
COUNTING TAMELY RAMIFIED EXTENSIONS OF

LOCAL FIELDS UP TO ISOMORPHISM

JIM BROWN, ROBERT CASS, KEVIN JAMES, RODNEY KEATON,
SALVATORE PARENTI, AND DANIEL SHANKMAN

Abstract. Let p be a prime number and let K be a local field of residue
characteristic p. In this paper we give a formula that counts the number
of degree n tamely ramified extensions of K in the case p is of order 2
modulo n.

1. Introduction

Let n > 1 and p a prime with p - n. Let K be a local field of residue
characteristic p. In this paper we are interested in counting up to isomor-
phism the number of degree n tamely ramified extensions of K; we denote
this number by K(n, p).

Let e | n be a ramification index and set f = n/e to be the residue class
degree. Set ge = gcd(e, pf − 1). It is well-known that up to isomorphism
the number of degree n ramification index e extensions of K is exactly the
number of orbits of Z/geZ under the action of p. We denote this number
by O(e, p). We use this result to calculate the number of extensions by first
calculating the size of orbits under this action.

In section 2 we present two straightforward cases where the orbit structure
is easy to write down. In the following section we deal with determining the
orbit structure of Z/gZ under the action of p when p has order ℓ modulo
g where ℓ is a prime. Finally, in section 4 we use the orbit counts to give
our formulas for the number of tamely ramified extensions of K of degree n
when p has order 2 modulo n.

In this paper we adopt the following notation. We will denote an orbit
in Z/gZ containing a under multiplication by p by Og(a, p). We denote the

order of p in (Z/gZ)× by ordg(p). We write valℓ(n) = m if ℓm || n.

2. A couple of straightforward cases

We now give the two simplest cases, namely when p ≡ ±1 (mod n).

Proposition 1. Let p ≡ 1 (mod n). Then we have K(n, p) = σ1(n) where
we recall

σ1(n) =
∑
e|n

e.

1



2 J. BROWN, R. CASS, K. JAMES, R. KEATON, S. PARENTI, AND D. SHANKMAN

Proof. Let e | n. Note that since p ≡ 1 (mod n), we have p ≡ 1 (mod e) so

pn/e−1 ≡ 0 (mod e). Thus, ge = gcd(e, pn/e−1) = e. Since p ≡ 1 (mod e),
multiplication by p sorts Z/eZ into e distinct orbits. Thus, O(e, p) = e.
This gives the result. �

Proposition 2. Let p ≡ −1 (mod n). Then we have

K(n, p) = σ0(n)

if n is odd and

K(n, p) =
∑
e|n

val2(e)=0

(
e+ 1

2

)
+

∑
e|n

0<val2(e)<val2(n)

(e
2
+ 1

)
+

∑
e|n

val2(e)=val2(n)

2

if n is even.

Proof. First, suppose that n is odd and let e | n. Since n is odd, so is e and
hence so is n/e. This gives

pn/e − 1 ≡ (−1)n/e − 1 (mod e)

≡ −2 (mod e),

i.e., pn/e + 1 ≡ 0 (mod d) for every divisor d | e. However, this means if

ge = gcd(e, pn/e − 1) > 1, we must have some d | e so that d | pn/e − 1. This

implies d | pn/e − 1 and d | pn/e + 1, i.e., d | 2. However, this is impossible
since n is odd. Thus, ge = 1 for every e | n. Thus, O(e, p) = 1 for every e
and so the number of extensions is exactly the number of divisors of n, i.e.,
K(n, p) = σ0(n).

Consider the case now when n = 2mpm1
1 · · · pmr

r with m > 0. Let e | n
with val2(e) < m. Then we have n/e is even and so pn/e ≡ 1 (mod n), which

gives pn/e ≡ 1 (mod e). Thus, e | pn/e − 1 and so ge = gcd(e, pn/e − 1) = e.
Let a ∈ Z/eZ. If 0 < a < e/2, then 2a < e and so 2a ̸≡ 0 (mod e). Thus,
pa ̸≡ a (mod e) and so #Oe(a, p) = 2. If e/2 < a < e then e < 2a < 2e, so
2a ̸≡ 0 (mod e) and so pa ̸≡ a (mod e) and so #Oe(a, p) = 2. If e/2 is an
integer, then #Oe(e/2, p) = 1. Thus, in this case the numbers of orbits of
Z/eZ under the action of p is given by

O(e, p) =

{
e
2 + 1 e even
e+1
2 e odd.

The contribution from these cases to the total number of extensions is given
by ∑

e|n
val2(e)=0

(
e+ 1

2

)
+

∑
e|n

0<val2(e)<m

(e
2
+ 1

)
.

The remaining case to deal with is when val2(e) = m. Here we have n/e is

odd, so pn/e ≡ −1 (mod e). Thus, pn/e − 1 ≡ −2 (mod e) and so pn/e − 1



COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM3

cannot have any odd prime divisors in common with e. However, if 2k |
pn/e − 1, then we have

0 ≡ pn/e − 1 (mod 2k)

≡ −2 (mod 2k).

This can happen only if k = 1, so ge = 2 in this case. Since p ≡ 1 (mod 2),
this gives p splits Z/2Z into 2 distinct orbits. Thus, we obtain∑

e|n
ord2(e)=m

2

extensions from this case. Combining all of these gives the result. �

Unfortunately, even the next easiest case of n being square-free and p
being of order 2 is quite a bit more complicated and one does not get nearly
as nice of a formula as one gets in the case p ≡ ±1 (mod n). In the next
section we give the necessary orbit counting results to be able to generalize
these results.

3. Counting orbits

In this section we present results on counting orbit sizes that will be
necessary to generalize the cases presented in the previous section. This
section provides the heart of the paper.

Throughout this section we write g = 2mpm1
1 · · · pmr

r with m ≥ 0, mi ≥ 1,
and the pi odd distinct primes.

Lemma 3. Let ordg(p) = k. Then for any a ∈ Z/gZ we have #Og(a, p) ≤ k.

Proof. We have Og(a, p) ⊂ {a, pa, p2a, . . . , pk−1a}, which gives the result.
�

Lemma 4. Let a ∈ (Z/gZ)× and let ordg(p) = k. Then #Og(a, p) = k.

Proof. We know that #Og(a, p) ≤ k by the first claim. Suppose that
#Og(a, p) < k. Then there exists 1 ≤ j < k so that pja = a. However, since
a is a unit this is equivalent to pj = 1, which contradicts ordg(p) = k. �

We begin with the case that g = 2m and ordg(p) = 2. Clearly if g = 2
there are exactly 2 orbits. If g = 4, then the only element of order 2 is 3,
and this falls under what we have done above as 3 ≡ −1 (mod 4), so the
orbits are size 2 if a = 1, 3 and size 1 if a = 0, 2. We can now assume m ≥ 3.
We claim there are exactly 3 elements of order 2 in (Z/2mZ)× and they are
given by −1, 2m−1±1. To see there are three elements of order 2, recall that
(Z/2mZ)× ∼= Z2×Z2m−2 where Zn is a cyclic group of order n. Let x be the
unique element of order 2 in Z2 and let y be the unique element of order 2
in Z2m−2 . Then the only elements of order 2 are given by (x, y), (1, y), and
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(x, 1). It is now simple to see the elements claimed have order 2 by using
the fact that m ≥ 3 so

(2m−1 ± 1)2 = 22m−2 ± 2m + 1

≡ 2m2m−2 + 1 (mod 2m)

≡ 1 (mod 2m).

Thus, we only need consider these three elements when determining the
orbit structure. We already know if p ≡ −1 (mod 2m), then the orbits have
size 2 except for a = 0, 2m−1. Let p ≡ 2m−1 − 1 (mod 2m). If a = 2m−1, we
have

pa = 2m2m−2 − 2m−1

≡ −2m−1 (mod 2m)

≡ a (mod 2m).

Thus, a = 0, 2m−1 have orbits of size 1. We know all odd a have orbits of
size 2, so it remains to deal with the case that a = 2jb for 1 ≤ j < m − 1
and b odd. If pa ≡ a (mod 2m), then using that b is a unit modulo 2m we
have

(2m−1 − 1)2j ≡ 2j (mod 2m)

which is equivalent to m | (m− 2). However, this is impossible since m ≥ 3.
Thus, unless a = 0, 2m−1 we have #O2m(a, p) = 2. It now only remains to
deal with p ≡ 2m−1+1 (mod 2m). Here we claim #O2m(a, p) = 1 unless a is
odd. We have that if a is odd then the orbit size is size 2, so it only remains
to show that if a is even it is its own orbit. This is easy as (2m−1+1)2j ≡ 2j
(mod 2m). Thus, we have shown the following.

Lemma 5. Let m ≥ 1 and set g = 2m. Let p be an odd prime with
ord2m(p) = 2. We have the following orbit structure of Z/gZ under the
action of p:

(1) if m = 1, there are two orbits each of size 1;
(2) if m = 2, there are two orbits of size 1 ({0}, {2}) and one orbit of

size 2 ({1,3});
(3) if m ≥ 3, then we split into cases:

(a) if p ≡ −1 (mod 2m), then all orbits have size 2 except {0} and
{2m−1} are their own orbits;

(b) if p ≡ 2m−1−1 (mod 2m), then all orbits have size 2 except {0}
and {2m−1} are their own orbits;

(c) if p ≡ 2m−1+1 (mod 2m), then if a is even {a} is its own orbit,
and otherwise the orbit has size 2.

The next case to deal with is when ordg(p) = ℓ, ℓ a prime, and if ℓmℓ || g
then ordℓmℓ (p) = 1. Observe the last requirement gives that in order to have
an element p of order ℓ modulo g, it must be the case that ℓ | (pi − 1) for
some i = 1, . . . , r. We will make use of the following fact in the proof of
Lemma 7.
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Lemma 6. Suppose ordg(p) = ℓ where ℓ is a prime and assume if ℓmℓ || g
then ordℓmℓ (p) = 1. If ordpmi

i
(p) = ℓ, then ordpi(p) = ℓ.

Proof. Our assumption implies that ℓ | (pi − 1). Suppose that it is the case

that ordpi(p) = 1. SetD = (pi−1)pmi−1
i and observe we have a commutative

diagram where θ is the natural projection map taking a (mod pmi
i ) to a

(Z/pmi
i Z)×

∼= //

θ
��

ZD

ϕ

��
(Z/piZ)×

∼= // Zpi−1

(mod pi), ZD and Zpi−1 are cyclic groups, and if we write ZD = ⟨x⟩, then
ϕ is the map that sends x to xp

mi−1
i , which is a generator of Zpi−1.

Since p has order ℓ in (Z/pmi
i Z)×, it necessarily corresponds to an element

of the form xaD/ℓ for some 0 < a < ℓ. However, we have that ϕ(xaD/ℓ) ̸= 1 in

Zpi−1 because we cannot have pi−1 | aD
ℓ since valℓ

(
p
mi−1
i aD

ℓ

)
< valℓ(pi−1)

as ℓ - pia. This contradicts the fact that we are assuming θ(p) = 1.
�

Lemma 7. Suppose ordg(p) = ℓ where ℓ is a prime and assume if ℓmℓ || g
then ordℓmℓ (p) = 1. Let a ∈ Z/gZ. If gcd(a, g) = 1, then #Og(a, p) = ℓ.

Now suppose gcd(a, g) > 1. Let P =
∏

j p
mj

j so that ord
p
mj
j

(p) = ℓ. If P | a
then #Og(a, p) = 1. If P - a we have #Og(a, p) = ℓ.

Proof. We have already covered the case gcd(a, g) = 1.
Assume now that P | a. The claim is that #Og(a, p) = 1. Let Q = g/P.

We use the isomorphism Z/gZ ∼= Z/PZ× Z/QZ to write p = (pP , pQ) and
a = (aP , aQ). Note that ordP(pP) = ℓ and ordQ(pQ) = 1 by construction of
P and Q. Moreover, we have aP = 0 by assumption. Since ordQ(pQ) = 1,
we have pa = (pP , pQ) · (0, aQ) = (pP · 0, pQ · aQ) = (0, aQ) = a. Thus,
Og(a, p) = {a}, as claimed.

Now suppose that P - a. We need to show that pja ̸= a (mod g) for
1 ≤ j < ℓ. Suppose that there is such a j, namely, we have pja = a

(mod g). We can rewrite this as (pjPaP , p
j
QaQ) = (aP , aQ), i.e., p

j
PaP = aP

and pjQaQ = aQ. Using the first of these equations, we have pjPaP − aP = 0,

i.e., aP(p
j
P − 1) = 0. However, this gives that pi | (pjP − 1) for some pi |

P for otherwise P | a, i.e., p has order less than ℓ modulo pi. However,
this contradicts Lemma 6 and the assumption that pi | P. Thus, we have
#Og(a, p) = ℓ in this case. �

It is now elementary to combine Lemma 5 and Lemma 7 to get the general
result when ordp(g) = 2.
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Proposition 8. Let p be a prime with ordg(p) = 2. Let P ′ =
∏

j p
mj

j so

that ord
p
mj
j

(p) = 2. If ord2m(p) = 1, set P = P ′. If ord2m(p) = 2, then

define P as follows:

(1) if p ≡ −1 (mod 2m) or p ≡ 2m−1 − 1 (mod 2m), set P = 2m−1P ′;
(2) if p ≡ 2m−1 + 1 (mod 2m), set P = 2P ′.

If P | a, then #Og(a, p) = 1. Otherwise, #Og(a, p) = 2.

Proof. The proof of this proposition amounts to combining Lemma 7 and
Lemma 5. We have #Og(a, p) = 2 unless #O2m(a, p) = 1 and #Op

mi
i
(a, p) =

1 for all i. However, these orbits all have size one exactly when P | a by the
previous lemmas. �
Example 9. Let g = 24 so m = 3, p1 = 3, and m1 = 1. Consider the prime
p = 5. Observe that p has order 2 modulo 24, modulo 3, and modulo 8.
Moreover, p = 2m−1+1. One easily checks that when acting upon Z/24Z by
5, the orbits are given by {0}, {1, 5}, {2, 10}, {3, 15}, {4, 20}, {6}, {7, 11},
{8, 16}, {9, 21}, {12}, {13, 17}, {14, 22}, {18}, and {19, 23}, which agrees
with the proposition since in this case P = 6.

Though it will not be used in our counting arguments, it is now easy to
provide the analogous result to Proposition 8 for the case ordg(p) = ℓ for
ℓ an odd prime. We provide this result for completeness. The next step is
to deal with the case when ordg(p) = ℓ for ℓ an odd prime with ℓ | g but
ℓ - (pj − 1) for all j = 1, . . . , r. Note for this to be possible we must have
ℓ = pi for some i with mi > 1.

Lemma 10. Let p be a prime with ordg(p) = pi for some i = 1, . . . , r and
assume pi - (pj − 1) for all j = 1, . . . , r. Let a ∈ Z/gZ. If pi | a then
#Og(a, p) = 1. Otherwise #Og(a, p) = pi.

Proof. Without loss of generality we can assume ordg(p) = p1. Write
h = g/pm1

1 . We can write Z/gZ ∼= Z/pm1
1 Z × Z/hZ. Since p1 - φ(h) by

assumption, we have ordh(p) = 1 and so p acts as the identity on Z/hZ.
Suppose that p1 - a and assume there is a j with 1 ≤ j < p1 so that p

ja ≡ a
(mod g). Since p acts trivially on Z/hZ, this statement is equivalent to
pjapm1

1
= apm1

1
for some j with 1 ≤ j < p1. However, this gives pm1

1 | (pj−1),

which contradicts the fact that p necessarily has order p1 modulo pm1
1 . Thus,

it must be that if p1 - a, then #Og(a, p) = ℓ.
Now assume p1 | a and write a = p1c. Again we use the fact that p acts as

the identity on Z/hZ to conclude we only need to determine what happens
to the pm1

1 component of a. Here we make use of the fact that if p has order

p1 in Z/pm1
1 Z, then p = bpm1−1

1 + 1 for some 1 ≤ b ≤ p1 − 1. The result is

then clear because we have pa = (bpm1−1
1 + 1)(p1c) = p1c = a in the pm1

1
component. �

We now combine Proposition 8 and Lemma 10 to obtain the following
result.
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Proposition 11. Let p be a prime with ordg(p) = ℓ for ℓ an odd prime.

Let P ′ =
∏

j p
mj

j so that ord
p
mj
j

(p) = ℓ and ℓ ̸= pj. If ℓ - g, set P = P ′. If

ℓ = pj for some 1 ≤ j ≤ m and ord
p
mj
j

(p) = c, set P = cP ′ where c = 1, ℓ.

If P | a, then #Og(a, p) = 1. Otherwise, #Og(a, p) = ℓ.

Proof. Note that if ℓ - g or c = 1 we are done, so assume without loss of
generality that ℓ = p1 and ordℓm1 (p) = ℓ. First suppose that P | a. Set Q =
g/ℓm1P ′ and consider the isomorphism Z/gZ ∼= Z/ℓm1Z × Z/P ′Z × Z/QZ.
By assumption we can write a = (aℓm1 , aP ′ , aQ) = (aℓm1 , 0, aQ). Observe
that we have

pa = (paℓm1 , 0, paQ)

= (paℓm1 , 0, aQ) (since ordQ(p) = 1 by assumption)

= (aℓm1 , 0, aQ) (by Lemma 10)

= a.

Thus, if P divides a we have the orbit has size 1 as claimed. Now suppose
P - a but pja = a for some 1 ≤ j ≤ ℓ. However, this leads to the equations
pjaℓm1 = aℓm1 and pjaP ′ = aP ′ . Since P - a these cannot both hold from
what we have done above unless j = ℓ. �

Note that in the next section where g will vary we will write Pg to keep
track of the group Z/gZ upon which p is acting.

4. Main counting results

We are now able to give the formulas for counting the number of degree n
tamely ramified extensions of K by using the orbit structure of Z/gZ given
in the previous section when p has order 2 modulo n. Throughout this
section we write n = 2mpm1

1 · · · pmr
r with m ≥ 0, mi ≥ 1, and the pi distinct

odd primes.
Consider the case that val2(e) = m. By assumption we have n/e is odd

and so pn/e−1 ≡ p−1 (mod e). Thus, we have p splits Z/geZ into ge orbits
and so we obtain the number of degree n extensions of K arising from this
situation is given by ∑

e|n
val2(e)=val2(n)

ge

degree n extensions of K from this situation.
Now suppose that val2(e) < m. Then we have 2 | n/e and so ge =

gcd(e, pn/e− 1) = gcd(e, 0) = e. It is not necessarily the case that orde(p) =
2, so we break this into two cases. If orde(p) = 1, then p acts on Z/eZ as
the identity so splits it into e distinct orbits. Thus, for this case we have
O(e, p) = e. If orde(p) = 2, we can use Proposition 8 to count the orbits in
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terms of Pe. In this case we have the number of orbits given by

O(e, p) =
φ(e)

2
+

# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Pe - a}
2

+ # {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Pe | a}+ 1

where the 1 comes from 0 always being its own orbit.
Combining all of this we have the following theorem.

Theorem 12. Let p be a prime with with p - n and ordp(n) = 2. For e | n,
define Pe as in Proposition 8. The number of degree n extensions of K up
to isomorphism is given by

K(n, p) =
∑
e|n

val2(e)=val2(n)

ge +
∑
e|n

val2(e)=0
p≡1 (mod e)

e

+
∑
e|n

val2(e)=0
p̸≡1 (mod e)

(
φ(e)

2
+

# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Pe - a}
2

)

+
∑
e|n

val2(e)=0
p̸≡1 (mod e)

(# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Pe | a}+ 1) .

One can easily check that this result recovers Lemma 2 in the case we
take p ≡ −1 (mod n).

We note that while we have the relevant orbit counting results for p of
prime order ℓ modulo n, it is not as straightforward to count the extensions
in this case. In the case ℓ = 2, when we consider pn/e − 1 modulo e, this is
either 0 if val2(e) < m or p− 1 if val2(e) = m due to the fact that the only
remainders possible upon dividing n/e by 2 are 0 or 1. In either case it is
easy to use the orbit structure to give a count. However, for general ℓ we
must consider remainders 0, 1, . . . , ℓ−1. If the remainder is larger than 1, it
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is not obvious how p will act on Z/geZ in this case. This will be the subject
of future research.
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