same argument

as the proof of Number 3. �

We can combine Lemma 21, Lemma 22, and Lemma 23 to give for-

mulas for the action of the Hecke operators in HZ
p (Γ2

0(N)) on the Fourier

coefficients of elements in M2
ρ (N,χ) for all p - N . Note, we will only be

concerned with the action of T (p) and T1(p2), as we have already restricted

to the eigenspace of T2(p2). The explicit action of these operators on Fourier

coefficients is given in Theorem 5.
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