
Restrictions of Eisenstein series and Rankin-Selberg convolution

Rodney Keaton, Ameya Pitale

Abstract

In a 2005 paper, Yang constructed families of Hilbert Eisenstein series, which when restricted to
the diagonal are conjectured to span the underlying space of elliptic modular forms. One approach
to these conjectures is to show the non-vanishing of an inner product of elliptic eigenforms with the
restrictions of Eisenstein series. In this paper, we compute this inner product locally by using explicit
values of new vectors in the Waldspurger model.
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2 1 INTRODUCTION

1 Introduction

1.1 Triple product L-functions

Central values of L-functions play an important role in number theory. If π1, π2 and π3 are three
cuspidal automorphic representations of GL(2,AF ), for a number field F , then one can consider the
central value L(1/2, π1 × π2 × π3) of the degree 8 triple product L-function. It was conjectured by
Jacquet that this central value is non-zero if and only if there is a quaternion algebra D over F such
that ∫

A×
F
D×(F )\D×(AF )

fD1 (x)fD2 (x)fD3 (x) d×x 6= 0.

Here, fDi are cusp forms in πDi , the cuspidal automorphic representation of D×(A) obtained by
Jacquet-Langlands correspondence from πi. This was proven by Harris and Kudla [8]. One can
look at the more general situation of a cubic extension E of F and consider an irreducible cuspidal
automorphic representation Π of GL(2,AE). In this context, the analogue of Jacquet’s conjecture
has been proven by Prasad and Schulze-Pillot in [19]. Explicit formulas relating the L-value and the
integral have been obtained by several authors (see [1], [6], [10], [13] and [25]).

In this paper, we look at the special case of E = L × F , where L is a quadratic extension of F .
We consider a cuspidal automorphic representation π on GL(2,AF ) and an induced representation

Ind
GL(2)
B (Ω1,Ω2) on GL(2,AL). Here, Ω1,Ω2 are characters in L×\A×L and B is the Borel subgroup

of GL(2). Given a smooth section f in the induced representation, let E(g, s; f) be the standard
Eisenstein series (see (7)). For φ ∈ π, we consider the pullback of the Eisenstein series given by the
integral

Z(s, f, φ) =

∫
A×
F

GL(2,F )\GL(2,AF )

E(h, s; f)φ(h)dh. (1)

We compute the above integral under certain assumptions on the ramification of the local repre-
sentations and characters. We assume that π∞ is a holomorphic discrete series. For an unramified
place v, we assume that πv is either unramified or an unramified twist of the Steinberg representa-
tion. Let Ω1,Ω2 be such that c(Ω2,v) = 0 and c(Ω1,v) = 0 or 1. In the latter case, πv is ramified.
Also, assume that the archimedean components of the characters match with the archimedean com-
ponent of π (See Section 6.1 for details). It turns out that Z(s, f, φ) = 0 if the central L-value
L(1/2,BC(π)×Ω) = 0. Here, BC(π) is the base change of π to GL(2,AL) and Ω is the character on
A×L defined by Ω(z) := Ω−1

1 (z̄)Ω−1
2 (z). This vanishing condition follows from the criteria for existence

of Waldspurger models and we will explain it in the next section. Assuming L(1/2,BC(π)×Ω) 6= 0,
we can choose f and φ (see Section 6.1) so that

Z(s, f, φ̄) =
L(2s+ 1

2
, π̃ × Ω1|A×)

L(2s+ 1,Ω1Ω−1
2 )

∏
p≤∞

Yp(s). (2)

Here, π̃ is the contragredient representation of π. The values of Yp(s) are explicitly computed and,
for almost all finite p, the term Yp(s) = 1. The exact value of Yp(s) is given in Theorem 6.1.

1.2 Waldspurger models

Unwinding the integral (1), we can deduce that Z(s, f, φ) is Eulerian from the following formula.

Z(s, f, φ) =

∫
T (AF )\GL(2,AF )

f(ηh, s)Bφ(h)dh.

Here, η is the non-trivial representative of B(L)\GL(2, L)/GL(2, F ). The torus T (F ) is the subgroup
of GL(2, F ) isomorphic to L×. Bφ is the period defined by

Bφ(g) :=

∫
Z(AF )T (F )\T (AF )

φ(tg)Ω−1(t)dt.
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It has been shown in [24] that a necessary condition for Bφ to be non-zero is that L(1/2,BC(π)×Ω) 6=
0. We assume this non-vanishing condition. The map φ 7→ Bφ gives a global Ω-Waldspurger model for
π. The Waldspurger model gives a realization of the representation π in terms of C-valued functions
on the group, which transform by the character Ω upon left translation by the torus T .

We can now choose a factorizable section f(h, s) =
∏
v fv(hv, s), and the uniqueness of the Wald-

spurger models allows us to write Bφ(h) =
∏
v Bv(hv). This gives us Z(s, f, φ) =

∏
v Zv(s), where

Zv(s) =

∫
T (Fv)\GL(2,Fv)

fv(ηhv, s)Bv(hv)dhv. (3)

1.3 Explicit formulas for new-forms in local Waldspurger models

The key to computing (3) is choosing appropriate local vectors fv and Bv. There are two reasonable
choices for Bv in the non-archimedean case – the new-form or the Gross-Prasad test vector. For
the application that we have in mind towards the conjectures of Tonghai Yang, we will choose the
new-form. For more on the Gross-Prasad test vectors see [4]. In the archimedean case, we will assume
that π∞ is a holomorphic discrete series with lowest non-negative weight `. The vector B∞ will be
chosen to be the weight ` vector. The choice for fv is more straightforward. We choose the vector
in the local induced representation that is right invariant under an appropriate compact subgroup so
that the integral Zv is not trivially zero.

In order to actually compute Zv we need explicit formulas for the local vectors Bv. One of the main
contributions of this paper is explicit formulas for certain distinguished vectors in the Waldspurger
models for local representations of GL(2).

Unramified non-archimedean case: When πv is unramified, we obtain explicit formulas for the

spherical vector B0 in the Waldspurger model. The vector is determined by its values on {
[
$m

1

]
:

m ≥ 0}. We use the fact that the spherical vector is an eigenfunction of the local Hecke algebra to
get recurrence relations on the above values. This allows us to obtain∑

m≥c(Ω)

B0(

[
$m

1

]
)xm =

(q − κx)xc(Ω)

ωπ($)x2 − λx+ q
B0(

[
$c(Ω)

1

]
).

Here, λ is the eigenvalue of B0. Also, κ is an explicit constant depending on the conductor c(Ω) and
the ramification of Lv/Fv. See Proposition 3.4 for details. Note that the unramified computations
put no restriction on the character Ω or the field extension L. This extends results of [2].

Ramified non-archimedean case: We obtain the explicit formulas for the new-form in the Wald-
spurger model for the twist of the Steinberg representation of GL(2) by an unramified character
χv. When Lv/Fv is a field extension, this was done in [4]. We compute the remaining case when
Lv = Fv ⊕ Fv. Note that a necessary and sufficient condition for a local Waldspurger model to exist
is that Ωv 6= χv ◦ NLv/Fv . We use the fact that the new-form is right invariant under the Iwahori
subgroup and is an eigenfunction of the Atkin-Lehner operator and the Hecke operator.

Archimedean case: We assume that π∞ is the holomorphic discrete series of GL(2,R) with lowest
non-negative weight `. We compute the explicit formulas for the weight ` vector B0 in the Waldspurger
model for π∞. The key property of B0 is that it is annihilated by the lowering operator in the
complexified Lie algebra of SL(2,R). We consider the action of the lowering operator on vectors
in π∞. The criteria that B0 is annihilated by the lowering operator reduces to a first order linear
ordinary differential equation satisfied by B0. This leads to the explicit formulas in both the cases
when L∞ is split or non-split over F∞ = R. In the split case, we use these formulas to compute the
local archimedean integral Z∞(s) as follows

Z∞(s) =

iD
−1/2π if ` = 2, s = 0;

22−2s−`2D−
`
4
−si

`
2 π

Γ(2s+ `
2
−1)

Γ(s)Γ( `
2

+s)
if Re(2s+ `

2
) > 1.

(4)

Here, `2 depends on Ω∞ and D is the fundamental discriminant for L/F . We do the split computation
here because we want to apply this to the case of Hilbert modular forms. If one considers Bianchi
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modular forms, then one can use the explicit formulas for the weight vector in the non-split case to
compute the integral as well. In that case, one has to deal with the further complication that the
maximal compact is not abelian and hence, we have K-types of higher dimensions. We have not done
that case here.

The local computations in the archimedean and non-archimedean case lead to the calculation of
the local integrals Zv(s) leading to the formula (2).

1.4 Application to Tonghai Yang’s conjectures

In [26], Yang constructs a Hilbert Eisenstein series E((τ1, τ2), s, f) over a totally real extension L/Q
associated to an imaginary quadratic extension K/L. This involves choosing the characters Ω1 =
χK/L, the character corresponding to the extension K/L by class field theory, Ω2 = 1, and choosing
a square-free ideal N . As a function of (τ1, τ2) ∈ H2, Yang shows that E((τ1, τ2), s, f) is a Hilbert
Eisenstein series of weight (1, 1), of square-free level NdK/L and Nebentypus character corresponding
to χK/L. He gives explicit formulas for the Fourier coefficients of E((τ1, τ2), s, f), a criteria for
non-vanishing and shows that it is holomorphic for s = 0. By restriction to the diagonal, we get
that E((τ, τ), 0, f) is a holomorphic modular form of weight 2, square-free level N and Nebentypus
character ψ. Here, N and ψ depend on K,L and N .

By allowing K and L to vary subject to certain conditions, Yang obtains a family of such Hilbert
Eisenstein series. He conjectures that the restriction of these Eisenstein series to the diagonal forms
a spanning set for the space of holomorphic modular forms of weight 2, level N and Nebentypus
character ψ. One of the key steps towards this conjecture is the following –

Given a cusp form Φ ∈ S2(N,ψ), does there exist a choice of K,L,N , such that the corresponding
Hilbert Eisenstein series E((·, ·), s, f) satisfies

〈E((·, ·), s, f)|∆H,Φ〉 6= 0.

Here, 〈 , 〉 is the Petersson inner product. Suppose Φ is a Hecke eigenform, then let φ be the function
on GL(2,A) corresponding to Φ and let π be the irreducible, cuspidal automorphic representation of
GL(2,A) corresponding to Φ. Let E(g, s, f) be the Eisenstein series on GL(2,AL) corresponding to
E . Then, we show in Proposition 6.2 that

Z(s, f, φ̄) = vol(Γ0(N)\H)〈E((·, ·), s, f)|∆H,Φ〉. (5)

Using (2), we get, in Corollary 6.4

〈E((·, ·), 0, f)|∆H,Φ〉 6= 0 if and only if L(1/2, π) 6= 0 and L(1/2,BC(π)× χK/L) 6= 0.

If L(1/2, π) = 0, we immediately get that Φ cannot be in the span of the Hilbert Eisenstein series. In
case L(1/2, π) 6= 0, then using the results of Friedberg and Hoffstein in [3], one can obtain characters
χK/L such that L(1/2,BC(π) × χK/L) 6= 0. If we expand the family of Hilbert Eisenstein series
by allowing more general choices of Ω1,Ω2, then the criteria of non-vanishing of the inner product
changes from L(1/2, π) 6= 0 to a twist L(1/2, π × χ) 6= 0, for a suitable character χ. Again using
[3], there is now a chance to achieve this. This is the advantage of computing the global integral
Z(s, f, φ) for as general a choice of data as possible.

The formula (5) relating the inner product to the global integral is the reason for choosing new-
forms for local vectors in the Waldspurger models of the local representations. Also, we have not
considered highly ramified local representations πv because they do not appear in considerations for
the application to Tonghai Yang’s conjecture.

Let us also remark that it is not possible to extend the ideas of Tonghai Yang in a naive manner to
obtain spanning sets for modular forms of weight ` > 2. This is because (4) easily gives us Z∞(0) = 0
for s = 0 and ` > 2.

1.5 Previous work

Observe that the computations mentioned above work only when the holomorphic cusp form Φ is a
Hecke eigenform. Even if we get non-vanishing of Petersson inner product for all Hecke eigenforms,
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it does not imply non-vanishing for non-Hecke eigenforms. In a certain special case, Yingkun Li
in [12] has obtained a complete answer. Fix an odd, square-free integer N . Consider any two

coprime, negative, fundamental discriminants d1, d2 such that
(
d1
p

)
=
(
d2
p

)
= −1, for all p|N . Let

K = Q(
√
d1,
√
d2) and L = Q(

√
d1d2) and let N be a square-free ideal in L with an odd number

of prime divisors such that N ∩ Z = NZ. Li proves that the span of the restriction of the Hilbert
Eisenstein series corresponding to d1, d2,N , varying under the above restrictions, is precisely the space
spanned by the Eisenstein series E2,N ∈ M2(N) and all cuspidal eigenforms Φ ∈ M2(N) satisfying
L(1/2,Φ) 6= 0. The key to obtaining this result is once again the computation of the Petersson
inner product. In this particular case, Li makes use of the explicit Fourier coefficients of the Hilbert
Eisenstein series to show that the restriction is a Shimura lift of a weight 3/2 modular form. This
leads to an explicit formula for the inner product in terms of the central value of the L-function and
certain Fourier coefficients of the half integral weight modular form.

These classical methods cannot be easily generalized to other choices of K,L,N from Yang’s
conjectures. In fact, a question from Li to compute the inner product in an adelic setting was the
starting point of this current paper.

It should be remarked that this inner product has been considered in [9]. In [9] the author also
considers certain non-squarefree level cases by choosing the Gross-Prasad test vector. Let us point
out that the computation technique in [9] is completely different to that used in the present paper.

1.6 Structure of the paper

In Section 2, we introduce our basic objects of study as well as state and prove that the global
integral is Eulerian. In Section 3 we present the calculation of explicit values of a new vector in the
Waldspurger model of an unramified principal series (Section 3.2) and in the Waldspurger model of an
unramified twist of a Steinberg representation (Section 3.3). In Section 4 we perform the local integral
calculations needed for our inner product. In Section 5 we present the analogous explicit values of
the Waldspurger model at the archimedean places, and also compute the local inner product in the
split case, i.e., when the quadratic field extension is totally real. Finally, in Section 6, we combine
our local calculations to obtain the calculation of the global integral. Also, in this section we relate
our integral calculation to the inner product mentioned above and give a case which is relevant to
the conjectures of Yang.

2 Preliminaries

2.1 Eisenstein series and Waldspurger models

Let F be a number field. Let a,b, c ∈ F such that d := b2 − 4ac 6= 0. Let L = F (
√
d) be a subfield

of C. Let A be the ring of adeles of F and AL be the ring of adeles of L. Let H be defined by
H(R) = GL2(R) for a ring R. Let B be the standard Borel subgroup of H. Let π be an irreducible
cuspidal automorphic representation of H(A) with central character ωπ. Let Ω1,Ω2 be characters of

A×L/L
× such that Ω1Ω2|A× = ω−1

π . For s ∈ C, let I(Ω1,Ω2, s) = Ind
H(AL)

B(AL) (Ω1,Ω2, δ
s
B). Here, δB is

the modulus character δB(

[
u v
w

]
) = |u/w|AL . Hence, for f ∈ I(Ω1,Ω2, s), we have

f(

[
u v
w

]
g, s) = Ω1(u)Ω2(w)|u/w|s+1/2

AL f(g, s). (6)

For any section f ∈ I(Ω1,Ω2, s), define the Eisenstein series

E(g, s) = E(g, s; f) =
∑

γ∈B(L)\H(L)

f(γg, s). (7)

This series is absolutely convergent for Re(s) > 1/2 and has a meromorphic continuation to all of C
(see [11]).



6 2 PRELIMINARIES

For a,b, c as above, set

S =

[
a b/2

b/2 c

]
, and ξ =

[
b
2

c
−a −b

2

]
.

Let F (ξ) = {xI2 + yξ : x, y ∈ F} ⊂M2(F ). We have the isomorphism

F (ξ) 3 xI2 + yξ 7→ x+ y

√
d

2
∈ L.

Let
T (F ) = {g ∈ H(F ) : tgSg = det(g)S}.

Then T (F ) = F (ξ)× and hence, T (F ) ' L×. Note that T (F ) consists of all matrices

g = t(x, y) =

[
x+ y b

2
cy

−ay x− y b
2

]
, x, y ∈ F, det(g) = x2 − 1

4
y2(b2 − 4ac) 6= 0. (8)

Let Ω be a character of T (A)/T (F ) ' A×L/L
× defined by

Ω(z) := Ω−1
1 (z̄)Ω−1

2 (z), for all z ∈ A×L . (9)

Hence, Ω|A× = ωπ. For φ ∈ Vπ, define

Bφ(g) =

∫
ZH (A)T (F )\T (A)

φ(tg)Ω−1(t)dt. (10)

The C-vector space spanned by {Bφ : φ ∈ Vπ} is called the global Waldspurger model of π of type
(S,Ω). The uniqueness and criteria for existence for having such a Waldspurger model is known by
[20], [23], and [24]. We will assume that such a Waldspurger model exists.

Let φ ∈ Vπ. We wish to study the integral

Z(s) = Z(s, f, φ) =

∫
H(F )ZH (A)\H(A)

E(h, s; f)φ(h)dh. (11)

2.2 Basic Identity

The first step is to show that the above integral is Eulerian. Using the Bruhat decomposition of
GL(2), we get the following lemma.

2.1 Lemma. The representatives for the double cosets B(L)\H(L)/H(F ) are given by I2 and η =[
1
β 1

]
, with β = (b +

√
d)/(2c).

Let us denote by ∆(F ) = B(L) ∩H(F ) and ∆0(F ) = η−1B(L)η ∩H(F ), subgroups of H(F ).

2.2 Lemma. We have
∆0(F ) = T (F ).

Proof. Let e1 = t[1, 0] and e2 = t[0, 1]. Let h ∈ ∆0. Hence, hη−1e1 = γη−1e1 for some γ ∈ L×, since
B(F ) fixes the line generated by e1. Let γ = x+y

√
d for x, y ∈ F . We have η−1e1 = e1−βe2. Hence

he1− βhe2 = (x+ y
√
d)e1− (x+ y

√
d)βe2. Since h ∈ H(F ), we get two equations by comparing the

coefficient of
√
d and the coefficient of 1 on both sides. This gives us he1 = (x− by)e1 + 2aye2 and

he2 = −2cye1 + (x+by)e2. Hence, h = x− 2yξ ∈ T (F ). The reverse implication can also be worked
out similarly.

By Lemmas 2.1 and 2.2, we have

E(g, s; f) =
∑

γ∈B(L)\H(L)

f(γg, s) =
∑

γ∈∆(F )\H(F )

f(γg, s) +
∑

γ∈T (F )\H(F )

f(ηγg, s).
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Hence

Z(s) =

∫
∆(F )ZH (A)\H(A)

f(h)φ(h)dh+

∫
T (F )ZH (A)\H(A)

f(ηh)φ(h)dh.

Using cuspidality of π, we have ∫
∆(F )ZH (A)\H(A)

f(h)φ(h)dh = 0.

Thus,

Z(s) =

∫
T (F )ZH (A)\H(A)

f(ηh)φ(h)dh,

which will be needed in the proof of the following proposition.

2.3 Proposition. Let π be an irreducible cuspidal automorphic representation of GL2(A) with cen-
tral character ωπ. Let Ω1,Ω2 be characters of A×L/L

× such Ω1Ω2|A× = ωπ. Let f ∈ I(Ω1,Ω2, s) and
φ ∈ Vπ. Then we have

Z(s, f, φ) =

∫
H(F )ZH (A)\H(A)

E(h, s; f)φ(h)dh =

∫
T (A)\H(A)

f(ηh, s)Bφ(h)dh.

Here, Bφ is as defined in (10) with Ω defined in (9). Also, η =

[
1
β 1

]
with β = (b +

√
d)/(2c).

Proof. We have

Z(s) =

∫
T (F )ZH (A)\H(A)

f(ηh)φ(h)dh

=

∫
T (A)\H(A)

∫
T (F )ZH (A)\T (A)

f(ηth)φ(th)dtdh.

For t = xI2 + yξ ∈ T (A), we get

f(ηth, s) = f(ηtη−1ηh, s) = Ω−1(x+ y
√
d/2)f(ηh, s).

Hence,

Z(s) =

∫
T (A)\H(A)

f(ηh, s)
( ∫
T (F )ZH (A)\T (A)

Ω−1(t)φ(th)dt
)
dh =

∫
T (A)\H(A)

f(ηh, s)Bφ(h)dh,

as required.

By the uniqueness of the Waldspurger model, we have

Bφ(h) =
∏
v

Bv(hv), f(h, s) =
∏
v

fv(hv, s)

where h = ⊗′hv. Hence, Z(s) =
∏
v Zv(s), where

Zv(s) =

∫
T (Fv)\H(Fv)

fv(ηvhv, s)Bv(hv)dhv. (12)
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3 Values of the newform in the Waldspurger model

In this section, we will compute the explicit values of the new vector in the Waldspurger model when
the GL(2) representation is either unramified or an unramified twist of a Steinberg representation.
Note, in the latter, we will recall the values computed in [4] as well as a new calculation when the
local extension L/F is split.

3.1 Set-up

Let F be a local non-archimedean field of characteristic zero. We will drop the subscript v in this
section. Let o be the ring of integers of F , p the unique maximal ideal, $ a uniformizer and let q be
the residue characteristic. Let K = H(o) be the maximal compact subgroup of H(F ).

We have fixed three elements a,b, c ∈ F such that d = b2 − 4ac 6= 0. We have L = F (
√
d) if

d /∈ F×2, and L = F ⊕ F otherwise. In the latter case we consider F diagonally embedded. Let
z 7→ z̄ be the obvious involution on L whose fixed point set is F . We define the Legendre symbol as

(L
p

)
=


−1 if L/F is an unramified field extension,

0 if L/F is a ramified field extension,

1 if L = F ⊕ F.
(13)

We will make the following assumptions:

• a,b ∈ o and c ∈ o×.

• If d /∈ F×2, then d is a generator of the discriminant of L/F .

• If d ∈ F×2, then d ∈ o×.

We define elements β and ξ0 of L by

β =


b +
√
d

2c
if L is a field,(b +

√
d

2c
,
b−
√
d

2c

)
if L= F ⊕ F.

(14)

ξ0 =


−b +

√
d

2
if L is a field,(−b +

√
d

2
,
−b−

√
d

2

)
if L= F ⊕ F.

(15)

If L is a field, let oL be its ring of integers, $L a uniformizer, and vL the normalized valuation. If
L = F ⊕ F , put oL = o⊕ o and $L = ($, 1). By Lemma 3.1.1 of [16], in either case,

oL = o + oβ = o + oξ0. (16)

Fix the ideal in oL given by

PL := poL =


pL if

(
L
p

)
= −1,

p2
L if

(
L
p

)
= 0,

p⊕ p if
(
L
p

)
= 1.

(17)

Here pL is the maximal ideal of oL when L is a field. We have Pn
L ∩ o = pn for all n ≥ 0.

Let us recall the embedding of L× as a torus in H(F ) for convenience of calculations. With a,b, c
as above, let

S =

[
a b

2
b
2

c

]
, ξ =

[
b
2

c
−a −b

2

]
.

Then F (ξ) = F · I2 + F · ξ is a two-dimensional F -algebra isomorphic to L. If L is a field, then

an isomorphism is given by x + yξ 7→ x + y
√

d
2

. If L = F ⊕ F , then an isomorphism is given by
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x + yξ 7→ (x + y
√
d

2
, x − y

√
d

2
). The determinant map on F (ξ) corresponds to the norm map on L.

Let
T (F ) = {g ∈ H(F ) : tgSg = det(g)S}. (18)

One can check that T (F ) = F (ξ)×. Note that T (F ) ∼= L× via the isomorphism F (ξ) ∼= L. Under the
same isomorphism the group T (o) := T (F ) ∩K is isomorphic to o×L . Note that T (F ) consists of all
matrices

g = t(x, y) =

[
x+ y b

2
cy

−ay x− y b
2

]
, x, y ∈ F, det(g) = x2 − 1

4
y2(b2 − 4ac) 6= 0. (19)

Let Ω be any character of L×, which we may view as a character of the torus T (F ). Define

c(Ω) := min {m ≥ 0 : Ω|
(1+Pm

L
)∩o×

L
≡ 1}. (20)

Note that this is the conductor of Ω only in the case L/F is an unramified field extension. Let B(Ω)
be the space of all locally constant functions B : H(F )→ C satisfying

B(tg) = Ω(t)B(g) for all t ∈ T (F ), g ∈ H(F ). (21)

Let (π, V ) be any infinite dimensional, irreducible, admissible representation of H(F ). We say that π
has an (S,Ω)-Waldspurger model if π is isomorphic to a subrepresentation of B(Ω). We call a linear
functional ` on π an (S,Ω)-Waldspurger functional if it satisfies

`(π(t)v) = Ω(t)`(v) for all t ∈ T (F ), v ∈ V. (22)

If π has an (S,Ω)-Waldspurger model then we obtain a (S,Ω)-Waldspurger functional ` by `(B) =
B(1). On the other hand, if π has an (S,Ω)-Waldspurger functional, we obtain an (S,Ω)-Waldspurger
model for π by the map v 7→ Bv, where Bv(g) = `(π(g)v). Observe that a necessary condition for a
(S,Ω)-Waldspurger model or functional to exist is that Ω|F× = ωπ, the central character of π.

3.2 The unramified case

Throughout this subsection, we suppose that π is unramified.

3.2.1 Preliminaries on the spherical vector in the Waldspurger model

As π is unramified, we have that π = χ1 × χ2 where χ1, χ2 are unramified characters of F×. Let Ω
be any character of L× such that Ω|F× = χ1χ2. By Saito [20] and Tunnell [23] or Gross-Prasad [7]
or [4], it is known that π has a (S,Ω)-Waldspurger model for any such Ω. Let B0 be the spherical
vector in the (S,Ω)-Waldspurger model of π. Our first task is to give explicit formulas for the values

of B0(g) for all g ∈ H(F ). This is done in the case
(
L
p

)
= ±1 and both c(Ω) = c(π) = 0 in [2]. We

will answer this for all Ω and also for
(
L
p

)
= 0. Also, our methods are different from those of [2].

The assumptions on the torus gives the following useful decomposition (see [22])

H(F ) =
⊔
m≥0

T (F )

[
$m

1

]
K. (23)

Since B0 is the spherical vector in a (S,Ω)-Waldspurger model, we see that B0 is completely deter-

mined by its values on

[
$m

1

]
with m ≥ 0. We have the following vanishing result depending on

c(Ω).

3.1 Lemma. Let c(Ω) > 0. Then for all 0 ≤ m < c(Ω), we have

B0(

[
$m

1

]
) = 0.
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Proof. Let t(x, y) ∈ (1 + Pm) ∩ o×L be such that Ω(t(x, y)) 6= 1. Note that this implies that
x+ by/2 + cyβ ∈ (1 + Pm) ∩ o×L , which means that y ∈ pm. Hence, we have

B0(

[
$m

1

]
) = Ω(t(x, y))−1B0(t(x, y)

[
$m

1

]
)

= Ω(t(x, y))−1B0(

[
$m

1

] [
$−m

1

]
t(x, y)

[
$m

1

]
︸ ︷︷ ︸

∈K

)

= Ω(t(x, y))−1B0(

[
$m

1

]
),

which completes the proof.

3.2.2 Hecke operator

The spherical vector is an eigenfunction of the Hecke operator T ($), which corresponds to the

characteristic function of the double coset K

[
$

1

]
K in the Hecke algebra of K-bi-invariant functions

on H(F ). We have the following eigenvalue relation

T ($)B0 = λB0, λ = q1/2(χ1($) + χ2($)
)
. (24)

Note that the above eigenvalue can be easily checked by using the coset decomposition below and
applying T ($) to the spherical vector in the induced model of π. We have the following decomposition
of the double coset into a disjoint union of single cosets.

K

[
$

1

]
K =

⊔
u∈o/p

[
$ u

1

]
K t

[
1
$

]
K.

Hence, we get the key relation to obtain the explicit values of B0. For all g ∈ H(F ), we have∑
u∈o/p

B0(g

[
$ u

1

]
) +B0(g

[
1
$

]
) = λB0(g), λ = q1/2(χ1($) + χ2($)

)
. (25)

We wish to use the above equation with g =

[
$m

1

]
. As will be clear, the case m = 0 is the most

complicated and uses a lot of information regarding the underlying number theory. Of course, that
case occurs only if Ω is also unramified.

3.2 Lemma. We have

B0(

[
$m

1

][
1
$

]
) =



ωπ($)B0(

[
$m−1

1

]
) if m > 0;

B0(

[
$

1

]
) if m = 0,a ∈ o×;

Ω($L)B0(1) if m = 0,a ∈ p,
(
L
p

)
= 0;

Ω(1, $)B0(1) if m = 0,a ∈ p,
(
L
p

)
= 1.

(26)

Proof. The m > 0 case is clear. Let m = 0. By Lemma 3.1, we can assume that c(Ω) = 0. Let
a ∈ o×. We have the matrix identity

t(x, y)

[
1
$

]
=

[
$

1

] [
c

−a b$

]
︸ ︷︷ ︸

∈K

, t(x, y) =

[
c

−a b

]
.
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Note that, in this case, we have t(x, y) ∈ o×L and hence Ω(t(x, y)) = 1. This gives us the m = 0,a ∈ o×

case.

Now let a ∈ p. By Lemma 2.1 of [4], we see that this implies
(
L
p

)
= 0 or 1. First let

(
L
p

)
= 0.

Again by Lemma 2.1 of [4], we have vL(β) = v(a) = 1, which implies that b ∈ p. We have the matrix
identity

t(x, y)

[
1
$

]
=

[
c

− a
$
−b

]
∈ K, with x = − b

2$
, y =

1

$
.

We have Ω(t(x, y)) = Ω($−1(−b + cβ)) = ωπ($)−1Ω(β̄) = ωπ($)−1Ω($L) = Ω($L)−1. Here, we

have again used that c(Ω) = 0. Hence, we get the m = 0,a ∈ p,
(
L
p

)
= 0 case.

Now, let
(
L
p

)
= 1. Since d ∈ o× and b+

√
d

2c
b−
√
d

2c
= a

c
, we have v(b−

√
d

2c
) = v(a). If v(a) =

1, then the same matrix identity as above is valid. In this case Ω(t(x, y)) = ωπ($)−1Ω(β̄) =

ωπ($)−1Ω(b−
√
d

2c
, b+

√
d

2c
) = ωπ($)−1Ω($, 1) = Ω(1, $)−1. If v(a) > 1, then we have the matrix

identity

t(x, y)

[
1
$

]
=

[
1 c

−a/$ −b +$

]
∈ K, with x = 1− b

2$
, y =

1

$
.

In this case,

Ω(t(x, y)) = Ω($−1($ − cβ̄))

= ωπ($)−1Ω($ − c
b−
√
d

2c
, $ − c

b +
√
d

2c
)

= ωπ($)−1Ω($, 1)

= Ω(1, $)−1,

since b+
√
d

2c
∈ o× and v(b−

√
d

2c
) = v(a) > 1. This completes the proof of the lemma.

3.3 Lemma. Let u ∈ (o/p)×,m ≥ c(Ω). We have

B0(

[
$m

1

][
$ u

1

]
) =



Ω($L)B0(1) if m = 0,
(
L
p

)
= 0,a ∈ o×, u = u0;

Ω($, 1)B0(1) if m = 0,
(
L
p

)
= 1,a ∈ o×, u = (−b +

√
d)/(2a);

Ω(1, $)B0(1) if m = 0,
(
L
p

)
= 1,a ∈ o×, u = (−b−

√
d)/(2a);

Ω($, 1)B0(1) if m = 0,
(
L
p

)
= 1,a ∈ p, u = −c/b;

B0(

[
$m+1

1

]
) otherwise.

(27)

Here, in the
(
L
p

)
= 0 case u0 is the unique element of o/p such that u0 + β 6∈ o×L .

Proof. For u ∈ (o/p)× and m ≥ 0, set αu,m := c + b$mu+ a$2mu2. First assume that αu,m ∈ o×.
Then we have the matrix identity

t(x, y)

[
$m

1

][
$ u

1

]
=

[
$m+1

1

] [
1

a$2m+1u
c

αu,m
c

]
︸ ︷︷ ︸

∈K

, with x = 1 +
bu$m

2c
, y ∈ −u$

m

c
.

Note that, in this case, t(x, y) = 1 + u$mβ̄ ∈ 1 + Pc(Ω), since m ≥ c(Ω). Hence, Ω(t(x, y)) = 1.

Now, suppose that αu,m ∈ p. This implies that m = 0 and
(
L
p

)
= 0, 1. Hence, c(Ω) = 0. First

assume that
(
L
p

)
= 0. If a ∈ p, then b ∈ p and hence αu,0 ∈ o× for all u ∈ (o/p)×. So we are in

the previous case. If a ∈ o×, then there is a unique u0 ∈ (o/p)× such that αu0,0 ∈ $o×. Hence,
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a + b(au0/c) + c(au0/c)2 ∈ $o×, which implies that vL(au0/c + β) = 1. We have the following
matrix identity

t(x, y)

[
$ u0

1

]
=

[
1 + b

au0

αu0,0
a$u0

−u−1
0

]
∈ K, with y =

1

a$u0
, x = $−1 + by/2.

Note that Ω(t(x, y)) = Ω($−1 +by/2 + y
√
d/2) = Ω($−1 + c/($au0)β) = ωπ($)−1Ω(au0/c+ β) =

ωπ($)−1Ω($L) = Ω($L)−1. The other cases are computed similarly.

3.2.3 Values of the spherical vector in the Waldspurger model

We have the following result for the explicit values of B0.

3.4 Proposition. Let π = χ1 × χ2 with χ1χ
−1
2 6= | |±1 and χ1, χ2 unramified. Let Ω be a character

of L× such that Ω|F× = ωπ and c(Ω) as defined in (20). Let π be given by its (S,Ω)-Waldspurger
model and let B0 be a spherical vector in π. Let

R(x) :=
∑

m≥c(Ω)

B0(

[
$m

1

]
)xm

be a formal power series. Let λ = q1/2
(
χ1($) + χ2($)

)
. Then we have the following formula

R(x) =
(q − κx)xc(Ω)

ωπ($)x2 − λx+ q
B0(

[
$c(Ω)

1

]
), (28)

where

κ =



0 if c(Ω) > 0;
λ
q+1

if c(Ω) = 0,
(
L
p

)
= −1;

Ω($L) if c(Ω) = 0,
(
L
p

)
= 0;

− λ
q−1

+ q
q−1

(Ω($, 1) + Ω(1, $)) if c(Ω) = 0,
(
L
p

)
= 1.

(29)

Proof. For m ≥ 0, we set Am = B0(

[
$m

1

]
). Using (25) with g =

[
$m

1

]
and Lemmas 3.1, 3.2,

3.3, we get for m ≥ c(Ω),m > 0

qAm+1 + ωπ($)Am−1 = λAm. (30)

From this we get the following relation between the generating series.

q

∞∑
max(c(Ω),1)

Am+1x
m + ωπ($)

∞∑
max(c(Ω),1)

Am−1x
m = λ

∞∑
max(c(Ω),1)

Amx
m. (31)

Let us first consider the case where c(Ω) > 0. Then (31) gives us

q

x

∞∑
c(Ω)

Am+1x
m+1 + ωπ($)x

∞∑
c(Ω)

Am−1x
m−1 = λ

∞∑
c(Ω)

Amx
m,

which implies
q
(
R(x)−Ac(Ω)x

c(Ω))+ ωπ($)x2R(x) = λxR(x).

Solving for R(x) we get the c(Ω) > 0 case of the proposition.
Next, let c(Ω) = 0. We get the following relation from (31)

q

x

∞∑
2

Amx
m + ωπ($)x

∞∑
0

Amx
m = λ

∞∑
1

Amx
m.
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Hence, we get

q
(
R(x)−A0 −A1x

)
+ ωπ($)x2R(x) = λx

(
R(x)−A0

)
.

Solving for R(x) we have

R(x) =
qA0 + qA1x− λA0x

ωπ($)x2 − λx+ q
.

We obtain the following information regarding the above numerator from Lemmas 3.2, 3.3 using (25)
with g = 1.(
L
p

)
= −1: We have (q + 1)A1 = λA0. Hence

qA0 + qA1x− λA0x = A0(q − λ

q + 1
x).

(
L
p

)
= 0: We have qA1 + Ω($L)A0 = λA0. Hence

qA0 + qA1x− λA0x = A0(q − Ω($L)x).(
L
p

)
= 1: We have (q − 1)A1 +

(
Ω($, 1) + Ω(1, $)

)
A0 = λA0. Hence

qA0 + qA1x− λA0x = A0(q − (− λ

q − 1
+

q

q − 1
(Ω($, 1) + Ω(1, $)))x).

This competes the proof of the proposition.

3.3 Explicit values for an unramified twist of the Steinberg representation

Throughout this section we assume that the representation π is an unramified twist of the Steinberg
representation, i.e., π = χStGL2 , where χ is an unramified character of F×. We let Ω be any character
of L× such that Ω|F× = ωπ = χ2. For the field case, [24] states that π has an (S,Ω)-Waldspurger
model if and only if Ω 6= χ ◦NL/F . Note, if B0 is a new form in the (S,Ω)-Waldspurger model of π,

then B0 is right invariant under the Iwahori subgroup I =

[
o o
p o

]
∩K,

∑
u∈o/p

B0(g

[
1
u 1

]
) = −B0(gw), for w =

[
0 1
−1 0

]
, (32)

and

B0(g

[
1

$

]
) = −χ($)B0(g). (33)

Using (23), we have the following double coset decomposition.

H(F ) =
⊔
m>0

(
T (F )

[
$m

1

]
I t T (F )

[
$m

1

]
wI
)

(34)

⊔


T (F )wI if
(
L
p

)
= −1;

T (F )wI t T (F )

[
1

u0 1

]
I if

(
L
p

)
= 0;

T (F )wI t T (F )

[
1

u1 1

]
I t T (F )

[
1

u2 1

]
I if

(
L
p

)
= 1.

In the ramified case, u0 is the unique element of o/p such that a + bu0 + cu2
0 ∈ p. In the split case,

u1, u2 are the two distinct elements of o/p such that a + bui + cu2
i ∈ p. We will begin by restating

the relevant portions of Lemma 4.4 in [4].



14 3 VALUES OF THE NEWFORM IN THE WALDSPURGER MODEL

3.5 Lemma. [4, Lemma 4.4] Suppose that B0 is a new form in the (S,Ω)-Waldspurger model of π.
Then,

i) For m > 0, we have

B0(

[
$m

1

]
w) =

χ($)m

qm
B0(w).

ii) For m > 0, we have

B0(

[
$m

1

]
) =

{
−χ($)m

qm−1 B0(w) if m ≥ c(Ω)

0 if m < c(Ω).

iii) If L/F is ramified, then

B0(

[
1
u0 1

]
) =

{
−qB0(w) if c(Ω) = 0

0 if c(Ω) > 0.

We note that this lemma is only stated for fields in [4], but the proof of part i) and part ii) in the
split case follows from exactly the same argument.

We will also need the following analogue of part iii) of the previous lemma in the split case. Note,
from Thm. 1.6 in [4], we know that π always admits an (S,Ω)-Waldspurger model when L/F is split.

3.6 Lemma. Suppose that
(
L
p

)
= 1. Let u1, u2 ∈ o be inequivalent modulo p and satisfy cu2

i +

bui + a ∈ p for i = 1, 2. Then,

i) If c(Ω) > 0, then we have, for i = 1, 2,

B0(

[
1
ui 1

]
) = 0.

ii) Let c(Ω) = 0. Assume that Ω(1, $) = χ($). Then B0(w) = 0 and

B0(

[
1
u1 1

]
) = −B0(

[
1
u2 1

]
).

iii) Let c(Ω) = 0. Assume that Ω(1, $) 6= χ($). Then B0(w) 6= 0 and

B0(

[
1
u1 1

]
) =

q − 1

χ($)Ω(1, $)−1 − 1
B0(w), B0(

[
1
u2 1

]
) =

q − 1

χ($)−1Ω(1, $)− 1
B0(w).

Proof. First, set x =
√
d/2 +$ and y = 1. Then, one can check that

t(x, y)

[
1
u2 1

]
=

[
1
u1 1

][
1
$

]
w

[
−1

1

][
−
√
d/c 1
$ c

]
.

Note, the last two matrices on the right hand side are in I. Thus, we have

Ω(
√
d +$,$)B0(

[
1
u2 1

]
) = B0(

[
1
u1 1

][
1
$

]
w).

Also, by (33) we have

B0(

[
1
u1 1

][
1
$

]
w) = −χ($)B0(

[
1
u1 1

]
).

Hence, we get

Ω(
√
d +$,$)B0(

[
1
u2 1

]
) = −χ($)B0(

[
1
u1 1

]
). (35)
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Now, let us assume that c(Ω) > 0. Let (a1, a2) ∈ o× ⊕ o× satisfy Ω((a1, a2)) 6= 1, which is possible
since c(Ω) > 0. Using this, we set

x =
a1 + a2

2
, y =

a1 − a2√
d

.

Then, we have that [
1
−u1 1

]
t(x, y)

[
1
u1 1

]
∈ I.

Thus,

Ω((a1, a2))B(

[
1
u1 1

]
) = B(t(x, y)

[
1
u1 1

]
) = B(

[
1
u1 1

]
),

and since Ω((a1, a2)) 6= 1, we have B(

[
1
u1 1

]
) = 0. By (35), we also get B(

[
1
u2 1

]
) = 0. This

completes the proof of part i).
Next, if we set x = b/2 + cu and y = 1 for any u ∈ o/p with u not equivalent to u1 or u2 modulo

p, then we have [
1
u 1

][
−c b + cu
−βu,0

]
= t(x, y)w,

where βu,0 is defined in Lemma 3.2 of [14]. From this, it follows that

B0(

[
1
u 1

]
) = Ω(u+ β)B0(w).

Applying this to (32) we have

B0(

[
1
u1 1

]
) +B0(

[
1
u2 1

]
) = −B0(w)

 ∑
u∈o/p
u6=u1,u2

Ω(u+ β) + Ω(1)

 .
By Lemma 3.4 in [14], the summation on the right hand side is over a complete set of representatives
for o×L/(o

× + P), and hence is equal to q − 1 since c(Ω) = 0. So, we get

B0(

[
1
u1 1

]
) +B0(

[
1
u2 1

]
) = −(q − 1)B0(w).

Combining this with (35), we have

(χ($)−1Ω(1, $)− 1)B0(

[
1
u2 1

]
) = (q − 1)B0(w),

where we have used the fact that Ω is unramified and that
√
d ∈ o×. Parts ii) and iii) now follow.

When B0(w) 6= 0, we will choose B0 to be normalized so that B0(w) = 1. Note, if π admits a
non-zero (S,Ω)-Waldspurger model and B0(w) = 0, then it is necessarily the case that L/F is split
and c(Ω) = 0. In that case, we normalize so that

B0(

[
1
u1 1

]
) = −B0(

[
1
u2 1

]
) = 1.

4 Local non-archimedean zeta integral

In this section, we will compute the local integral (12) in the non-archimedean case. We will first
compute the zeta integral when the GL(2) representation is unramified. Finally, we will compute the
zeta integral in several cases when the GL(2) representation is an unramified twist of the Steinberg
representation.
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4.1 The local unramified integral

Now, we will compute the local integral (12) given by

Z(s) =

∫
T (F )\H(F )

f(ηh, s)B(h)dh.

The measure is normalized so that ∫
T (F )\T (F )K

dt = 1.

Let us assume that Ω1,Ω2 are unramified characters and π is unramified. This implies that c(Ω) = 0.
Choose the unramified section f given by

f(

[
u v
w

]
k) = Ω1(u)Ω2(w)|u/w|s+1/2

L , for

[
u v
w

]
∈ B(L) and k ∈ H(oL).

Let B = B0 the spherical vector in π normalized so that B0(1) = 1. This is possible by Proposition
3.4. Hence, we have

Z(s) =

∞∑
m=0

∫
T (F )\T (F )

$m

1

K
f(ηh, s)B0(h)dh

=

∞∑
m=0

Vmf(

[
$m

1

]
, s)B0(

[
$m

1

]
),

where, by Lemma 3.5.3 of [5], we have

Vm :=

∫
T (F )\T (F )

$m

1

K
dt =

{
(1−

(
L
p

)
q−1)qm if m ≥ 1;

1 if m = 0.

We have also used that

[
$−m

1

]
η

[
$m

1

]
∈ H(oL) since β ∈ oL. Hence, we get

Z(s) =
∞∑
m=0

(1−
(L
p

)
q−1)qmΩ1($m)|$m|s+1/2

L B0(

[
$m

1

]
) +

(L
p

)
q−1

= (1−
(L
p

)
q−1)

∞∑
m=0

(
Ω1($)q−2s)mB0(

[
$m

1

]
) +

(L
p

)
q−1

= (1−
(L
p

)
q−1)R(Ω1($)q−2s) +

(L
p

)
q−1.

Using the formula for R(x) from Proposition 3.4, after some computation, we get the following result.

4.1 Theorem. Let π,Ω1 and Ω2 be unramified. We have

Z(s) =
L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω−1
2 )

, (36)

where

L(s,Ω1Ω−1
2 ) =


(
1− Ω1Ω−1

2 ($)q−2s
)−1

if
(
L
p

)
= −1;(

1− Ω1Ω−1
2 ($L)q−s

)−1
if
(
L
p

)
= 0;(

1− Ω1Ω−1
2 ($, 1)q−s

)−1(
1− Ω1Ω−1

2 (1, $)q−s
)−1

if
(
L
p

)
= 1.



4.2 The local integral for the unramified twist of a Steinberg representation 17

4.2 The local integral for the unramified twist of a Steinberg representation

We now proceed to the case that π = χSt is the unramified twist of a Steinberg representation, and
we let B0 denote the new-form in the (S,Ω)-Waldspurger model of π which was introduced in Section
3.3.

4.2.1 Preliminaries

For the calculation of Z(s) we will require certain volume calculations throughout. Note, for a
subgroup K′ ⊂ K we set

VK′,m =

∫
T (F )\T (F )

$m

1

K′
dh,

where we have normalized the measure so that VK,0 = 1. In what follows, we set I ⊂ K to be the
Iwahori subgroup.

4.2 Lemma. For m ≥ 0 we have

i)

VwI,m =
qm+1(1−

(
L
p

)
q−1)

q + 1
.

ii) For m ≥ 1,

VI,m =
qm(1−

(
L
p

)
q−1)

q + 1
.

iii) If
(
L
p

)
= 0, then

V 1
u0 1

I,0 =
1

q + 1
.

iv) If
(
L
p

)
= 1, then

V 1
u1 1

I,0 = V 1
u2 1

I,0 =
1

q + 1
.

Proof. Parts i) and ii) follow from similar arguments as in the proof of Lemmas 3.7.1, 3.7.2 and 3.7.3
in [16]. Parts iii) and iv) follow from part i) by applying Lemma 4.1 in [18].

Throughout, we will use the following expression for Z(s) which is obtained by applying (34),

Z(s) =

∞∑
m=1


∫

T (F )\T (F )

$m

1

I

f(ηh, s)B0(h)dh+

∫
T (F )\T (F )

$m

1

wI

f(ηh, s)B0(h)dh

+

∫
T (F )\T (F )K

f(ηh, s)B0(h)dh. (37)

4.2.2 Integrating against a ramified principal series

In this section we assume that c(Ω1) = 1 and c(Ω2) = 0, so that c(Ω) = 1, which implies that π has
an (S,Ω)-Waldspurger model. We choose the section f ∈ I(Ω1,Ω2, s) given by the formula

f(h, s) =

Ω1(a)Ω2(d)
∣∣a
d

∣∣s+1/2

L
if h ∈

[
a ∗
d

][
1 0

1 1

]
K1(PL),

0 o.w.
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where [
a ∗
d

]
∈ B(L),

and

K1(PL) =

{[
a b
c d

]
∈ H(oL) : c ∈ PL, d ∈ 1 + PL

}
.

Note, when L is a field, one can easily show that

B(L)

[
1 0
1 1

]
K1(PL) = B(L)

[
1 0
1 1

]
K1(pL),

which justifies our choice of section f .

We will need the following lemma for evaluating the zeta integral Z(s).

4.3 Lemma. Let f be as above. Then, f is right invariant with respect to I.

Proof. Any element of I can be written as the product of an element of Z(o×) and an element in
K1(PL). Now, using the relation (Ω1Ω2)|F× = ω−1

π and the fact that ωπ is unramified, we get the
lemma.

Using this lemma, we obtain the following result which simplifies our zeta integral.

4.4 Proposition. With notation as above we have,

i) For m > 0, ∫
T (F )\T (F )

$m

1

I
f(ηh, s)B0(h)dh = 0.

ii) ∫
T (F )\T (F )K

f(ηh, s)B0(h)dh = VwI,0.

Proof. First, we prove i). Applying Lemma 4.3, it is enough to show that

η

[
$m

1

]
/∈ B(L)

[
1 0
1 1

]
K1(PL).

This follows from the fact that η

[
$m

1

]
∈ B(L)K1(PL) and B(L)K1(PL) ∩ B(L)

[
1 0
1 1

]
K1(PL) is

empty. In order to prove ii), note that we can rewrite w as

w =

[
−1
−1

][
1 −1

1

][
1
1 1

][
1 −1

1

]
,

from which it follows that ηw = w(w−1ηw) is in the support of f giving us∫
T (F )\T (F )wI

f(ηh, s)B0(h)dh = VwI,0.

Note that we have used c(Ω) > 0 in the split case to get B0(w) 6= 0. By Lemmas 3.5 and 3.6, we

have B0(

[
1
u0 1

]
) = 0 if L/F is a ramified field extension and B0(

[
1
ui 1

]
) = 0, i = 1, 2 if L/F is a

split extension. Now part ii) follows from (34).
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With this proposition in hand, we are now prepared to compute the zeta integral, i.e.,

Z(s) =

∞∑
m=1


∫

T (F )\T (F )

$m

1

I
f(ηh, s)B0(h)dh+

∫
T (F )\T (F )

$m

1

wI
f(ηh, s)B0(h)dh

+

∫
T (F )\T (F )K

f(ηh, s)B0(h)dh

= VwI,0 +

∞∑
m=1

∫
T (F )\T (F )

$m

1

wI
f(ηh, s)B0(h)dh

=

∞∑
m=0

VwI,mf(

[
−$m

−1

][
1

−1

]
)B0(

[
$m

1

]
w)

=

∞∑
m=0

qm(q −
(
L
p

)
)

q + 1
Ω1($)m|$m|s+1/2

L χ($)mq−m

=
q −

(
L
p

)
q + 1

∞∑
m=0

(Ω1($)χ($)q−2s−1)m.

With this calculation, we have shown the following theorem.

4.5 Theorem. Let π = χStGL2 with χ an unramified character of F×. Let Ω1 and Ω2 be characters
of L× with c(Ω1) = 1 and Ω2 being unramified, and suppose that Ω1Ω2|F× = ω−1

π . Then,

Z(s) =
q −

(
L
p

)
q + 1

L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω−1
2 )

.

4.2.3 Integrating against an unramified principal series

In this section we consider the case that the characters Ω1 and Ω2 are unramified, and I(Ω1,Ω2, s) is
irreducible.

In this setting, the condition Ω|F× = χ2 gives that Ω = χ ◦ NL/F when L/F is unramified,
hence π does not have an (S,Ω)-Waldspurger model. Similarly, when L/F is ramified we have that
Ω = χ′χ ◦NL/F where χ′ is either trivial or the unique unramified quadratic character. It is only in
the latter case that π has an (S,Ω)-Waldspurger model. Finally, when L/F is split, we simply apply
Thm. 1.6 from [4] to see that π has an (S,Ω)-Waldspurger model.

If we choose the unramified section

f(

[
a ∗
d

]
k) = Ω1(a)Ω2(d)|a/d|s+1/2

L , for

[
a ∗
d

]
∈ B(L) and k ∈ H(oL), (38)

then an inner K-integral gives a vector in π that is spherical, which is impossible. Hence, for that
choice of f , we have Z(s) = 0.

Alternatively, considering the same Ω1,Ω2, we also calculate the local zeta integral by choosing
the following section

f̂(bk) = f(bkg, s), for b ∈ B(L), k ∈ GL2(oL), g =

[
$−1
L

1

]
,

where f is the section from (38). Note, this is an old vector in I(Ω1,Ω2, s).

We present the following calculation, which will be needed to evaluate the zeta integral.
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4.6 Proposition. Let f be as above. Then,
∫

T (F )\T (F )K

f̂(ηh, s)B0(h)dh is equal to


−Ω1($L)−1qs+3/2

q+1
(1− Ω1($L)Ω2($L)−1q−2s−1) if

(
L
p

)
= 0

−Ω1($,1)−1qs+1/2

q+1
(1− Ω1($, 1)Ω2($, 1)−1q−2s−1) if

(
L
p

)
= 1 and B0(w) = 0

−(q−1)Ω1($,1)−1qs+1/2

(q+1)(1−χ($)−1Ω(1,$))
(1− Ω1($, 1)Ω2($, 1)−1q−2s−1) if

(
L
p

)
= 1 and B0(w) = 1

 .

Proof. Suppose that L/F is ramified. Note, in this case we have B0(

[
1
u0 1

]
) = −q by Lemma 3.5.

Furthermore, the integral breaks up as∫
T (F )\T (F )K

f̂(ηh, s)B0(h)dh =

∫
T (F )\T (F )wI

f̂(ηh, s)B0(h)dh+

∫
T (F )\T (F )

 1
u0 1

I
f̂(ηh, s)B0(h)dh.

In order to compute the first integral, we use that f̂ is right invariant under I, which follows from

I ⊆
[
$−1
L

1

]
H(oL)

[
$L

1

]
,

We also need the matrix identity

ηw =

[
$L

$−1
L

][
$−1
L

1

][
1

−1 β$L

][
$L

1

]
. (39)

Combining with the volume calculation in Lemma 4.2 we have∫
T (F )\T (F )wI

f̂(ηh, s)B0(h)dh = VwI,0Ω2($L)−1|$L|s+1/2
L B0(w) =

q−s+1/2

q + 1
Ω2($L)−1.

The evaluation of the second integral follows by noting that

η

[
1
u0 1

]
=

[
$−1
L

1

][
1

$−1
L (β + u0) 1

][
$L

1

]
∈
[
$−1
L

1

]
H(oL)

[
$L

1

]
.

From which we obtain ∫
T (F )\T (F )

 1
u0 1

I
f̂(ηh, s)B0(h)dh =

−qs+3/2

q + 1
Ω1($L)−1.

Combining, we have∫
T (F )\T (F )K

f̂(ηh, s)B0(h)dh =
−qs+3/2Ω1($L)−1

q + 1
(1− Ω1($L)Ω2($L)−1q−2s−1).

The split case is computed in a similar way.

In order to calculate Z(s) we also need the following integral calculations, which we calculate
using Lemma 4.2 and Lemma 3.5,

∫
T (F )\T (F )

$m

1

I
f̂(ηh, s)B0(h)dh =

−(1−
(
L
p

)
q−1)q

q + 1
Ω1($L)−1qs+1/2(Ω1($)χ($)q−2s−1)mB0(w),
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∫
T (F )\T (F )

$m

1

wI
f̂(ηh, s)B0(h)dh =

(1−
(
L
p

)
q−1)q

q + 1
Ω2($L)−1q−s−1/2(Ω1($)χ($)q−2s−1)mB0(w).

Combining this with the previous proposition we have the following theorem.

4.7 Theorem. Let π = χStGL2 with χ an unramified character of F×. Let Ω1, Ω2, and f̂ be as
above. Then,

Z(s) = − q
s+ 1

2

q + 1

L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω−1
2 )

×


qΩ1($L)−1 if

(
L
p

)
= 0;

Ω1($, 1)−1 if
(
L
p

)
= 1 and B0(w) = 0;

(q−1)Ω1($,1)−1

1−χ($)−1Ω(1,$)
if
(
L
p

)
= 1 and B0(w) = 1.

5 Local archimedean case

Now, let F = R. Let K = SO(2) be the maximal compact subgroup of H(R). For ` ≥ 1, let π be the
discrete series representation Dµ(`). This representation has the lowest non-negative weight ` and

central character

[
u
u

]
7→ sgn(u)`|u|µ. We need to obtain the values of a weight ` vector B0 in the

Waldspurger model of Dµ(`). We obtain a differential equation satisfied by B0 using the fact that
B0 is annihilated by the lowering operator. For this, first recall that the Lie algebra g = sl(2,R) of
SL(2,R) is generated by

D =

[
1
−1

]
, E =

[
1
]
, F =

[
1

]
,

and the lowering operator L is an element of the complexified Lie algebra gC and is defined by

L =
1

2

[
1 −i
−i 1

]
=

1

2

(
D − iE − iF

)
. (40)

An element X ∈ g acts on B0 by

(X.B0)(g) =
d

dt

∣∣∣
t=0

B0(g exp(tX)). (41)

We will follow the ideas from [17]. We will consider two special cases here corresponding to S =

±
[

1
1

]
and S = ±

[
1
−1

]
, the non-split and split case respectively.

5.1 The non-split case

Let S = ±
[

1
1

]
. Then

T (R) = {
[
x y
−y x

]
: x, y ∈ R, x2 + y2 6= 0} ' C×

by the isomorphism

[
x y
−y x

]
7→ x+ iy. We see that any element of t ∈ T (R) can be written as

t =

[
γ
γ

]
r(δ), where γ > 0, r(δ) =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
, with δ ∈ R.

Let Ω be a character of C× given by

Ω(

[
γ
γ

]
r(δ)) = γµeimδ, (42)
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for some m ∈ Z. Notice that we want Ω|R× = ωπ, and hence we must have m ≡ ` (mod 2). By the
Cartan decomposition, we have (see (18) of [17])

GL(2,R) = GL(2,R)+ t
[
−1

1

]
GL(2,R)+

= T (R){
[
ζ
ζ−1

]
: ζ ≥ 1}SO(2) t T (R)

[
−1

1

]
{
[
ζ
ζ−1

]
: ζ ≥ 1}SO(2).

Let us assume that π = Dµ(`) is given by its (Ω, S)-Waldspurger model. Let B0 ∈ π be weight `
vector. Hence, we have

B0(tgr(θ)) = Ω(t)ei`θB0(g).

If B0(1) 6= 0, then we get the necessary condition that m = `. If B0(

[
−1

1

]
) 6= 0, then, us-

ing

[
−1

1

]
r(δ)

[
−1

1

]
= r(−δ), we get the necessary condition that m = −`. In the first case,

support of B0 is contained in GL(2,R)+ and in the latter case, the support of B0 is contained in[
−1

1

]
GL(2,R)+. Let us first consider the case m = `. Let us set f(ζ) := B0(

[
ζ
ζ−1

]
) for ζ ≥ 1.

We wish to obtain the action of L on B0. For this, suppose[
ζ
ζ−1

]
exp(tX) =

[
γ(t)

γ(t)

]
r(δ(t))

[
ζ(t)

ζ(t)−1

]
r(θ(t)),

where γ(t), δ(t), ζ(t) and θ(t) are smooth functions with γ(0) = 1, δ(0) = θ(0) = 0 and ζ(t) = ζ. Then

(X.B0)(

[
ζ
ζ−1

]
) =

d

dt

∣∣∣
t=0

B0(

[
γ(t)

γ(t)

]
r(δ(t))

[
ζ(t)

ζ(t)−1

]
r(θ(t)))

=
d

dt

∣∣∣
t=0

γ(t)µei`(θ(t)+δ(t))f(ζ(t))

=
(
µγ′(0) + i`(θ′(0) + δ′(0))

)
f(ζ) + ζ′(0)f ′(ζ). (43)

Hence, we need to find the values of the derivatives at 0 of the above functions for X = D,E, F .

X = D case: Let X = D. Then exp(tD) =

[
et

e−t

]
. Hence, γ(t) = 1, δ(t) = θ(t) = 0 for all t and

ζ(t) = ζet. Hence (43) gives us

(D.B0)(

[
ζ
ζ−1

]
) = ζf ′(ζ). (44)

X = E case: Let X = E. Then exp(tE) =

[
1 t

1

]
. Hence

[
ζ
ζ−1

][
1 t

1

]
= r(δ(t))

[
ζ(t)

ζ(t)−1

]
r(θ(t)). (45)

We recall the following lemma and proof from the expanded version of [15].

5.1 Lemma. Let h =

[
y x
y−1

]
with y 6= 0. Then h = k1

[
z
z−1

]
k2, with k1, k2 ∈ SO(2) and

z2 =
1 + x2y2 + y4 +

√
(1 + x2y2 + y4)2 − 4y4

2y2
.
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Proof. We may assume that x 6= 0. By the Cartan decomposition of SL2(R), there exist k1, k2 ∈ SO(2)

and z > 1 such that h = k1

[
z
z−1

]
k2. Write k1 =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
for δ ∈ [0, 2π). Applying both

sides of h = k1

[
z
z−1

]
k2 to i as fractional linear transformations, and using that SO(2) stabilizes i,

we get

y2i+ xy =
cos(δ)z2i+ sin(δ)

− sin(δ)z2i+ cos(δ)
.

Simplifying and comparing the coefficients of i and the constant terms, we get

−z2xy sin(δ) = cos(δ)(z2 − y2), (1− z2y2) sin(δ) = xy cos(δ).

Note that, since x, y 6= 0, we have sin(δ), cos(δ) 6= 0 and y 6= ±z,±1/z. Hence, we can divide the
above two equations and after simplification obtain y2z4 − (1 + x2y2 + y4)z2 + y2 = 0, which gives
the lemma.

Hence, we get

ζ(t)2 =
1 + ζ4t2 + ζ4 +

√
(1 + ζ4t2 + ζ4)2 − 4ζ4

2ζ2
, (1− ζ2(t)ζ2) sin(δ(t)) = ζ2t cos(δ(t)).

Using implicit differentiation, we get

ζ′(0) = 0, δ′(0) =
ζ2

1− ζ4
.

Now, comparing the (2, 1) coefficient of both sides of (45) and using implicit differentiation, we get

θ′(0) = −δ
′(0)

ζ2
= − 1

1− ζ4
.

Substituting into (43), we get

(E.B0)(

[
ζ
ζ−1

]
) =

−i`
1 + ζ2

f(ζ). (46)

X = F case: Let X = F . Then exp(tF ) =

[
1
t 1

]
. We have

[
ζ
ζ−1

][
1
t 1

]
=

[
−1

1

][
ζ−1 −ζ−1t

ζ

][
1

−1

]
= r(3π/2)

[
ζ−1 −ζ−1t

ζ

]
r(π/2).

Arguing as in the X = E case, we get

ζ′(0) = 0, δ′(0) =
ζ2

1− ζ4
, θ′(0) = − ζ4

1− ζ4
,

which gives us

(F.B0)(

[
ζ
ζ−1

]
) =

i`ζ2

1 + ζ2
f(ζ). (47)

Using the definition (40) and the formulas (44), (46) and (47), we get

(L.B0)(

[
ζ
ζ−1

]
) =

1

2

(
ζf ′(ζ)− `1− ζ2

1 + ζ2
f(ζ)

)
. (48)



24 5 LOCAL ARCHIMEDEAN CASE

5.2 Proposition. Let Ω be a character of T (R) given by (µ,m) ∈ C×Z as defined in (42). For ` > 0,
let Dµ(`) be the lowest weight discrete series module of H(R). If Dµ(`) has a (Ω, S)-Waldspurger
model then the model is unique and m = ±`. The lowest weight vector B0 in the (Ω, S)-Waldspurger
model of Dµ(`) is given by

B0(g) = γµei`(δ+θ)
( ζ

1 + ζ2

)`
, (49)

if

m = `, g =

[
γ
γ

]
r(δ)

[
ζ
ζ−1

]
r(θ), OR m = −`, g =

[
γ
γ

]
r(δ)

[
−ζ

ζ−1

]
r(θ),

and B0(g) = 0, otherwise.

Proof. Setting (L.B0) ≡ 0 and (48) gives us the formula for B0 above in the case ` = m. The
case ` = −m is very similar. Since Dµ(`) is generated by the lowest weight vector B0, we get the
uniqueness of the Waldspurger model.

5.2 The split case

Let S =

[
−1

1

]
. Then

T (R) = {
[
x y
y x

]
: x, y ∈ R, x2 − y2 6= 0}.

We have

T (R) 3 t 7→ t−1
0

[
x y
y x

]
t0 =

[
x+ y

x− y

]
' R× × R×, where t0 =

[
1 1
1 −1

]
.

N = {
[

1 ζ
1

]
: ζ ∈ R} and A = {

[
u
v

]
: u, v ∈ R×}.

Using the Iwasawa decomposition, we get

H(R) = T (R)t0NSO(2). (50)

We have the character Ω of T (R) given by

Ω(

[
x y
y x

]
) = Ω(t0

[
x+ y

x− y

]
t−1
0 ) = sgn(x+ y)ε1 |x+ y|µ1sgn(x− y)ε2 |x− y|µ2 , (51)

with µ1, µ2 ∈ C, ε1, ε2 ∈ {0, 1}.
Let us assume that π = Dµ(`) is given by its (Ω, S)-Waldspurger model. Let B0 ∈ π be weight `

vector. Hence, we have
B0(tgr(θ)) = Ω(t)ei`θB0(g).

Using the fact that

[
−1
−1

]
∈ SO(2) ∩ T (R) and the central character of π, we get the necessary

condition that
ε1 + ε2 ≡ ` (mod 2) and µ1 + µ2 = µ. (52)

Let us set

f(ζ) := B0(t0

[
1 ζ

1

]
).

For X ∈ g, we have

t0

[
1 ζ

1

]
exp(tX) =

[
x(t) y(t)
y(t) x(t)

]
t0

[
1 ζ(t)

1

]
r(θ(t)),

where x(t), y(t), ζ(t) and θ(t) are smooth functions such that x(0) = 1, y(0) = θ(0) = 0 and ζ(0) = ζ
and x(t)± y(t) > 0. Hence

(X.B0)(t0

[
1 ζ

1

]
) =

d

dt

∣∣∣
t=0

B0(t0

[
1 ζ

1

]
exp(tX))
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=
d

dt

∣∣∣
t=0

B0(

[
x(t) y(t)
y(t) x(t)

]
t0

[
1 ζ(t)

1

]
r(θ(t)))

=
(
µ1(x′(0) + y′(0)) + µ2(x′(0)− y′(0)) + i`θ′(0)

)
f(ζ) + ζ′(0)f ′(ζ) (53)

X = D case: Let X = D. Then

t0

[
1 ζ

1

]
exp(tD) = t0

[
1 ζ

1

][
et

e−t

]
= t0

[
et

e−t

]
t−1
0 t0

[
1 ζe−2t

1

]
.

Hence, x(t) + y(t) = et, x(t)− y(t) = e−t, θ(t) = 0 and ζ(t) = ζe−2t. Applying (53), we get

(D.B0)(t0

[
1 ζ

1

]
) = (µ1 − µ2)f(ζ)− 2ζf ′(ζ). (54)

X = E case: Let X = E. Then

t0

[
1 ζ

1

]
exp(tE) = t0

[
1 ζ

1

][
1 t

1

]
= t0

[
1 ζ + t

1

]
.

Hence, x(t)± y(t) = 1, θ(t) = 0 and ζ(t) = ζ + t. Applying (53), we get

(E.B0)(t0

[
1 ζ

1

]
) = f ′(ζ). (55)

X = F case: Let X = F . Then

t0

[
1 ζ

1

]
exp(tF ) = t0

[
1 ζ

1

][
1
t 1

]
= t0

[
1 + ζt ζ
t 1

]
.

Let

[
1 + ζt ζ
t 1

]
=

[
a
a−1

][
1 u

1

]
k, with a ∈ R>0, u ∈ R, k ∈ SO(2). Applying both sides to i as

fractional linear transformation, and using that SO(2) stabilizes i, we get

(1 + ζt)i+ ζ

ti+ 1
= a2i+ a2u.

Hence, we get the system of equations

1 + ζt = a2(1 + tu), ζ = a2(u− t).

This give us

a = (1 + t2)−1/2, u = (1 + t2)ζ + t.

Hence, we have

t0

[
1 ζ

1

]
exp(tF ) == t0

[
1 + ζt ζ
t 1

]
= t0

[
(1 + t2)−1/2

(1 + t2)1/2

][
1 (1 + t2)ζ + t

1

]
r(θ(t)).

This gives us x′(0)± y′(0) = 0, θ′(0) = 0, ζ′(0) = 1. Applying (53), we get

(F.B0)(t0

[
1 ζ

1

]
) = f ′(ζ). (56)

Using the definition (40) and formulas (54), (55) and (56), we get

(L.B0)(t0

[
1 ζ

1

]
) =

1

2

(
(µ1 − µ2)f(ζ)− (2ζ + 2i)f ′(ζ)

)
. (57)
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5.3 Proposition. Let Ω be a character of T (R) defined in (51) for µ1, µ2 ∈ C and ε1, ε2 ∈ {0, 1}. For
` > 0, µ ∈ C, let Dµ(`) be the lowest weight discrete series module of H(R). A necessary condition for
Dµ(`) to have a (Ω, S)-Waldspurger model is ε1 + ε2 ≡ ` (mod 2) and µ1 +µ2 = µ. If a Waldspurger
model exists, then it is unique. The lowest weight vector B0 in the (Ω, S)-Waldspurger model of
Dµ(`) is given by

B0(tt0

[
1 ζ

1

]
r(θ)) = Ω(t)ei`θ(2i+ 2ζ)

µ1−µ2
2 , (58)

for all t ∈ T (R), ζ, θ ∈ R.

5.4 Remark. One can consider another matrix S′ = αtMSM , with α ∈ R× and M ∈ GL(2,R),

instead of S =

[
−1

1

]
. The torus TS′ = {g ∈ H(R) : tgS′g = det(g)S′} is given by TS′ = M−1TSM .

The character Ω′ of TS′ corresponding to the character Ω of TS is given by Ω′(t′) := Ω(Mt′M−1). If
B is an element of a (S,Ω)-Waldspurger model of π, then

B′(g) := B(Mg), g ∈ H(R), (59)

is an element of a (S′,Ω′)-Waldspurger model of π. In the section below, we will make some special
choices of S′ and will use Proposition 5.3 and (59) to obtain the explicit formulas of the weight `
vectors in the (S′,Ω′)-Waldspurger model of π.

5.3 The local archimedean integral: the split case

In this section, we will compute the local archimedean integral. We will use Proposition 5.3, for
values of the weight ` vector in a Waldspurger model of π. In Proposition 5.3, we considered the

torus to be the stabilizer of S =

[
−1

1

]
. For our global computation in the next section, we will

need to consider a more general choice of S, which we will give now. Let D > 0 be a fundamental
discriminant and set

S(D) :=



[
−D
4

1

]
if D ≡ 0 (mod 4);[

1−D
4

1
2

1
2

1

]
if D ≡ 1 (mod 4).

(60)

First, assume that D ≡ 0 (mod 4). In this case, we have S(D) = tMSM , where M =

[√
D/2

1

]
.

Let TS(D) be the torus that is defined as the stabilizer of S(D) in GL(2). Then TS(D) = M−1TSM .
Define ΩD : TS(D) → C by ΩD(t) = Ω(MtM−1). Let BD be the weight ` vector in a (S(D),ΩD)-
Waldspurger model for π. Then we have

BD(g) = B0(Mg), (61)

where the values of B0(g) are given in Proposition 5.3.

We want to compute the following integral

Z∞(s) =

∫
T (R)\H(R)

f(ηh, s)BD(h)dh.

The measures are normalized as follows. For a function ϕ on H(R), we have

∫
GL(2,R)+

ϕ(g)dg =

∞∫
0

∫
R

∞∫
0

∫
SO(2,R)

ϕ(

[
u
u

][
v
v−1

][
1 ζ

1

]
k)u−1v−1dk dv dζ du,
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where du, dv, dζ are the usual Lebesgue measures and
∫

SO(2,R)
dk = 1. Hence, for a function ϕ which

is left invariant under TS(D)(R), using (50), we have∫
T (R)\H(R)

ϕ(h)dh =

∫
R

∫
SO(2,R)

ϕ(M−1t0

[
1 ζ

1

]
k)dk dζ,

where t0 =

[
1 1
1 −1

]
and M =

[√
D/2

1

]
.

Let us now make the following assumptions about the relevant representations. Let π = D(`),
i.e., µ = 0. Let `1, `2 be positive integers such that `1 + `2 = `. Set

Ω1(x, y) = |x|
`1−1

2 |y|
`2−1

2 = Ω2(x, y)−1, (x, y) ∈ (R×)2. (62)

A simple computation shows that I(Ω1,Ω2, 0) = D(`1)⊗D(`2). We have,

Ω(x, y) = |x|
`1−`2

2 |y|
`2−`1

2 . (63)

Let us choose a section f ∈ I(Ω1,Ω2, s) which corresponds to a vector of weight (`1, `2), i.e., we have

f((

[
u1 w1

z1

]
r(θ1),

[
u2 w2

z2

]
r(θ2)), s) = Ω1(u1, u2)Ω2(z1, z2)

∣∣∣u1u2

z1z2

∣∣∣ 12 +s

ei(`1θ1+`2θ2). (64)

The above formula, together with (61), gives us

Z∞(s) =

∫
R

f(ηM−1t0

[
1 ζ

1

]
, s)BD(M−1t0

[
1 ζ

1

]
)dζ

=

∫
R

f(ηM−1t0

[
1 ζ

1

]
, s)B0(t0

[
1 ζ

1

]
)dζ

In this case, η = (

[
1√
D/2 1

]
,

[
1

−
√
D/2 1

]
). We need to write the argument of f above according to

the Iwasawa decomposition. For this we have

[
1√
D/2 1

][
2/
√
D

1

]
t0

[
1 ζ

1

]
=

[
2/
√
D

1

][
−(1 + ζ2)−

1
2 ∗

2(1 + ζ2)
1
2

] ζ√
1+ζ2

−1√
1+ζ2

1√
1+ζ2

ζ√
1+ζ2

,
[

1

−
√
D/2 1

][
2/
√
D

1

]
t0

[
1 ζ

1

]
=

[
2/
√
D

1

][
1 ζ + 1
−2

]
.

Hence,

f(ηM−1t0

[
1 ζ

1

]
, s) = D−

(`1+`2)
4

−s (ζ + i)`1

(1 + ζ2)`1+s
.

We also have µ1 − µ2 = `1 − `2. Hence, by Proposition 5.3, we have

B(t0

[
1 ζ

1

]
) = 2

`1−`2
2 (−i+ ζ)

`1−`2
2 = 2

`1−`2
2

(1 + ζ2

i+ ζ

) `1−`2
2

.

Hence, we get

Z∞(s) = 2
`1−`2

2 D−
`
4
−s
∫
R

(i+ ζ)
`
2

(1 + ζ2)
`
2

+s
dζ. (65)
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5.5 Proposition. For positive integer k and complex number s, set

I(k, s) :=

∞∫
−∞

(i+ x)k

(1 + x2)k+s
dx,

whenever the integral converges. Then, we have

I(k, s) =

{
iπ if k = 1, s = 0;

ik22−2s−kπ Γ(2s+k−1)
Γ(s)Γ(k+s)

if Re(2s+ k) > 1.
(66)

Proof. We have

I(1, 0) =

∞∫
−∞

i+ x

1 + x2
dx = i

∞∫
−∞

1

1 + x2
dx = i arctan(x)|∞−∞ = iπ.

The general case is obtained by a suitable change of variable, a fairly complicated contour integral
argument reducing the integral to the reciprocal of the beta function.

Let us remark that the special case of k = 1, s = 0 can also be obtained from the general formula
above by taking the limit as s approaches zero and the doubling formula for the gamma function.
Substituting (66) into (65), we get the following theorem.

5.6 Theorem. Let π = D(`), where ` is a positive even integer. Let `1, `2 be two positive integers
such that `1 + `2 = `. Let Ω1,Ω2 be characters of R× × R× given by (62). Let Ω be given by
(63). For D > 0, a fundamental discriminant, let S(D) be defined by (60). Let π be given by its
(S(D),ΩS(D))-Waldspurger model and let BD be a weight ` vector in π. Let f ∈ I(Ω1,Ω2, s) be as
defined in (64). Then, we have

Z∞(s) =

iD
−1/2π if ` = 2, s = 0;

22−2s−`2D−
`
4
−si

`
2 π

Γ(2s+ `
2
−1)

Γ(s)Γ( `
2

+s)
if Re(2s+ `

2
) > 1.

(67)

In particular,
Z∞(0) = 0 if ` > 2.

Proof. The case D ≡ 0 (mod 4) follows from the computations above the statement of the theorem.

The D ≡ 1 (mod 4) follows exactly as above noting that

[
1−D

4
1
2

1
2

1

]
=

[
1 1

2

1

][ −D
4

1

][
1
1
2

1

]
.

6 The global integral

In this section, we will prove the main global theorem of the paper. We will specify the choices
precisely and put together the local results from previous sections to obtain a formula for the global
integral. We will also obtain a classical version of the integral formula rewriting the integral as the
Petersson inner product of classical holomorphic modular forms.

6.1 The main global theorem

Let us make the following assumptions. Let F = Q, L = Q(
√
D), with D > 0 a fundamental

discriminant. Let us set

S(D) =



[
−D
4

1

]
if D ≡ 0 (mod 4);

[
1−D

4
1
2

1
2

1

]
if D ≡ 1 (mod 4).
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Let π = ⊗′πp be an irreducible cuspidal representation of H(A) and N a square-free positive integer.

• For p - N , let πp be an unramified representation.

• For p|N , let πp be a twist of the Steinberg representation by an unramified character χp.

• Let π∞ be the holomorphic discrete series representation D(`), with lowest weight `, a positive
even integer.

Let Ω1,Ω2 : A×L → C× be two characters satisfying the following properties.

• Let Ω1Ω2|A× = ωπ, where ωπ is the central character of π.

• Let N ′|N be a positive integer. If v - N ′, then both Ω1,v and Ω2,v are unramified. If v|N ′ then
assume that c(Ω1,v) = 1, c(Ω2,v) = 0.

• For x, y ∈ R×, let Ω1,∞(x, y) = |x|`/2−1|y|`/2−1 = Ω−1
2,∞(x, y).

Note that, one can show that characters satisfying the above conditions do exist. Let Ω(z) =
Ω−1

1 (z̄)Ω−1
2 (z) for z ∈ A×L . Let us make the following assumptions.

• For every p ≤ ∞, the local representation πp has a (S(D), Ω̄p)-Waldspurger model. Note that
the choices above imply that this condition reduces to the following. If p|(N/N ′), then either p
is split in L, or p is ramified in L and Ω̄p = χ′pχp ◦ NLp/Qp , where χ′p is the unique quadratic

unramified character of Q×p .

• Assume that L( 1
2
,BC(π)× Ω̄) 6= 0, where BC(π) is the base change of π to H(AL).

These two assumptions together imply that π has a non-zero global (S(D), Ω̄)-Waldspurger model.
Let ϕ ∈ π and Bϕ = ⊗Bp be such that Bp is in the (S(D), Ω̄p)-Waldspurger model of πp. Alter-
natively, B̄p is in the (S(D),Ωp)-Waldspurger model of π̃p, the contragredient representation of πp.
Choose ϕ such that, for any p <∞, we have Bp is the newform in πp, and ϕ∞ is the weight ` vector
in π∞. These local functions are normalized as follows:

• If p - N then Bp(1) = 1.

• If p|(N/N ′), Lp = Qp ⊕ Qp,Ωp(1, $p) = χ̄p($p), then Bp(

[
1
u1 1

]
) = 1. Here, u1 =

√
D/2 if

D ≡ 0 (mod 4) and u1 = (1 +
√
D)/2 if D ≡ 1 (mod 4).

• If p <∞ and does not satisfy any of the conditions above, then Bp(

[
1

−1

]
) = 1.

• For p = ∞, we have B∞(M−1
D t0) = 1, where t0 =

[
1 1
1 −1

]
and MD =

[√
D/2

1

]
if D ≡ 0

(mod 4) and MD =

[√
D/2
1/2 1

]
if D ≡ 1 (mod 4).

Let us choose the section f(·, s) = ⊗fv(·, s) ∈ I(Ω1,Ω2, s) as follows. We will write fp for ⊗v|pfv.
If p - N , then fp is the spherical vector in the local representation normalized by fp(1) = 1. If p|N ′

then fp is the newform in the local representation normalized so that fp(

[
1
1 1

]
) = 1. If p|(N/N ′),

then we choose fp to be the translate of the spherical vector, normalized to be 1 at the identity,

by

[
$−1
Lv

1

]
. For p = ∞, we choose f∞ to be the vector of weight (`/2, `/2) given by (64) with

`1 = `2 = `/2. The next theorem computes the following global integral

Z(s, f, ϕ̄) =

∫
ZH (A)H(Q)\H(A)

E(h, s, f)ϕ̄(h)dh.

6.1 Theorem. Let the notations and choices of local vectors be as above. Then, we have

Z(s, f, ϕ̄) =
L(2s+ 1

2
, π̃ × Ω1|A×)

L(2s+ 1,Ω1Ω−1
2 )

∏
p≤∞

Yp(s),
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where, for p <∞, we have

Yp(s) =



1 if p - N ;

p−
(
L
p

)
p+1

Lp(2s+ 1,Ω1Ω−1
2 ) if p|N ′;

−Ω1($Lp )−1p
s+3

2

p+1
if p| N

N′ ,
(
L
p

)
= 0;

−Ω1($p,1)−1p
s+1

2

p+1
if p| N

N′ ,
(
L
p

)
= 1,Ω(1, $p) = χ̄p($p);

−(p−1)Ω1($p,1)−1p
s+1

2

(p+1)(1−χ̄p($p)−1Ω(1,$p))
if p| N

N′ ,
(
L
p

)
= 1,Ω(1, $p) 6= χ̄p($p),

and

Y∞(s) =

iD
−1/2π if ` = 2, s = 0;

22−2s−`2D−
`
4
−si

`
2 π

Γ(2s+ `
2
−1)

Γ(s)Γ( `
2

+s)
if Re(2s+ `

2
) > 1.

Here, π̃ is the contragredient representation of π.

Proof. The theorem follows from Theorems 4.1, 4.5, 4.7 and 5.6.

6.2 Petersson norm of classical modular forms

In this section, we will realize the global integral Z(s, f, ϕ̄) as the Petersson inner product of classical
modular forms on the complex upper half plane H := {x + iy ∈ C : y > 0}. Let (τ1, τ2) ∈ H2 and
let g1, g2 ∈ SL(2,R) such that gj〈i〉 = τj . Here, we have g〈τ〉 = (aτ + b)/(cτ + d) for τ ∈ H and

g =

[
a b
c d

]
∈ H(R). Set g = ⊗vgv ∈ H(AL) by gv = 1 for v - ∞ and g∞ = (g1, g2). Define the

Eisenstein series E((τ1, τ2), s, f) : H2 → C by

E((τ1, τ2), s, f) := J(g1, i)
`/2J(g2, i)

`/2E(g, s, f), (68)

where J(

[
a b
c d

]
, τ) := cτ + d. Note that the right hand side above is well-defined by the choice of

the section f . In fact, if τj = xj + iyj , then we can choose gj =

[
1 xj

1

][√
yj

1/
√
yj

]
. In this case,

J(gj , i) = y
−1/2
j . Let Φ be the cusp form on H corresponding to ϕ from the previous section.

For two smooth functions f1, f2 on H of weight ` with respect to Γ0(N), at least one of which is
rapidly decreasing at ∞, we define the Petersson inner product by

〈f1, f2〉 :=
1

vol(Γ0(N)\H)

∫
Γ0(N)\H

f1(τ)f2(τ)y`
dxdy

y2
. (69)

6.2 Proposition. With notations as in 6.1, we have

Z(s, f, ϕ̄) = vol(Γ0(N)\H)〈E|∆H,Φ〉. (70)

Proof. The proposition follows from

ZH(A)H(Q)\H(A)/SO(2,R)K0(N) ' ZH(R)Γ0(N)\H(R)+/SO(2,R) ' Γ0(N)\H,

and, for h ∈ SL(2,R) and h〈i〉 = τ , we have

E(h, s, f)ϕ̄(h) = J(h, i)−`E((τ, τ), s, f)J(h, i)−`Φ(τ) = E((τ, τ), s, f)Φ(τ)y`.

Here, K0(N) is defined in (71) below.
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6.3 Special cases arising from Tonghai Yang’s paper

In [26], Tonghai Yang has considered Hilbert Eisenstein series obtained from certain specific choices
of the characters Ω1 and Ω2. Let us explain the setup of Theorem 1.2 of [26]. Let us first remark
that, in [26], an Eisenstein series is constructed on SL(2), whereas, in this paper, we are constructing
Eisenstein series on GL(2).

Let L = Q(
√
D) be a real quadratic extension of Q and let K be an imaginary quadratic extension

of L. Let χK/L be the character of L associated to the extension K/L. Let N be a square-free
integral ideal of L such that all its prime factors are inert in K. Let Ω1 = χK/L and Ω2 = 1. Let
N be a positive square-free integer such that dK/LN ∩ Z = NZ and N ′ be an integer such that
dK/L ∩Z = N ′Z. Here, dK/L is the discriminant of K/L. Let ψ be the Hecke character corresponing
to χK/L. Let E(g, s, f) be the Eisenstein series on H(AL), with the section f(∗, s) ∈ I(χK/L, 1, s)
as in Section 6.1. Let E((τ1, τ2), s, f) := J(g1, i)J(g2, i)E(g, s, f) be the Eisenstein series on H2 as
defined in (68). Theorem 1.2 part 2) of [26] states that, as a function of (τ1, τ2), the Eisenstein
series E((τ1, τ2), s, f) is a Hilbert modular form (non-holomorphic) of weight (1, 1), level dK/LN and
character ψ. Furthermore, part 3) of Theorem 1.2 in [26] states that, when non-zero, the Eisenstein
series E((τ1, τ2), 0, f) is holomorphic.

Let Φ ∈ S2(Γ0(N), ψ) be a cusp form of weight 2, level N and nebentypus character ψ. Here, we
have used the same notation for the Dirichlet character obtained by restriction of ψ. Let ω be the
character of Q×\A× corresponding to ψ. Note that ω = χK/L|A×Q . Let

K0(N) :=
∏
p<∞

Kp(N), where Kp(N) =


H(Zp) if p - N ;

H(Zp) ∩

[
Zp Zp
pZp Zp

]
if p|N.

(71)

Define the character λ of K0(N) by

λ(

[
a b
c d

]
) :=

∏
p|N

ω−1
p (dp).

The function ϕ : H(A)→ C corresponding to Φ is given by the formula

ϕ(g) = ϕ(γg∞k0) := λ(k0)
det(g∞)

J(g∞, i)2
Φ(g∞〈i〉). (72)

Here, using strong approximation, we have written g = γg∞k0, with γ ∈ H(Q), g∞ ∈ GL(2,R)+ and
k0 ∈ K0(N). Assume that Φ is a Hecke eigenform. Let π be the irreducible cuspidal automorphic
representation of H(AQ) generated by the right translates of ϕ. The central character of π is given
precisely by ω. Assume that, for every p ≤ ∞, the local representation πp has a (S(D), (χK/L)p)-
Waldspurger model. In Section 5 of [26], several special choices of K and L are made which auto-
matically guarantee this local condition. Also assume that L( 1

2
,BC(π) × χK/L) 6= 0. Theorem 6.1

and Proposition 6.2 gives us the following theorem.

6.3 Theorem. Let the notations be as above. Then we have

〈E|∆H,Φ〉 = iπD−
1
2 vol(Γ0(N)\H)

L(1/2, π)

L(1, χK/L)

∏
p<∞

Yp(0),

where Yp(s) is the same as in the statement of Theorem 6.1.

We get the following corollary on non-vanishing of the Petersson inner product.

6.4 Corollary. Let the notations be as above. Then, we have 〈E|∆H,Φ〉 6= 0 if and only if L(1/2, π) 6=
0 and L(1/2,BC(π)× χK/L) 6= 0.

Note that, by results of Friedberg and Hoffstein in [3], given a π, one can obtain characters χK/L
such that L(1/2,BC(π)× χK/L) 6= 0.
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