
CC Creative Commons ADAM Logo

Also available at http://adam-journal.eu

The Art of Discrete and Applied Mathematics x (xxxx) 1–x

Deterministic bootstrap percolation on trees
Robert A. Beeler , Rodney Keaton , Frederick Norwood ,

Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN, USA

Received dd mmmm yyyy, accepted dd mmmmm yyyy, published online dd mmmmm
yyyy

Abstract
In a graph, k-bootstrap percolation is a process by which an “infection” spreads

from an initial set of infected vertices, according to the rule that on each iteration
an uninfected vertex with k infected neighbors becomes infected. This process
continues until either every vertex is infected or every uninfected vertex has fewer
than k infected neighbors. We are particularly interested in the case where every
vertex is eventually infected. The cardinality of a smallest set that results in this
is the k-bootstrap percolation number of the graph. In this paper, we determine
the k-bootstrap percolation number for trees of small diameter, spiders, complete
N -ary trees, and caterpillars. For these graph families we also consider the smallest
number of iterations needed for any smallest set to spread to the entire graph.
Finally, we give an upper bound for the k-bootstrap percolation number for general
trees which improves upon previous results.
Keywords: Bootstrap Percolation,Trees
Math. Subj. Class.: 05D99,05C05

1 Introduction
Let G be a graph with vertex set V and edge set E. We define the diameter of
a graph to be the maximum distance between any pair of vertices in V and we
define the periphery of a graph to be the subgraph induced by all vertices in V
whose distance to some other vertex in V is equal to the diameter. Since we are
primarily concerned with trees, we note that any vertex on the periphery of a tree
is necessarily a leaf (in other words, a vertex of degree one).

We begin with A0
k(G) ⊆ V (G), a collection of infected vertices. On the tth

iteration we add newly infected vertices to At−1
k (G) if they have at least k neighbors

E-mail addresses: beelerr@etsu.edu (Robert A. Beeler), keatonr@etsu.edu (Rodney Keaton),
norwoodr@etsu.edu (Frederick Norwood)

CC This work is licensed under http://creativecommons.org/licenses/by/3.0/

2 Art Discrete Appl. Math. x (xxxx) #Pn

in At−1
k (G), to form At

k(G). This process is repeated until vertices not in At
k(G)

have strictly fewer than k neighbors in At
k(G) or all vertices of G are in At

k(G).
The above process is called k-bootstrap percolation. In particular, for a graph G we
are interested in the size of a smallest A0

k(G) so that the entire graph is eventually
infected. Throughout the paper, we call such a set a percolating set and we call the
size of this set, denoted bpk(G), the k-bootstrap percolation number of the graph.
Among all smallest percolating sets, there is one that infects all of the vertices of
the graph in the minimum number of iterations. We denote this minimum value
tk(G).

We would now like to give a brief (but far from complete) overview of the
history of bootstrap percolation. In 1968, Bollabás considered an edge coloring of
graphs [6] called “weak saturation,” which later came to be called “graph bootstrap
percolation” [2]. Bootstrap percolation on vertices was introduced by Chalupa,
Leath, and Reich [8]. Their study was motivated by a problem in magnetic systems
and considered only on a special class of lattices. In the paper by Chalupa et
al. and in most subsequent papers on bootstrap percolation on lattices, the initial
set of infected vertices, A0

k(G), is chosen at random. Bootstrap percolation with
A0

k(G) being chosen at random has also been considered in [1, 3, 4, 5, 7, 18, 19, 20].
Alternatively, instead of choosing our initial set randomly, we choose A0

k(G) in
order to insure that every vertex in a graph is eventually infected. While this
deterministic approach seems to be less common historically, it has been considered
in [9, 10, 12, 13, 22, 23, 24, 25] and the appendix of [4]. We should also mention that
in addition to the standard bootstrap percolation considered in this paper, there
are also several variants. For example, two-way bootstrap percolation, which has
been considered in [21, 27, 28], and the previously mentioned bootstrap percolation
on edges, which has been recently considered in [14].

In this paper, we will be primarily concerned with bootstrap percolation on
trees. One primary motivation for considering trees is that they are minimally
connected graphs. With this in mind, trees are natural to consider in the context of
the extremal values of the k-bootstrap percolation number due to the fact that every
graph has a spanning subtree. We should mention that our paper can most naturally
be considered an extension of the work of Riedl in [25]. In [25], Riedl finds upper and
lower bounds on the k-bootstrap percolation number for all trees1, and uses these
bounds to find the precise k-bootstrap percolation number for certain N -ary trees.
In this paper, we begin by obtaining exact values of the k-bootstrap percolation
number for various commonly occuring families of trees. It should be noted that we
reproduce Riedl’s formula for the k-bootstrap percolation number of certain N -ary
trees, though we use a different and more concrete method. Furthermore, our main
result improves upon the upper bound (See Theorem 5.1) appearing in [25].

In Section 2, we make some basic observations which will be used throughout
the remainder of the paper. In Section 3.1, we consider families of trees of small
diameter. In Section 3.2, we consider families of spiders. In Section 3.3, we consider
complete N -ary trees. This result is also given in [25], since in this case the upper
and lower bounds are tight, so that the ceiling of the lower bound is equal to the
floor of the upper bound. In Section 4, we consider caterpillars. In Section 5, we

1We note that the main theorem in [25] is stated incorrectly on page 3. However, it is correctly
stated in their abstract.

Art Discrete Appl. Math. x (xxxx) #Pn 3

present a sharp upper bound for bpk(T) and compare this bound to the bounds
given in [25]. In Section 6, we use this bound to give bpk(T) for the trees on eleven
vertices or less that do not fall into one of our families. Finally, we give several open
problems for future avenues of research in Section 7.

2 Basic Observations
In this section we state several fundamental results which will be useful for the
remainder of the paper.

We begin with four observations about percolating sets that hold for all graphs.

Observation 2.1. Let G be a graph. (i) All vertices of degree less than k must belong
to any percolating set for G. (ii) In k-bootstrap percolation, if u and v are adjacent
vertices such that deg(u) = deg(v) = k, then at least one of u and v must be in
every minimum k-bootstrap set.

Proof. Let v be a vertex of G with degree less than k. If v is not in a percolating
set, then v can never have at least k infected neighbors. So, v will never be infected.

Likewise, suppose that u and v are adjacent vertices of degree k. If u is not in a
percolating set, then v can never have at least k infected neighbors. Reversing the
roles of u and v yields the result.

Clearly, any percolating set for k + 1 is also a percolating set for k. Ergo, the
next proposition follows immediately from Observation 2.1.

Observation 2.2. If G is a connected graph with maximum degree ∆, then

1 = bp1(G) ≤ bp2(G) ≤ · · · ≤ bp∆+1(G) = |V (G)|.

Observation 2.3. We have bp1(G) is the number of connected components in G.

Based on Observation 2.3, we will only consider the case where k ≥ 2 for the
remainder of this paper.

To obtain an upper bound for the k-bootstrap percolation number we consider
the k-domination number of G. The neighborhood of a vertex x, denoted N(x), is
the set of all vertices adjacent to x. If |N(x)| = 1, then x is a leaf. A k-domination
set is a set S ⊆ V (G) such that for all x ∈ V (G), either x ∈ S or |N(x) ∩ S| ≥ k.
If among all k-domination sets, S has the least number of vertices, then S is a
minimum k-domination set. The cardinality of such a set is the k-domination
number of G. This number is denoted γk(G). The k-domination number was
introduced by Fink and Jacobson in 1985 [11]. For more information on domination
and its variations, please refer to [16, 17]. If A0

k(G) is equal to a k-domination set
for G, then after a single iteration the entire graph will be infected. From this, the
following bound is immediate.

Observation 2.4. For any graph G, bpk(G) ≤ γk(G).

3 Graph Families
In this section, we restrict our attention to certain families of trees for which we
can derive the exact k-bootstrap percolation number.

4 Art Discrete Appl. Math. x (xxxx) #Pn

3.1 Trees of Small Diameter

We give the k-bootstrap percolation number for all trees with diameter less than or
equal to five.

We begin with diameter two. A tree of diameter two is a star. This graph has
a center vertex x adjacent to n leaves, y1,…,yn. This graph is denoted K1,n.

Theorem 3.1. Let k ≥ 2. For the star K1,n, we have the following:

1. If n ≤ k − 1, then bpk(K1,n) = n+ 1 and tk(K1,n) = 0.

2. If n ≥ k, then bpk(K1,n) = n and tk(K1,n) = 1.

Proof. By Observation 2.1, all vertices in {y1, . . . , yn} must be in every percolating
set. If deg(x) = n ≤ k− 1, then x must also be in every percolating set and part 1)
follows. If n ≥ k, then x will get infected after one iteration and part 2) follows.

It follows from the previous theorem that the bound in Observation 2.4 is sharp.
In particular, for the star K1,k we have that bpk(K1,k) = k = γk(K1,k).

A tree of diameter three is a double star. This graph has two adjacent central
vertices x and y. The vertex x is adjacent to r leaves, x1,…,xr. The vertex y is
adjacent to s leaves, y1,…,ys. This graph is denoted Sr,s.

Theorem 3.2. Let k ≥ 2 and r ≥ s ≥ 1. For the double star T = Sr,s, we have the
following:

1. If r ≤ k − 2, then bpk(T) = r + s+ 2 and tk(T) = 0.

2. If r ≥ k − 1 and s ≤ k − 2, then bpk(T) = r + s+ 1 and tk(T) = 1.

3. If r = s = k − 1, then bpk(T) = r + s+ 1 and tk(T) = 1.

4. If r ≥ k and s = k − 1, then bpk(T) = r + s and tk(T) = 2.

5. If s ≥ k, then bpk(T) = r + s and tk(T) = 1.

Proof. By Observation 1, all leaves must be initially infected, so
bpk(T) ≥ r + s. If r ≤ k − 2, then x and y must both be initially infected, i.e.,
bpk(T) = r + s + 2 and tk(T) = 0. If r ≥ k − 1 and s ≤ k − 2, then y must be
initially infected and x is infected after one iteration, so bpk(T) = r + s + 1 and
tk(T) = 1. If r = s = k − 1 then either x or y must be initially infected, and
the other is infected after one iteration, so bpk(T) = r + s + 1 and tk(T) = 1. If
r ≥ k and s = k − 1, then x is infected after one iteration and y is infected after
two iterations, so bpk(T) = r + s and tk(T) = 2. If s ≥ k, then both x and y are
infected after one iteration, so bpk(T) = r + s and tk(T) = 1.

Any tree of diameter four can be obtained by appending leaves to the existing
vertices of K1,n, where n ≥ 2. Suppose that we append c leaves to x, namely
x1, . . . , xc and ai ≥ 1 leaves to yi, namely yi,1, . . . , yi,ai for i = 1, . . . , n. The result-
ing graph will be denoted K1,n(c; a1, . . . , an). Without loss of generality, assume
that a1 ≥ · · · ≥ an ≥ 1. An example is shown in Figure 1.

There exist non-negative integers p and q such that the following holds:

Art Discrete Appl. Math. x (xxxx) #Pn 5

xy1

y2

y3
y1,1

y1,2

y1,3

y2,1 y2,2

y3,1

x1x2 x3
x4

Figure 1: The graphs K1,3(4; 3, 2, 1) and S4,3(3; 3, 2, 1, 1; 4; 4, 2, 1)

• ai ≥ k ≥ 2 if and only if i ≤ p.
• ai = k − 1 if and only if p+ 1 ≤ i ≤ n− q.
• ai ≤ k − 2 if and only if i ≥ n− q + 1.

Thus p is the number of yi with at least k leaves and q is the number of yi with at
most k − 2 leaves.

Theorem 3.3. Let k ≥ 2. For T = K1,n(c; a1, . . . , an), we have the following:

1. If p+ q + c ≥ k, then bpk(T) = c+ a1 + · · ·+ an + q and

tk(T) =

1 if q + c ≥ k and n = p+ q
2 if q + c ≥ k and n ≥ p+ q + 1
2 if q + c ≤ k − 1 and n = p+ q
3 if q + c ≤ k − 1 and n ≥ p+ q + 1.

2. If p+ q + c ≤ k − 1, then bpk(T) = c+ a1 + · · ·+ an + q + 1 and

tk(T) =

{
0 if n = q
1 if p ≥ 1 or n ≥ p+ q + 1.

Proof. By Observation 2.1, for all i, j, and ℓ, yi,j and xℓ must be in every percolating
set. Further note that deg(yi) = ai + 1. Thus, yn−q+1,..., yn must also be in the
initial set. It follows that bpk(T) ≥ c+ a1 + · · ·+ an + q. Likewise, y1,…,yp will be
infected after one iteration since they have at least k neighbors in the initial set.
Similarly, yp+1,…,yn−q will be infected in the iteration after x is infected.

Suppose that p+ q+ c ≥ k. If q+ c ≥ k and n = p+ q, then x will be infected in
one iteration. Since, n = p+ q, then {yp+1, . . . , yn−q} = ∅. Thus, the entire graph
is infected and tk(T) = 1.

If q+c ≥ k and n ≥ p+q+1, then x is infected in one iteration and yp+1,…,yn−q

are infected in two iterations. Hence, tk(T) = 2.
If q + c ≤ k − 1 and n = p+ q, then {yp+1, . . . , yn−q} = ∅. Since p+ q + c ≥ k

but q + c ≤ k − 1, x gets infected one iteration after y1,…,yp are infected. Thus
every vertex is infected after two steps and tk(T) = 2.

Similarly, if q + c ≤ k − 1 and n ≥ p + q + 1, then {yp+1, . . . , yn−q} ̸= ∅.
Since p + q + c ≥ k but q + c ≤ k − 1, x is infected one iteration after y1,…,yp

6 Art Discrete Appl. Math. x (xxxx) #Pn

are infected. The vertices yp+1,…,yn−q are infected one iteration later. Thus every
vertex is infected after three steps and tk(T) = 3. This proves part 1).

Now, suppose that p + q + c ≤ k − 1. As before, y1,...,yp, yn−q+1,..., yn, and
x1,.., xc are either in the initial set, or (in the case of y1,...,yp) infected after one
step. Hence, x has at most k − 1 neighbors that will eventually be infected. Thus
x must be in the initial set. It follows bpk(T) ≥ c+ a1 + · · ·+ an + q + 1. Thus if
n = q, then p = 0 and every vertex must be in the initial set. Hence tk(T) = 0.

If p ≥ 1 or n ≥ p+ q + 1, then y1,…,yn−q are infected after one iteration. Thus
tk(T) = 1. This proves part 2).

Any tree of diameter five can be obtained by appending leaves to the existing
vertices of the double star. We append c1 leaves to x, namely w1,...,wc1 . We
append c2 leaves to y, namely z1,...,zc2 . Similarly, we append ai leaves to xi, namely
xi,1,...,xi,ai , and bj leaves to yj , namely yj,1,...,yj,bj . A diameter five tree with these
parameters is denoted Sr,s(c1; a1, ..., ar; c2; b1, ..., bs) (see Figure 1). Without loss of
generality, assume that a1 ≥ ... ≥ ar ≥ 1 and b1 ≥ ≥ bs ≥ 1.

For convenience of notation, define Xi = {xi,1, ..., xi,ai
} and Yj = {yj,1, ..., yj,bj}

for i = 1, ..., r and j = 1, ..., s. Note that the set of leaves is

L = {w1, ..., wc1 , z1, ..., zc2} ∪X1 ∪ · · · ∪Xr ∪ Y1 ∪ · · · ∪ Ys.

and that

|L| = c1 + c2 +

r∑
i=1

ai +

s∑
j=1

bj .

Given k ≥ 2, there exist non-negative integers p1, p2, q1, q2 such that the follow-
ing holds:

• ai ≥ k if and only if i ≤ p1.
• bj ≥ k if and only if j ≤ p2.
• ai ≤ k − 2 if and only if i ≥ r − q1 + 1.
• bj ≤ k − 2 if and only if j ≥ s− q2 + 1.

Because our result follows in a very similar manner to the proof of Theorem 3.3,
we omit the details of the proof and only provide the initial sets. In each case, it
is straightforward to verify that the set in question is a minimum percolating set.
While we have omitted the time parameter, this can easily be calculated from these
sets.

Theorem 3.4. For a given k, the k-bootstrap percolation number of
T = Sr,s(c1; a1, ..., ar; c2; b1, ..., bs) is as follows:

(i) If p1+q1+c1 ≤ k−2 and p2+q2+c2 ≤ k−2, then bpk(T) = |L|+q1+q2+2.
(ii) If p1+q1+c1 = p2+q2+c2 = k−1 or at most one of p1+q1+c1 or p2+q2+c2

is less than or equal to k − 2, then bpk(T) = |L|+ q1 + q2 + 1.
(iii) If p1+q1+c1 ≥ k−1 and p2+q2+c2 ≥ k−1, with at most one of p1+q1+c1

or p2 + q2 + c2 equaling k − 1, then bpk(T) = |L|+ q1 + q2.

Art Discrete Appl. Math. x (xxxx) #Pn 7

Proof. (i) Take the set L ∪ {xr−q1+1, ..., xr} ∪ {ys−q2+1, ..., ys} ∪ {x, y}.
(ii) If p1+q1+c1 ≤ k−2, then take the set L∪{xr−q1+1, ..., xr}∪{ys−q2+1, ..., ys}∪

{x}. If p2 + q2 + c2 ≤ k − 2, then take the set

L ∪ {xr−q1+1, ..., xr} ∪ {ys−q2+1, ..., ys} ∪ {y}.

If p1 + q1 + c1 = p2 + q2 + c2 = k − 1, then we can take L ∪ {xr−q1+1, ..., xr} ∪
{ys−q2+1, ..., ys} along with either x or y. While either x or y may be chosen, we
give the following procedure for choosing x and y which minimizes the number of
iterations needed to completely infect the graph:

Suppose that r − p1 − q1 = 0. Except for y, every neighbor of x is either in the
initial set or (in the case of x1,...xp1

) infected after one step. Thus, by including y
in the initial set, we guarantee that every vertex is infected after one step (if p1 = 0)
or two steps (if p1 ≥ 1). As either x or y will not be in the initial set, this gives us
the minimum number of iterations. Using an analogous argument, if s−p2−q2 = 0,
then we include x in the initial set.

Suppose that r − p1 − q1 ≥ 1 and s − p2 − q2 ≥ 1. Note that this means
that {xp1+1, ..., xr−q1} and {yp2+1, ..., ys−q2} are non-empty sets. These sets are
infected one step after their corresponding center vertex. If p1 = 0, then choosing
y guarantees that x is infected on the first step and every vertex is infected in two.
Note that choosing x in the case where r − p1 − q1 ≥ 1, s − p2 − q2 ≥ 1, p1 = 0,
and p2 ≥ 1 will result in {yp2+1, ..., ys−q2} becoming infected after three iterations.
Using an analogous argument, if r − p1 − q1 ≥ 1, s− p2 − q2 ≥ 1, and p2 = 0, then
we choose x for our initial set.

Suppose that r−p1− q1 ≥ 1, s−p2− q2 ≥ 1, p1 ≥ 1, and p2 ≥ 1. By choosing x
to be in our initial set, x1,...,xr−q1 , y1,...,yp2 are infected after one step, y is infected
on the second iteration, and yp2+1,...,ys−q2 are infected in three steps. By reversing
the roles of x and y, we see that we do no better by choosing y to be in the initial
set.

(iii) Choose L ∪ {xr−q1+1, ..., xr} ∪ {ys−q2+1, ..., ys} as our initial set.

3.2 Spiders

In this section, we consider bootstrap percolation on spiders, which are also com-
monly referred to as asters or starlike trees. Let x1, . . . , xe, y1, . . . , yo be positive
integers with xi even for 1 ≤ i ≤ e and yj odd for 1 ≤ j ≤ o. We construct a spider,
denoted by S = S(x1, . . . , xe, y1, . . . , yo), as follows. First, S has a single vertex
of degree larger than 2, which we denote by c. We then add an edge from c to a
single leaf from each of the paths Pxi , Pyj for 1 ≤ i ≤ e, 1 ≤ j ≤ o. Note that for
k ≥ 3, the k-bootstrap percolation number is straightforward to determine using
Observation 2.1. However, we include it for completeness.
Proposition 3.5. Suppose k ≥ 3 and let S be as above. Then,

bpk(S) =

{ ∑e
i=1 xi +

∑o
j=1 yj + 1 if e+ o ≤ k − 1∑e

i=1 xi +
∑o

j=1 yj if e+ o ≥ k,

and
tk(S) =

{
0 if e+ o ≤ k − 1
1 if e+ o ≥ k.

8 Art Discrete Appl. Math. x (xxxx) #Pn

We now proceed to determine the 2-bootstrap percolation number for S, which
is somewhat more involved than the previous result.

Theorem 3.6. Let S = S(x1, . . . , xe, y1, . . . , yo). Then,

bp2(S) =

∑e

i=1
xi

2 + 1 o = 0∑e
i=1

xi

2 + y1+1
2 + 1 o = 1∑e

i=1
xi

2 +
∑o

j=1
yj+1
2 o ≥ 2,

and
t2(S) =

{
2 o ≥ 2, e ≥ 1
1 otherwise.

Proof. First, we must initially infect all leaves of S. Second, for each path attached
to the center vertex, we initially infect every other vertex starting from the leaf.
Note that this will completely infect each odd length path after one step.

Case 1: o ≥ 2.
In this case, the initially infected vertices given above also infect the center

vertex c after one step. Note, if e = 0, then we are finished.
Now, suppose that e ≥ 1. Then, after one step each even length path will have

one infected end point and the other end point will be attached to the infected center
vertex. Thus, the entire graph is infected after two steps. Therefore,

∑e
i=1

xi

2 +∑o
j=1

yj+1
2 vertices are initially infected. If we initially infect fewer than this number

vertices, then there will be either a leaf or a vertex of degree two which is never
infected. This yields the result in this case.

Case 2: o ≤ 1.
In this case, the initially infected vertices will not infect the center vertex c.

Thus, we must initially infect one additional vertex, and we see that initially in-
fecting c will ensure that all vertices of the even length paths are infected after one
step. Then

∑e
i=1

xi

2 +
∑o

j=1
yj+1
2 + 1 are initially infected and this is the smallest

possible percolating set. This yields the result in this case.

3.3 N -ary trees

In this section we consider N -ary trees and give a formula for the k-bootstrap
percolation number of a complete N -ary tree.

For N ≥ 1, we say that a tree T is an N -ary tree of height h if T is a rooted
tree in which each vertex has no more than N children and no child can be further
than distance h from the root. Note that when N = 1, a N -ary tree of height h is
simply a path on h+ 1 vertices. For example, the path P2 is a 1-ary tree of height
h = 1. With this in mind we begin with the following result.

Theorem 3.7. For a path on n vertices, Pn, we have

bpk(Pn) =

{
⌈n+1

2 ⌉ if k = 2
n if k ≥ 3,

and
tk(Pn) =

{
1 if k = 2 and n ≥ 3
0 if k ≥ 3 or n = 1 or n = 2.

Art Discrete Appl. Math. x (xxxx) #Pn 9

Figure 2: The complete binary tree, T2,3

Proof. First, suppose that k ≥ 3. Then, the degree of each vertex of Pn is less than
k. By Observation 2.1, a percolating set for Pn contains every vertex of Pn. So
bpk(Pn) = n.

Second, suppose that k = 2. Note, if A0
2(Pn) ⊆ V (Pn) is of size ⌈n+1

2 ⌉ − 1,
then there must be a vertex in V (Pn)\A0

2(Pn) which does not have two neighbors
in A0

2(Pn). Such a vertex would never be infected. Thus, a percolating set has
cardinality at least ⌈n+1

2 ⌉.
Now, label the vertices of Pn by {v1, . . . , vn}. Define the following subset of

V (Pn),

A0
2(Pn) =

{
{v1, v3, . . . , vn−3, vn−1, vn} if n ≡ 0 (mod 2)
{v1, v3, . . . , vn−2, vn} if n ≡ 1 (mod 2).

Note, |A0
2(Pn)| = ⌈n+1

2 ⌉. Furthermore, it is clear that after a single iteration, every
vertex of Pn will be infected. Thus, bpk(Pn) = ⌈n+1

2 ⌉ and tk(Pn) = 1 if n ≥ 3.

We now consider the case where N > 1. An N -ary tree is complete if every
vertex has either 0 or N children and all leaves are distance h from the root. Note,
for fixed N and h, there is one complete N -ary tree of height h. We denote this
graph TN,h. A complete 2-ary tree (also called a binary tree) of height three is given
in Figure 2.

Furthermore, we have that the number of vertices of TN,h is

|V (TN,h)| =
h∑

i=0

N i =
Nh+1 − 1

N − 1
,

and the number of leaves is Nh. For convenience, we will denote the root vertex of
TN,h by v0, the set of children of v0 by S1, and so on until we have that set of all
leaves of TN,h is denoted Sh. We now present the main result of this section.

Theorem 3.8. Let k,N ≥ 2. Then,

bpk(TN,h) =

Nh if k ≤ N
Nh+2−1
N2−1 if k = N + 1, h ≡ 0 (mod 2)

Nh+2−1
N2−1 + N

N+1 if k = N + 1, h ≡ 1 (mod 2)
Nh+1−1
N−1 if k ≥ N + 2,

10 Art Discrete Appl. Math. x (xxxx) #Pn

and

tk(TN,h) =

 h if k ≤ N
1 if k = N + 1
0 if k ≥ N + 2.

Proof. First, suppose that k ≤ N . By Observation 2.1, each leaf must be in
A0

k(TN,h), i.e., Sh ⊆ A0
k(TN,h), so bpk(TN,h) ≥ Nh. Furthermore, since each non-

leaf has N children, we see that after one iteration all of the vertices in Sh−1 will
be infected, after a second iteration all of the vertices in Sh−2 will be infected, and
the process repeats h times until the entire tree is infected. Hence, we have only
the leaves in A0

k(TN,h), so bpk(TN,h) = Nh and tk(TN,h) = h.
Second, suppose that k ≥ N +2. Then, every vertex of TN,h has degree strictly

less than k, hence every vertex of TN,h must be in A0
k(TN,h). Since |V (TN,h)| =

Nh+1−1
N−1 , the result follows.

Finally, suppose that k = N + 1. Since every vertex of degree strictly less than
k must be in A0

k(TN,h), we have Sh ∪ {v0} ⊆ A0
k(TN,h). We begin by proving that

bpk(TN,h) ≤

{
Nh+2−1
N2−1 if h ≡ 0 (mod 2)

Nh+2−1
N2−1 + N

N+1 if h ≡ 1 (mod 2).

Suppose that h is even. Let A0
k(TN,h) = Sh ∪Sh−2 ∪ · · · ∪S2 ∪{v0}. Then, after

a single iteration we have that every vertex in TN,h is infected. Thus,

bpk(TN,h) ≤ |A0
k(TN,h)| =

h
2∑

i=0

|S2i| =
h
2∑

i=0

N2i =
Nh+2 − 1

N2 − 1
.

Suppose that h is odd. Let A0
k(TN,h) = Sh ∪ Sh−2 ∪ · · · ∪ S3 ∪ S1 ∪ {v0}. Then,

after a single iteration we have that every vertex in TN,h is infected. Thus,

bpk(TN,h) ≤ 1 +

h−1
2∑

i=0

|S2i+1| = 1 +

h−1
2∑

i=0

N2i+1 =
Nh+2 − 1

N2 − 1
+

N

N + 1
.

We want to show that the set A0
k(TN,h) above has the smallest possible size.

Every edge can be used at most once to infect a neighboring vertex, and at least
N + 1 edges must be used to infect one vertex. The number of edges in T (N,h) is
Nh+1−1
N−1 − 1 = Nh+1−N

N−1 , therefore at most ⌊Nh+1−N
N−1

1
N+1⌋ = ⌊Nh+1−N

N2−1 ⌋ new vertices
can be infected. Therefore the cardinality of the percolating set must be at least
Nh+1−1
N−1 − ⌊Nh+1−N

N2−1 ⌋. If h is even, then Nh+1−N
N2−1 = N

∑h
2 −1
i=0 N2i is an integer, and

this lower bound on the size of the k-bootstrap set equals the upper bound above.
If h is odd, then Nh+1−N

N2−1 = N
∑h−3

2
i=0 N2i+1 + N

N+1 is not an integer. In this case,
taking the floor reduces the total by N

N+1 , again giving a lower bound which equals
the upper bound above.

Therefore, the given example of a percolating set is minimum.

Recall that in Observation 2.4, we showed that bpk(G) ≤ γk(G). To see that
γk(G)− bpk(G) can be made arbitrarily large, consider Tk,h, where h is sufficiently

Art Discrete Appl. Math. x (xxxx) #Pn 11

v0,1 v0,2 v0,3 v2,1 v2,2

v0
v1 v2 v3

v0,4 v0,5 v0,6 v1,1 v2,3 v2,4 v3,2 v3,3

v3,1

Figure 3: The caterpillar P4(6, 1, 4, 3)

large. As shown in Theorem 3.8, bpk(Tk,h) = kh. However,

γk(Tk,h) =

⌊h/2⌋∑
i=0

kh−2i =

{
kh+2−1
k2−1 h ≡ 0 (mod 2)

kh+2−1
k2−1 + k

k+1 − 1 h ≡ 1 (mod 2).

To see this, note that a k-domination set of minimum size must contain the leaves
of the tree and every vertex that is of even distance from its closest leaf. Hence as
h increases, this difference becomes arbitrarily large. It is interesting to note that
γk(Tk,h) = bpk+1(Tk,h) when h is even and γk(Tk,h) + 1 = bpk+1(Tk,h) when h is
odd. This shows that the difference bpk+1(G)− bpk(G) in Observation 2.2 can be
made arbitrarily large.

4 Caterpillars
In this section, we give a closed formula for the k-bootstrap percolation number of
a caterpillar. A caterpillar is obtained from the path on r vertices by appending
leaves to the existing vertices of the path. The vertices of the original path, which
are called the spine of the caterpillar, are labeled v1,…,vr in the natural way, and
we call r the spine length. We append xi leaves to vi for 1 ≤ i ≤ r. The caterpillar
with parameters r, x1,…,xr will be denoted Pr(x1, . . . , xr) (see Figure 3). Without
loss of generality, we will assume that for i ∈ {1, r}, xi ≥ 1.

For the caterpillar C = Pr(x1, . . . , xr), our initial percolating set must contain
every vertex of degree less than k by Observation 2.1. Thus for k ≥ 2, this set must
contain every leaf. Further, it must contain all vi such that xi ≤ k−3 for 1 ≤ i ≤ r.
Likewise, if x1 ≤ k − 2, then v1 is in the set. Similarly, if xr ≤ k − 2, then vr is in
the set. Note that if xi ≥ k, then vi will not be included in our percolating set as
these vertices will be infected after one step.

The above discussion tells us nothing about the following vertices:

• v1 if x1 = k − 1.
• vr if xr = k − 1.
• vi if xi ∈ {k − 2, k − 1} and 2 ≤ i ≤ r − 1.

We call these vertices sensitive. We partition the sensitive vertices into two sets, S1

and S2, as follows. We let S1 consist of all vi satisfying xi = k − 1 and 1 ≤ i ≤ r.
We let S2 consist of all vi satisfying vi = k − 2 and 2 ≤ i ≤ r − 1.

12 Art Discrete Appl. Math. x (xxxx) #Pn

Consider the subgraph induced by S1 ∪ S2. Label the connected components of
this subgraph L1,…,Lm. We call these connected components sensitive strings. By
definition, two sensitive strings are separated by at least one vertex whose inclusion
in the initial set is decided according to the above discussion. For this reason, we
may consider each sensitive string individually. Our goal for each sensitive string is
to determine the minimum number of vertices to include in our initial set so that
the entire string is eventually infected. We denote this number w(Li) for 1 ≤ i ≤ m.

Lemma 4.1. Let k ≥ 2, let C = Pr(x1, . . . , xr) be a caterpillar, L1, . . . , Lm be the
sensitive strings in C, and w(Li) for 1 ≤ i ≤ m be as above. Then, for 1 ≤ i ≤ m
we have

1. If v1 /∈ V (Li) and vr /∈ V (Li), then

w(Li) =

⌊
|V (Li) ∩ S2|

2

⌋
.

2. If v1 ∈ V (Li) or vr ∈ V (Li) but {v1, vr} ̸⊆ V (Li), then

w(Li) =

⌊
1 + |V (Li) ∩ S2|

2

⌋
.

3. If v1 ∈ V (Li) and vr ∈ V (Li), then

w(Li) =

⌊
2 + |V (Li) ∩ S2|

2

⌋
.

Proof. Let 1 ≤ i ≤ m be fixed and let S = V (Li) ∩ S2 = {s1, ..., st} be a sequence.
To prove part 1), we choose for A0

k(C) every other sj beginning with s2. It is nec-
essary to initially infect every other vertex in S because if two vertices in S are not
initially infected, they must have an infected vertex between them by Observation
2.1. We choose to begin with s2 because S is flanked by vertices that are either
initially infected or will eventually become infected. Now, consider a connected
component of the subgraph induced by V (Li) ∩ S1. In Case 1, where Li contains
no endpoint of the spine, if this component of S1 lies to the left of s1 or to the
right of st it will be eventually infected by the vertex to its left (right). If, on the
other hand, it lies between two connected components of S then either the sj to its
left or the sj to its right will have an even subscript and eventually infect all of its
vertices2. This establishes part 1).

To prove part 2), we assume without loss of generality that v1 ∈ V (Li) and
vr /∈ V (Li). Note that Li is adjacent on the right to a vertex w which is either
in our initial set or will be infected eventually. Hence, our result will follow in a
similar manner to the proof of part 1). However, the appropriate set of vertices to
include from S is now

S′ =

{
{s1, s3, . . . , st−1} if t ≡ 0 (mod 2)
{s1, s2, s4 . . . , st−1} if t ≡ 1 (mod 2).

2If the size of S is even, then we could just as well have initially infected the sj with odd
subscripts. If the size of S is odd, then initially infecting the si with even subscripts is necessary
for the number of initially infected vertices to be minimum.

Art Discrete Appl. Math. x (xxxx) #Pn 13

Note that this gives us the desired result of

w(Li) =

⌊
1 + |V (Li) ∩ S2|

2

⌋
.

As for part 3), note that if v1 ∈ V (Li) and vr ∈ V (Li), then the entire spine is
a sensitive string. Hence, our result will follow in a similar manner to the proof of
part 1). However, the appropriate set of vertices to include from V (Li)∩ S2 is now

S′ =

{
{s1, s3, . . . , st−1, st} if t ≡ 0 (mod 2)
{s1, s3, . . . , st} if t ≡ 1 (mod 2).

Note that this gives us the desired result of

w(Li) =

⌊
2 + |V (Li) ∩ S2|

2

⌋
.

The final remaining case is when the entire spine of the caterpillar is in S1, so
that m = 1 and S is empty. In this case, we choose the middle vertex (or one of
the two middle vertices) in S1 to include in the initially infected set. The formula
in part 3) gives the correct weight of the spine as 1.

Combining Observation 2.1 and Lemma 4.1, we obtain the main result of this
section. Note that a caterpillar with spine length one is a star. The k-bootstrap
percolation number of such a caterpillar was given in Theorem 3.1. For this reason,
we assume that r ≥ 2. For convenience of exposition, we let d≤ℓ(C) denote the
number of vertices in C of degree less than or equal to ℓ.

Theorem 4.2. Let k ≥ 2 and let C = Pr(x1, . . . , xr) with r ≥ 2. Let L1,…,Lm be
the sensitive strings in C. For each Li we let w(Li) be as above. The k-bootstrap
percolation number of the caterpillar is

bpk(C) =

m∑
i=1

w(Li) + d≤k−1(C).

Proof. This is a straightforward combination of Observation 2.1 and Lemma 4.1.

Note that a double star is a caterpillar with a spine of length two, so this gives
an alternate proof of Theorem 3.2. Moreover, we can use the above result to show
that the bound from Observation 2.4 is sharp. Consider the caterpillar Pn(t, . . . , t),
where k ≥ 4 and t ≤ k − 3. Every vertex has degree less than k. Hence, every
vertex must be in a k-domination set and in a percolating set. We also mention
that we omit the time parameter in this setting due to the length and tedium of
the required calculation as well as the complexity of the resulting formula.

14 Art Discrete Appl. Math. x (xxxx) #Pn

5 An Upper Bound
In this section we present a sharp upper bound for the k-bootstrap percolation
number of a tree. We then compare this bound to other known bounds.

Before stating the theorem, we define the following notation. Recall that d≤k(T)
is the number of vertices in T of degree less than or equal to k. Similarly, we let
dk(T) be the number of degree k vertices in T , and we let d≥k(T) be the number
of vertices in T of degree greater than or equal to k. Furthermore, for a vertex
s ∈ V (T), we set ℓ(s) to be the number of leaves adjacent to s.

Theorem 5.1. Let T be a tree and k ≥ 2. Then, bpk(T) ≤ d≤k−1(T) +
⌊
dk(T)

2

⌋
.

Proof. We proceed by induction on n, the number of vertices of the tree T .
Up to isomorphism, there is only one tree on two vertices and one tree on three

vertices. The result is easily verified in both cases.
Suppose for induction that the result is true for all trees with at most n vertices.
Let T be a tree with n+1 vertices and choose a leaf v ∈ V (T) on the periphery

of T with unique neighbor s. As shown in Theorem 3.1, this result holds for stars.
For this reason, we will assume that T is not a star. Note, since v is on the periphery
and T is not a star, we have that deg(s) = ℓ(s) + 1. We now consider several cases.

Case 1: ℓ(s) ≤ k − 2 or ℓ(s) ≥ k + 1.
In this case, we remove the leaf v from T and denote the resulting tree T ′. Note,

d≤k−1(T
′) = d≤k−1(T) − 1 and dk(T

′) = dk(T). By the induction hypothesis, T ′

has a percolating set, denoted S, of cardinality at most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− 1 +

⌊
dk(T)

2

⌋
.

Thus, S ∪ {v} eventually infects all of T and has cardinality at most d≤k−1(T) +⌊
dk(T)

2

⌋
.

Case 2: ℓ(s) = k − 1 and dk(T) is even.
In this case, we remove the leaf v from T and denote the resulting tree T ′. Note,

d≤k−1(T
′) = d≤k−1(T) and dk(T

′) = dk(T)− 1 since the degree of s in T is k and
has been decreased by one in T ′. By the induction hypothesis, T ′ has a percolating
set, denoted S, of cardinality at most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T) +

⌊
dk(T)− 1

2

⌋
= d≤k−1(T) +

⌊
dk(T)

2

⌋
− 1,

where we have used that dk(T) is even in the second equality. Thus, S ∪ {v}
eventually infects all of T and has cardinality at most d≤k−1(T) +

⌊
dk(T)

2

⌋
.

Case 3: ℓ(s) = k − 1 and dk(T) is odd.
First, we label the leaves of s by L = {v = v1, v2, . . . , vk−1}. Furthermore, let

t ∈ V (T) be a non-leaf with st ∈ E(T), which is possible since T is not a star. We
now remove s and its k − 1 adjacent leaves from T to obtain a tree T ′.

Art Discrete Appl. Math. x (xxxx) #Pn 15

If deg(t) ≤ k − 1 or deg(t) ≥ k + 2 in T , then d≤k−1(T
′) = d≤k−1(T)− (k − 1)

and dk(T
′) = dk(T)−1. This follows because we have removed k−1 leaves, a vertex

of degree k, and decreased the degree of t by one. Then, T ′ has a percolating set,
denoted S, of cardinality at most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− (k − 1) +

⌊
dk(T)− 1

2

⌋
= d≤k−1(T)− (k − 1) +

⌊
dk(T)

2

⌋
,

where we have used that dk(T) is odd in the second equality. Note, t ∈ S, and hence
S ∪ L eventually infects all of T and has cardinality at most d≤k−1(T) +

⌊
dk(T)

2

⌋
.

If deg(t) = k, then d≤k−1(T
′) = d≤k−1(T)−(k−2) and dk(T

′) = dk(T)−2. This
follows because we have removed k − 1 leaves, a vertex of degree k, and decreased
the degree of t by one. Then, T ′ has a percolating set, denoted S, of cardinality at
most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− (k − 2) +

⌊
dk(T)− 2

2

⌋
= d≤k−1(T)− (k − 1) +

⌊
dk(T)

2

⌋
.

Note, t ∈ S, and hence S ∪L eventually infects all of T and has cardinality at most
d≤k−1(T) +

⌊
dk(T)

2

⌋
.

If deg(t) = k+1, then d≤k−1(T
′) = d≤k−1(T)−(k−1) and dk(T

′) = dk(T). This
follows because we have removed k − 1 leaves, a vertex of degree k, and decreased
the degree of t by one. Then, T ′ has a percolating set, denoted S, of cardinality at
most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− (k − 1) +

⌊
dk(T)

2

⌋
.

Note, as S eventually infects all of T ′, we have that t will eventually be infected,
and hence S ∪L eventually infects all of T and has cardinality at most d≤k−1(T)+⌊
dk(T)

2

⌋
.

Case 4: ℓ(s) = k and dk(T) is even.
In this case, we remove the leaf v from T and denote the resulting tree T ′. Note,

d≤k−1(T
′) = d≤k−1(T) − 1 and dk(T

′) = dk(T) + 1 since the degree of s in T is
k + 1 and has been decreased by one in T ′. By the induction hypothesis, T ′ has a
percolating set, denoted S, of cardinality at most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− 1 +

⌊
dk(T) + 1

2

⌋
= d≤k−1(T)− 1 +

⌊
dk(T)

2

⌋
,

where we have used that dk(T) is even in the second equality. Thus, S ∪ {v}
eventually infects all of T and has cardinality at most d≤k−1(T) +

⌊
dk(T)

2

⌋
.

16 Art Discrete Appl. Math. x (xxxx) #Pn

Case 5: ℓ(s) = k and dk(T) is odd.
In this case, we remove two leaves from T , say v and w, which are both supported

by s, and denote the resulting tree T ′. Note, d≤k−1(T
′) = d≤k−1(T) − 1 and

dk(T
′) = dk(T) since the degree of s in T is k+1 and has been decreased by two in

T ′. By the induction hypothesis, T ′ has a percolating set, denoted S, of cardinality
at most

d≤k−1(T
′) +

⌊
dk(T

′)

2

⌋
= d≤k−1(T)− 1 +

⌊
dk(T)

2

⌋
.

Note, s ∈ S since deg(s) = k − 1 in T ′. Thus, (S ∪ {v, w})\{s} eventually infects
all of T and has cardinality at most d≤k−1(T) +

⌊
dk(T)

2

⌋
.

In all cases we have shown that T has a percolating set of cardinality at most
d≤k−1(T) +

⌊
dk(T)

2

⌋
, and hence bpk(T) ≤ d≤k−1(T) +

⌊
dk(T)

2

⌋
. The proof follows

by induction.

We now make a few observations concerning the above bound.

1. The above bound is sharp for paths when k = 2 and for the family of cater-
pillars of the form Pn(k − 2, k − 2, . . . , k − 2, k − 2), where k ≥ 3.

2. We can make the difference d≤k−1(T) +
⌊
dk(T)

2

⌋
− bpk(T) arbitrarily large

using the family of caterpillars Pn(k, k − 2, k, k − 2, . . . , k − 2, k).

3. For a connected graph G, we can remove edges from G to obtain a spanning
tree T of G. Then the inequality bpk(G) ≤ bpk(T) combined with the above
upper bound gives an upper bound for bpk(G).

We conclude this section by comparing our above result with the bounds ob-
tained by Riedl in [25]. The upper and lower bounds for bpk(T) given by Riedl can
be found in Proposition 3 (lower bound) and Theorem 4 (upper bound) of [25] and
are given by

(k − 1)n+ 1

k
≤ bpk(T) ≤

kn+ d≤k−1(T)

k + 1
, (5.1)

where n is the order of the tree and d≤k−1(T) is defined before the statement of
Theorem 5.1. It should be noted that our quantity bpk(T) is denoted in [25] as
m(T, k). Moreover, the upper bound given in [25] is actually an upper bound for a
different, but larger, quantity than bpk(T).

We first mention that following the statement of Proposition 3 in [25], Riedl
mentions that for k = 2 his bound is sharp for odd length paths, and for k > 2 his
lower bound is sharp for complete k-ary trees and complete k − 1-ary trees. Note,
this is precisely the cases of Theorem 3.8 with k = N,N + 1.

With regards to the bound in Theorem 5.1, we have that this is equal to the
lower bound in Equation 5.1 for paths of odd length when k = 2. Moreover, by
writing n = d≤k−1(T) + d≥k(T), we can rewrite the upper bound in Equation 5.1
as

bpk(T) ≤ d≤k−1(T) +
kd≥k(T)

k + 1
.

As d≥k(T) ≥ dk(T) and k > 1 we have

Art Discrete Appl. Math. x (xxxx) #Pn 17

d≤k−1(T) +
kd≥k(T)

k + 1
≥ d≤k−1(T) +

kdk(T)

k + 1
≥ d≤k−1(T) +

⌊
dk(T)

2

⌋
,

which is precisely the upper bound in Theorem 5.1. Hence, Theorem 5.1 gives an
improvement upon the upper bound in [25].

6 Trees of Small Order
In this section, we use the above results to complete the characterization of trees
on eleven vertices or less. Throughout, we denote such a tree by T .

There are 201 non-isomorphic trees on ten vertices or less (see Harary [15] or
Steinbach’s “Field Guide to Simple Graphs” [26]). All but seven of these can be
classified as spiders, caterpillars, or trees of diameter at most five. These seven trees
all have degree sequence [3, 3, 2, 2, 2, 2, 1, 1, 1, 1]. Riedl’s lower bound (Equation 5.1)
shows that the 2-bootstrap percolation number satisfies bp2(T) ≥ 6. The bound
given in Theorem 5.1 shows that bp2(T) ≤ 6. Therefore, bp2(T) = 6 and t2(T) ≤ 2
in these cases. Except for the four cases in which the two vertices of degree three
are adjacent, we have that bp3(T) = 8 and t3(T) = 1. In the four cases in which the
two vertices of degree three are adjacent, we have that bp3(T) = 9 and t3(T) = 1
by Observation 2.1.

As for the 235 non-isomorphic trees on eleven vertices, all but 42 of these can
be classified as spiders, caterpillars, or trees of diameter at most five. Note that
Riedl’s lower bound guarantees that bp2(T) ≥ 6 and bp3(T) ≥ 8.

Fifteen of these have degree sequence [3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1]. In these cases,
the bound given in Theorem 5.1 shows that bp2(T) ≤ 6. Hence bp2(T) = 6. The
trivial lower bound given by Observation 2.1 shows that bp3(T) ≥ 9 while the bound
given in Theorem 5.1 shows that bp3(T) ≤ 10. It is straightforward to check that
bp3(T) = 9 for these trees if and only if their two vertices of degree three are not
adjacent. Otherwise, we have that bp3(T) = 10.

Thirteen of these have degree sequence [3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1]. Again, the
bound given in Theorem 5.1 shows that bp2(T) ≤ 6. Combining this with Riedl’s
lower bound yields bp2(T) = 6. Further, due to Riedl and Theorem 5.1, we have
that 8 ≤ bp3(T) ≤ 9. Of these, only one has no two vertices of degree three
adjacent. Therefore, bp3(T) = 8 in this case. For the remaining twelve, bp3(T) = 9
due to Observation 2.1.

The fourteen remaining trees have degree sequence [4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1].
Combining Riedl’s bound with Theorem 5.1 yields 6 ≤ bp2(T) ≤ 7. It is straight-
forward to check that eight of these have bp2(T) = 6 and the remaining six have
bp2(T) = 7. Note that the trivial lower bound and Theorem 5.1 guarantee that
bp3(T) = 9. Observation 2.1 shows that bp4(T) = 10 in all of these cases.

7 Open Problems
In this section, we give open problems related to this study as possible avenues for
future research.

Suppose that we want every vertex to be infected within t iterations. Among
all k-bootstrap sets that will infect the graph within t iterations, choose one with

18 Art Discrete Appl. Math. x (xxxx) #Pn

minimum cardinality. What is the cardinality of such a set?
Suppose that we limit the size of the initial set. What is the maximum number

of vertices that can be infected? How is this maximum changed if we also limit the
number of iterations?

References
[1] J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory

and Related Fields 134 (2006), 624–648.

[2] J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for
bootstrap percolation in all dimensions, Trans. Amer. Math. Soc. 364 (2012), 2667–
2701.

[3] J. Balogh, Y. Peres and G. Pete, Bootstrap percolation on infinite trees and non-
amenable groups, Combin. Probab. Comput. 15 (2006), 715–730.

[4] J. Balogh and G. Pete, Random disease on the square grid, Random Struct. Algor.
13 (1998), 409–422.

[5] J. Balogh and B. G. Pittel, Bootstrap percolation on the random regular graph,
Random Struct. Algor. 30 (2007), 257–286.

[6] B. Bollobás, Weakly k-saturated graphs, Beiträge zur graphentheorie (Kolloquium,
Manebach, 1967) (1968), 25–31.

[7] B. Bollobás, The art of mathematics: Coffee time in Memphis, Cambridge Univ.
Press, 2006.

[8] J. Chalupa, P. L. Leath and G. R. Reich, Bootstrap percolation on a Bethe lattice,
J. Phys. C 12 (1979), L31–L35.

[9] A. Coja-Oghlan, U. Feige, M. Krivelevich and D. Reichman, Contagious sets in ex-
panders, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, PA, 2015 pp. 1953–1987.

[10] U. Feige, M. Krivelevich and D. Reichman, Contagious sets in random graphs, Ann.
Appl. Probab. 27 (2017), 2675–2697.

[11] J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden sub-
graphs, in: Graph theory with applications to algorithms and computer science,
Wiley, New York, pp. 301–311, 1985.

[12] D. Freund, M. Poloczek and D. Reichman, Contagious sets in dense graphs, European
J. Combin. 68 (2018), 66–78.

[13] K. Gunderson, Minimum degree conditions for small percolating sets in bootstrap
percolation, Electron. J. Combin. 27 (2020).

[14] L. Hambardzumyan, H. Hatami and Y. Qian, Lower bounds for graph bootstrap
percolation via properties of polynomials, J. Combin. Theory Ser. A 174 (2020),
105253, 12.

[15] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo
Park, Calif.-London, 1969.

[16] T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Domination in graphs:
Advanced topics, volume 209 of Monographs and Textbooks in Pure and Applied
Mathematics, Marcel Dekker, Inc., New York, 1998.

Art Discrete Appl. Math. x (xxxx) #Pn 19

[17] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in
graphs, volume 208 of Monographs and Textbooks in Pure and Applied Mathematics,
Marcel Dekker, Inc., New York, 1998.

[18] A. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation,
Probab. Theory Related Fields 125 (2003), 195–224.

[19] S. Janson, On percolation in random graphs of given vertex degrees, Electron. J.
Probab. 14 (2009), 87–118.

[20] S. Janson, T. Łuczak, T. Turova and T. Vallier, Bootstrap percolation on the random
graph GN,P , Ann. Appl. Probab. 22 (2012), 1989–2047.

[21] C. Jeger and A. Zehmakan, Dynamic monopolies in two-way bootstrap percolation,
Discrete Appl. Math. 262 (2019), 116–126.

[22] R. Morris, Minimal percolating sets in bootstrap percolation, Electron. J. Combin.
16 (2009), Paper 2, 20.

[23] N. Morrison and J. Noel, Extremal bounds for bootstrap percolation in the hypercube,
J. Comb. Theory. A 156 (2018), 61–84.

[24] D. Reichman, New bounds for contagious sets, Discrete Math. 312 (2012), 1812–1814,
doi:10.1016/j.disc.2012.01.016.

[25] E. Riedl, Largest and smallest minimal percolating sets in trees, Electron. J. Combin.
19 (2012), #P64.

[26] P. Steinbach, Field guide to simple graphs, 1990.
[27] A. Zehmakan, Target set in threshold models, Acta Math. Univ. Comenian. (N.S.)

88 (2019), 1079–1086.
[28] A. Zehmakan, Tight bounds on the minimum size of a dynamic monopoly, in: Lan-

guage and automata theory and applications, Springer, Cham, volume 11417 of Lec-
ture Notes in Comput. Sci., pp. 381–393, 2019.

