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Abstract

Let G be a connected simple graph with vertex set V and a distribution of pebbles
on V . The domination cover rubbling number of G is the minimum number of
pebbles, so that no matter how they are distributed, it is possible that after a sequence
of pebbling and rubbling moves, the set of vertices with pebbles is a dominating
set of G. We begin by characterizing the graphs having small domination cover
rubbling numbers and determining the domination cover rubbling number of several
common graph families. We then give a bound for the domination cover rubbling
number of trees and characterize the extremal trees. Finally, we give bounds for the
domination cover rubbling number of graphs in terms of their domination number
and characterize a family of the graphs attaining this bound.

Keywords: Graph pebbling; Graph rubbling; Domination cover pebbling; Domination
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1 Introduction
Let G be a connected simple graph with vertex set V and a distribution of pebbles on
the vertices of V . A placement of pebbles on the vertices such that each vertex of V is
assigned a non-negative integer number of pebbles is called a pebble distribution on G. Two
moves, namely a pebbling move and a rubbling move, are defined as follows. Let f be a
pebble distribution on a graph G such that f(u) ≥ 2 for some vertex u ∈ V , and let v be
adjacent to u. Then a pebbling move, denoted p(u→ v), removes two pebbles from u and
places one on v. This defines a new pebble distribution, f ′ such that: f ′(u) = f(u) − 2,
f ′(v) = f(v) + 1, and f ′(z) = f(z) for z ∈ V − {u, v}. Let w be a vertex of G, and
let v and x be distinct vertices adjacent to w. Let f be a pebble distribution such that
f(v) ≥ 1 and f(x) ≥ 1. Then a rubbling move, denoted r(v, x → w), removes one pebble
from each of v and x and places one pebble on w. This defines a new pebble distribution
f ′ such that: f ′(v) = f(v) − 1, f ′(x) = f(x) − 1, f ′(w) = f(w) + 1, and f ′(z) = f(z) for
z ∈ V − {v, w, x}. A vertex v is reachable if there is a way to place a pebble on v using a
sequence of pebbling and rubbling moves.

In graph pebbling, which preceded graph rubbling, only the pebbling move is allowed;
while in graph rubbling both pebbling and rubbling moves are available. According to
Hurlbert [?], Lagarias and Saks first introduced graph pebbling as an approach to a problem
in number theory. In 1989, Chung’s [?] results on pebbling the n-cube were used to give
a proof to the theorem originally proposed by Lagarias and Saks. Graph rubbling was
introduced in [?] and studied for example in [?, ?].

Crull et al.[?] introduced the concept of cover pebbling. The cover pebbling number
of a graph G is the minimum number of pebbles needed so that from any initial pebble
distribution, after a series of pebbling moves, it is possible to have at least one pebble on
every vertex of G. Gardner et al. [?] considered a version of cover pebbling where it is not
necessary to “cover” every vertex of G, just the vertices in a dominating set. A set S is a
dominating set of G if every vertex in V \ S is adjacent to a vertex in S. A domination
cover is a pebble distribution such that the set of vertices with pebbles is a dominating set.
The domination cover pebbling number ψ(G) is the minimum number of pebbles, so that
no matter how they are distributed, it is possible that after a sequence of pebbling moves
to obtain a domination cover of G. Domination cover pebbling was introduced by Gardner
et al. [?] and studied in [?, ?].

In this paper, we consider the analog for rubbling as follows. The domination cover
rubbling number ψR(G) of a graph G is the minimum number of pebbles, so that no matter
how they are distributed, it is possible to obtain a domination cover after a sequence of
pebbling and rubbling moves.

We shall use the following terminology and notation. Let G be a graph with vertex
set V and edge set E. The open neighborhood of a vertex v ∈ V is the set N(v) = {u ∈
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V | uv ∈ E}, and its closed neighborhood is the set N [v] = N(v) ∪ {v}. The degree of a
vertex v is |N(v)|. A universal vertex has degree |V | − 1. A vertex of degree one is called
a leaf, and its neighbor is a support vertex. The domination number γ(G) is the minimum
cardinality of a dominating set of G, and a dominating set of cardinality γ(G) is called a
γ-set of G.

The distance between two vertices u and v in a connected graph G, denoted by d(u, v),
is the length of a shortest (u, v)-path in G. The eccentricity of a vertex v is the maximum
distance from v to any other vertex in G, and the maximum eccentricity is the diameter
of G, denoted diam(G). A peripheral vertex of G has eccentricity equal to diam(G). The
prism G�P2 is the graph obtained from two copies of the graph G, say G1 and G2, with
the same vertex labelings by adding edges such that each vertex of G1 is adjacent to the
vertex of G2 which has the same label.

2 Small Values and Examples
We begin by characterizing the graphs G with small domination cover rubbling numbers,
namely, ψR(G) ∈ {1, 2, 3}. An edge uv is called a dominating edge if {u, v} is a dominating
set of G, otherwise, it is a non-dominating edge. More generally, a subgraph of G whose
vertices do not dominate G is called a non-dominating subgraph. In particular, a path P3

whose vertices do not dominate G is called a non-dominating P3.

Theorem 1. Let G be a graph. Then

1. ψR(G) = 1 if and only if G is a complete graph.

2. ψR(G) = 2 if and only if G has a universal vertex and G is not a complete graph.

3. ψR(G) = 3 if and only if all of the following conditions hold:

(a) G has no universal vertex.
(b) Every vertex of G is incident to a dominating edge.
(c) For every non-dominating edge uv, there exists a vertex x ∈ N(u) such that

{v, x} dominates G or there exists an x ∈ N(u)∩N(v) such that {u, x} dominates
G.

(d) For every non-dominating path P3 = (u, v, w), there exists a vertex x such that
for some y ∈ {u, v, w}, {x, y} is a dominating set of G and x is adjacent to both
vertices of {u, v, w} \ {y}.

Proof. The proof of (1) is clear. To prove (2), suppose that G ̸= Kn has a universal vertex
v. By (1), we have ψR(G) > 1. Now, we will consider all possible placements of two
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pebbles. If either or both of the pebbles are placed on v, then we are finished as {v} is a
dominating set. Thus, we may assume that the two pebbles are placed in N(v). But then
either a pebbling move or a rubbling move will place a pebble on v. Thus, ψR(G) = 2.

Suppose ψR(G) = 2. By (1) we have that G is not a complete graph, so G has at least
one vertex, say v, that is not a universal vertex. Consider placing two pebbles on v. Since
ψR(G) = 2, we can perform a pebbling move p(v → w) such that {w} is a domination
cover. Since w dominates G, w is a universal vertex.

To prove (3), we assume that ψR(G) = 3. By (1) and (2), G has no universal vertex,
so (a) holds. Suppose that three pebbles are placed on one vertex v. Since v is not a
universal vertex, {v} does not dominate G. Thus, exactly one pebbling move must reach
a domination cover. That is, a pebbling move p(v → w) for some w ∈ N(v) results in a
domination cover {v, w}, so vw is a dominating edge. Since v is an arbitrary vertex, every
vertex of G is incident to a dominating edge. Hence, (b) holds.

Suppose uv is a non-dominating edge of G, and consider the placement of two pebbles
on u and one pebble on v. Then we must be able to reach a domination cover after exactly
one move. Thus, either the pebbling move p(u → x) results in a domination cover {v, x}
where x ∈ N(u), or the rubbling move r(u, v → x) results in a domination cover {u, x}
where x ∈ N(u) ∩N(v). Hence, (c) holds.

Now suppose that G has a non-dominating P3 = (u, v, w) subgraph, and consider the
placement of a pebble on each of three vertices u, v, and w. Since no single vertex dominates
G, we must be able to reach a domination cover of two vertices in a single rubbling move.
Thus, there exists a vertex x in V \{u, v, w} such that {x, y} is a domination cover of G for
some y ∈ {u, v, w} and x is adjacent to both vertices of {u, v, w} \ {y}. Hence, (d) holds.

For the converse, assume that G satisfies Conditions (a) - (d). Since G has no universal
vertex, (1) and (2) imply that ψR(G) ≥ 3. We show that ψR(G) = 3 by showing that any
placement of three pebbles can reach a domination cover.

Suppose that three pebbles are placed on one vertex v. Since every vertex is incident
to a dominating edge, there is a vertex v′ ∈ N(v) such that {v, v′} dominates G. Thus, the
pebbling move p(v → v′) gives a domination cover.

Consider the placement of two pebbles on u and one pebble on v. If {u, v} is a domi-
nating set of G, then we are finished. Assume that {u, v} does not dominate G. If u and v
are not adjacent, then since every vertex is incident to a dominating edge, there is a vertex
v′ ∈ N(v) such that {v, v′} dominates G. Hence, uv′ ∈ E(G). But then a pebbling move
from u to v′ gives a domination cover. Hence, we may assume that u and v are adjacent,
i.e., that uv is a non-dominating edge. By Condition (c), there is a vertex x ∈ N(u) such
that {v, x, } is a dominating set of G or there is a vertex x ∈ N(u)∩N(v) such that ux is a
dominating edge of G. If x ∈ N(u) and {v, x} is a dominating set of G, then the pebbling
move p(u→ x) gives a domination cover. If x ∈ N(u)∩N(v) such that ux is a dominating
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edge of G, then the rubbling move r(u, v → x) results in pebbles on the domination cover
{u, x}.

Finally assume that a pebble is placed on each of three vertices u, v, and w. If {u, v, w}
dominates G, then we have a domination cover. Hence, assume that {u, v, w} is not a
dominating set of G. Suppose that the subgraph induced by {u, v, w} has at most one
edge, say uv, if one. By Condition (b), every vertex is incident to a dominating edge, so
there is a vertex w′ ∈ N(w) such that {w,w′} is a dominating set of G. Thus, w′ is adjacent
to both u and v, implying that the rubbling move r(u, v → w′) results in a domination
cover. Hence, we may assume that the subgraph induced by {u, v, w} has at least two edges
and that (u, v, w) is a non-dominating P3 subgraph of G. By Condition (d), there exists a
vertex x in V \ {u, v, w} such that {x, y} is a dominating set of G for some y ∈ {u, v, w}
and x is adjacent to the two vertices of {u, v, w} \ {y}. But then a rubbling move from the
two vertices in {u, v, w} \ {y} to x gives a domination cover.

From Theorem ??, we obtain several immediate results for specific graph families. Recall
that the wheel Wn is the graph obtained from a cycle Cn by adding a new vertex adjacent
to every vertex on the cycle. Since stars K1,n and wheels Wn have a universal vertex and
are not complete graphs, we have the following corollary.

Corollary 2. For n ≥ 3, ψR(K1,n) = ψR(Wn) = 2.

While the domination cover rubbling number for the star K1,n is two, its domination
cover pebbling number is n. To see that n pebbles are necessary, consider an initial pebbling
distribution that places a single pebble on n−1 of the leaves. The set of n−1 leaves is not a
domination cover and no pebbling move is possible. Hence, the domination cover pebbling
number and the domination cover rubbling number can differ by an arbitrary amount.

The complete bipartite graph Kr,s with 2 ≤ r ≤ s and the prism K3�P2 are examples
of graphs G having ψR(G) = 3. The join of two graphs G1 and G2, denoted G1+G2, is the
graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{v1v2 : v1 ∈ V (G1), v2 ∈
V (G2)}.

Corollary 3. Let G1 and G2 be graphs such that G1+G2 ̸= Kn. If G1+G2 has a universal
vertex, then ψR(G1 +G2) = 2, otherwise ψR(G1 +G2) = 3.

Corollary 4. Let G = Ks1,...,sr be the complete r-partite graph with 1 ≤ s1 ≤ . . . ≤ sr.

Then ψR(G) =


1 if sr = 1,

2 if s1 = 1, sr > 1,

3 otherwise.
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3 Paths and Cycles
Next, we present the domination cover rubbling number for paths and cycles. We will
accomplish this in part by referring to results from [?]. In order to use these results, we
need the following lemma.

Lemma 5. Let G be either a path or a cycle. Suppose that a domination cover is reachable
via pebbling and rubbling moves from some distribution of pebbles on G. Then, a domination
cover is reachable from this same distribution using only pebbling moves.

Proof. We begin by labeling the vertices of G by (v0, . . . , vn−1).
Suppose that a domination cover is reachable from a given distribution via the ordered

sequence of moves {m1, . . . ,mt}. Furthermore, we suppose that this sequence contains a
minimum number of rubbling moves. If the sequence contains no rubbling moves, then the
result holds. Now, suppose that 1 ≤ t′ ≤ t is the largest integer such that mt′ is a rubbling
move, say mt′ = r(vj−1, vj+1 → vj), where we understand that the indices of the vertices
are taken modulo n.
Case 1: For each t′′ satisfying t′ < t′′ ≤ t, we have mt′′ ̸= p(vj → vj+1) and mt′′ ̸= p(vj →
vj−1).

In this case, we may simply delete mt′ from the list of moves. To see this, note that if we
delete mt′ and perform the remaining moves, then we have at least one pebble remaining
on each of vj−1 and vj+1. Hence, N [vj−1] ∪N [vj+1] is dominated, and since G is a path or
cycle, we have that N [vj] ⊆ N [vj−1] ∪N [vj+1]. Thus, the resulting list of moves reaches a
domination cover in this case.
Case 2: For some t′′ satisfying t′ < t′′ ≤ t we have mt′′ = p(vj → vj+1) or mt′′ = p(vj →
vj−1).

Assume, without loss of generality, that mt′ is followed by a pebbling move of the form
mt′′ = p(vj → vj−1). Notice, the effect of applying mt′ and then mt′′ , regardless of any
other moves, is that the number of pebbles on vj and vj+1 both decrease by one and the
number of pebbles on vj−1 remains the same. Hence, by deleting mt′ and mt′′ from our list
of moves, we see that all other moves will remain valid. Moreover, the final distribution
after deleting these moves will have one more pebble on vj and vj+1, as well as the same
number of pebbles on vj−1, which is enough to see that the resulting distribution is also
a domination cover. Thus, the resulting list of moves reaches a domination cover in this
case.

In both cases, we have contradicted the minimality condition on the list of moves needed
to reach a domination cover. Thus, there is no rubbling move in the set {m1, . . . ,mt}.

We note that applying Lemma ??, we are able to eliminate the need for rubbling moves
to obtain a dominating cover on a path or a cycle. Hence, the domination cover rubbling
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number equals the domination cover pebbling number for paths and cycles. The values for
the domination cover pebbling numbers of paths and cycles were determined in [?]. Thus
for paths, we simply state the result below. However, there is a minor error in the proof
of the cycle theorem given in [?], and its correction changes the value given in [?] for the
domination cover pebbling number of Cn if n ≡ 0 (mod 6). We correct this value and for
completion give a proof for all values of n.

Theorem 6. For the path Pn with n ≥ 3,

ψR(Pn) =


2n+1

(
1−8

−⌊n+1
3 ⌋

7

)
+ 1 if n ≡ 1 (mod 3),

2n+1

(
1−8

−⌊n+1
3 ⌋

7

)
otherwise.

To prove the result for cycles, we will need the following lemma from [?].

Lemma 7. [?] The value of the domination cover pebbling number for cycles is attained
when the original configuration consists of placing all pebbles on a single vertex.

We are now prepared to give the analogous result for cycles.

Theorem 8. Let Cn be a cycle on n vertices.

1. If n is odd, then writing n = 2m− 1 with m ≥ 2,

ψR(Cn) = 2m+2

(
1− 8−⌊

m+1
3 ⌋

7

)
+ ϕ(m),

where

ϕ(m) =


0 if m ≡ 0 (mod 3),

1 if m ≡ 1 (mod 3),

−1 if m ≡ 2 (mod 3).

2. If n is even, then writing n = 2m− 2 with m ≥ 3,

ψR(Cn) = 2m+1

(
1− 8−⌊

m+1
3 ⌋

7

)
+ 2m

(
1− 8−⌊

m
3 ⌋

7

)
.

Proof. Let Cn = (v1, . . . , vn). For the upper bound, we show that ψR(Cn) ≤ r, where r
is the value of ψR(Cn) stated in the theorem. That is, we show that any configuration
of r pebbles can reach a domination cover. Lemmas ?? and ?? imply that we need only
consider the configuration that initially places all pebbles on one vertex, say v1.
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We consider two cases based on the parity of n.
Case 1. n is odd. We write n = 2m− 1 for m ≥ 2. Then r = 2m+2

(
1−8

−⌊m+1
3 ⌋

7

)
+ ϕ(m)

pebbles are initially placed on v1, where ϕ(m) is defined in the statement of the theorem.
Let P = (v1, v2, . . . , vm) and P ′ = (v1, vn, vn−1, . . . , vn−m+2 = vm+1) be the two Pm paths of
the cycle sharing the vertex v1.

Assume first that m ≡ 0 (mod 3). Then r = 2ψR(Pm). To reach a domination cover
of P from v1 using ψR(Pm) pebbles, no pebble from the ψR(Pm) pebbles is left on v1
and exactly one pebble is moved to each vertex in the set {v2, v5, . . . , vm−4, vm−1}. Then
there are r − ψR(Pm) = ψR(Pm) pebbles remaining on v1, which is sufficient to reach a
domination cover of P ′. Next assume that m ≡ 1, 2 (mod 3). Then r = 2ψR(Pm) − 1.
To reach a domination cover of P from v1 using ψR(Pm) pebbles, exactly one pebble from
the ψR(Pm) pebbles is left on v1 and exactly one pebble is left on each vertex in the
set {v3, v6, . . . , vm−4, vm−1} if m ≡ 1 (mod 3) (respectively, the set {v4, . . . , vm−4, vm−1} if
m ≡ 2 (mod 3)). After moving to a domination cover of P , there are r − ψR(Pm) + 1 =

2ψR(Pm)− 1− ψR(Pm) + 1 = ψR(Pm) pebbles remaining on v1, which is sufficient to reach
a domination cover of P ′. Hence, ψR(Cn) ≤ r in this case.

Case 2. n is even. We write n = 2m − 2 with m ≥ 3. Then r = 2m+1

(
1−8

−⌊m+1
3 ⌋

7

)
+

2m
(

1−8−⌊m
3 ⌋

7

)
pebbles are initially placed on v1. Note that r = ψR(Pm) + ψR(Pm−1) if

m ≡ 0 (mod 3) and r = ψR(Pm) + ψR(Pm−1) − 1, otherwise. Let P denote the path
Pm = (v1, v2, . . . , vm) and P ′ denote the path Pm−1 = (v1, vn, vn−1, . . . , vn−m+3 = vm+1) on
the cycle.

Assume first that m ≡ 0 (mod 3), and so, (m − 1) ≡ 2 (mod 3) and r = ψR(Pm) +

ψR(Pm−1). To reach a domination cover of P from v1 using ψR(Pm) pebbles, no pebble
from the ψR(Pm) pebbles is left on v1 and exactly one pebble is moved to each vertex in
the set {v2, v5, . . . , vn−4, vn−1}. Then there are r− ψR(Pm) = ψR(Pm−1) pebbles remaining
on v1, which is sufficient to reach a domination cover of P ′.

Next assume that m ≡ 1, 2 (mod 3). Then r = ψR(Pm) + ψR(Pm−1) − 1. To reach
a domination cover of P from v1 using ψR(Pm) pebbles, exactly one pebble from the
ψR(Pm) pebbles is left on v1 and exactly one pebble is left on each vertex in the set
{v3, v6, . . . , vn−4, vn−1} if m ≡ 1 (mod 3) (respectively, the set {v4, . . . , vn−4, vn−1} if m ≡ 2

(mod 3)). After moving to a domination cover of P , there are r−ψR(Pm)+1 = ψR(Pm−1)−
1 + 1 = ψR(Pm−1) pebbles remaining on v1, which is sufficient to reach a domination cover
of P ′. Again, ψR(Cn) ≤ r.

In both cases, we have the desired upper bound. To prove the lower bound, we show
that at least r pebbles are necessary in any configuration initially placing all pebbles on
a single vertex, say v1. Notice that reaching a domination cover for Cn from the pebbles
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on v1 is equivalent to reaching a domination cover for two paths Pm = (v1, v2, ..., vm) and
Pn−m+1 = (v1, vn, ..., vn−m+1) simultaneously. We note that m could equal n−1, that is, we
dominate the cycle by dominating one path. This implies that ψR(Cn) is the minimim sum
ψR(Pm)+ψR(Pn−m+1) among all possible values of m. Furthermore, this sum is minimized
when the paths are balanced, that is, for odd n, m = n−m + 1 = diam(Cn) + 1, and for
even n, m = n − m + 2 = diam(Cn) + 1. These are precisely the paths P and P ′ given
to reach the domination covers establishing the upper bounds in Cases 1 and 2. From our
previous comments, we see that all of the r pebbles are necessary to reach a domination
cover of P and P ′. That is, if r − 1 pebbles are initially placed on v1, then after reaching
a domination cover of the path P , the number of pebbles remaining on v1 is insufficent to
reach a domination cover of P ′. Hence, ψR(Cn) ≥ r in all cases and equality follows. This
completes the proof.

4 Stacking in Trees
In various types of graph pebbling and graph rubbling, a common question is when is it
sufficient to consider the placement of all pebbles on a single vertex? For example, in [?],
it is proven that to compute the cover pebbling number of a graph, it is sufficient to
consider only the case in which pebbles are initially placed on a single vertex. This result
is commonly referred to as the Stacking Theorem. Similarly, one can consider the situation
when rubbling is allowed. Indeed, it has been conjectured by Sieben [?] that the Stacking
Theorem holds in the area of cover rubbling. The analogous question which suggests itself
is, can we determine the domination cover rubbling number of a graph by only considering
pebble distributions which initially place all pebbles on a single vertex?

To answer to this question, we will consider the prism Kn�P2, where n ≥ 4. We will
show that placing three pebbles on any single vertex is sufficient for reaching a domination
cover but ψR(Kn�P2) = 4. Hence, the Stacking Theorem does not hold for domination
cover rubbling.

Theorem 9. Let G = Kn�P2 for n ≥ 4. Then ψR(G) = 4.

Proof. Let G = Kn�P2 for n ≥ 4, and let v1, . . . , vn denote the vertices of one copy of Kn

and w1, . . . , wn the vertices of the other such that viwi for 1 ≤ i ≤ n are the edges between
the corresponding vertices.

By Parts (1) and (2) of Theorem ??, ψR(G) ≥ 3. We use Part (3) of Theorem ?? to
show that ψR(G) > 3. In particular, we show that Condition (d) does not hold for G.

Let (u, v, w) be a non-dominating path in G. Note, either {u, v, w} ∈ {v1, . . . , vn} or
{u, v, w} ∈ {w1, . . . , wn}. Assume, without loss of generality, that {u, v, w} ∈ {v1, . . . , vn}.
For any two element subset S ⊂ {u, v, w}, we have that if a vertex is adjacent to both
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elements of S, then it must lie in the set {v1, . . . , vn}. Furthermore, no two element subset of
{v1, . . . , vn} dominates G, i.e., Condition (d) does not hold, and we conclude that ψR(G) ≥
4.

Consider placing four pebbles on G. If there is at least one pebble on a vertex in
{v1, . . . , vn} and at least one pebble on a vertex in {w1, . . . , wn}, then the two pebbles form
a domination cover. Hence, assume, without loss of generality, that all four pebbles are
placed in {v1, . . . , vn}.

If at least three pebbles are placed on a single vertex, say vi, then the pebbling move
p(vi → wi) gives a domination cover {vi, wi}. If at least two pebbles are placed on a vertex
vi and another pebble is placed on a different vertex vj, then the pebbling move p(vi → wi)

results in the domination cover {vj, wi}. If the four pebbles are all placed on distinct
vertices, say vi, vj, vk, vℓ, then the rubbling move r(vk, vℓ → vi) followed by the pebbling
move p(vi → wi) obtains the domination cover {vj, wi}. We conclude that ψR(G) = 4.

Using the notation from the previous proof, we see that if three pebbles are placed on
any vertex vi (resp. wi), then the pebbling move p(vi → wi) (resp. p(wi → vi)) results in a
domination cover of Kn�P2. Hence, to determine ψR(G) for a graph G, it is not sufficient
to simply consider distributions which place all pebbles on a single vertex of G, i.e., the
Stacking Theorem does not hold in the setting of domination cover rubbling on general
graphs. However, our next result suggests that there may be one for trees. Recall that the
periphery of a graph is the set of all vertices whose eccentricity equals the diameter. For
trees, all peripheral vertices are leaves.

Theorem 10. If T is a non-trivial tree with diameter d and domination number γ, then

ψR(T ) ≤ 2d−1γ − 2d−1 + 2.

Proof. Assume that T is a non-trivial tree with domination number γ and diameter d. If
T = K2, then ψR(T ) = 1 < 2 = 2d−1γ−2d−1+2. Thus, we may assume that T has at least
three vertices and that d ≥ 2. Let S = {v1, ..., vγ} be a γ-set of T such that S contains no
leaves. This is possible since either a leaf or its support vertex must be in any γ-set and
a support vertex dominates at least as many vertices as its adjacent leaves do. Let f be a
pebble distribution that reaches a domination cover containing S, and let P = {u1, ..., uk}
be the set of vertices of T that are initially assigned at least one pebble under f . If P is a
domination cover, then we are finished. Hence, we may assume that P is not a domination
cover and that the vertices of P are assigned at least γ + 1 pebbles.

By the Pigeonhole Principle, since
∑k

i=1 f(ui) ≥ γ + 1, there is an element of S, say
v1, such that

∑
u∈N [v1]

f(u) ≥ 2. Thus, a pebble can be placed on v1 using at most one
pebbling or rubbling move. Now there is a sequence of moves that brings pebbles from
P to S. For an arbitrary, but fixed, sequence of moves, suppose that ui contributes ni,j
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pebbles so that vj can have one. Since the diameter of T is d and no element of S is a leaf,
for all i = 1, ..., k and j = 2, ..., γ, the distance between ui and vj is d(ui, vj) ≤ d− 1.

Each of the ni,j pebbles that ui contributes to vj results in 2−d(ui,vj) pebbles on vj. Since
vj ends with a pebble, we have that

k∑
i=1

ni,j2
−d(ui,vj) = 1.

Since d(ui, vj) ≤ d−1 for all i and j, we have that 2d(ui,vj) ≤ 2d−1 or equivalently, 2−d(ui,vj) ≥
2−(d−1). Ergo,

1 =
k∑
i=1

ni,j2
−d(ui,vj) ≥

k∑
i=1

ni,j2
−(d−1) = 2−(d−1)

k∑
i=1

ni,j

⇒
k∑
i=1

ni,j ≤ 2d−1.

Thus, for j = 2, ..., γ, the number of pebbles needed to cover vj is at most 2d−1. Hence, at
most 2d−1(γ − 1) pebbles are needed for v2,...,vγ and at most two pebbles are needed for
v1. Thus,

ψR(T ) ≤
k∑
i=1

f(ui) = 2d−1γ − 2d−1 + 2.

The proof of Theorem ?? implies that the worst case scenario on trees is to place all of
the pebbles on a single peripheral vertex whose support is distance d − 2 from any other
support. We sum this up in the following conjecture.

Conjecture 11. (Stacking Theorem for Trees) In order to determine the domination cover
rubbling number of a tree, it is sufficient to consider only pebble distributions which place
all pebbles on a single peripheral vertex.

As evidence for Conjecture ??, we present results on the domination cover rubbling
number for trees of diameter three (i.e., double stars) and trees of diameter four. In both
of these cases, the worst case is obtained by stacking on a single peripheral vertex. The
double star Sr,s is the tree with exactly two non-leaf vertices x and y where x is adjacent
to r ≥ 1 leaves and y is adjacent to s ≥ 1 leaves.

Corollary 12. For the double star Sr,s, ψR(Sr,s) =
{

5 if r = s = 1,

6 otherwise.

11
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Figure 1: The graph K1,3(4; 3, 2, 2)

Proof. If r = s = 1, then Sr,s is the path P4, and from Theorem ??, ψR(P4) = 5.
Hence, we may assume at least one support vertex, say x, of Sr,s is adjacent to two

or more leaves. Since γ(Sr,s) = 2 and diam(Sr,s) = 3, it follows from Theorem ?? that
ψR(Sr,s) ≤ 6. We now show that five pebbles are not sufficient. Suppose that all five
pebbles are placed on a leaf x1 adjacent to x. Note that since x has at least two leaf
neighbors, either a pebble must be moved to x or to every one of its leaf neighbors. Similarly,
to dominate the leaves adjacent to y, at least one pebble must be moved to a vertex in
N [y]. Moving a pebble to each of x and y accomplishes this with the minimum number of
pebbles. However, at most two pebbles can be moved to x from x1, so at least one of x
and y cannot receive a pebble. Hence, five pebbles will not guarantee a domination cover,
and so, ψR(Sr,s) = 6.

Note that we have established the domination cover rubbling number for trees of di-
ameter two (namely stars) and trees of diameter three (namely double stars). Thus, a
natural next step would be to determine the domination cover rubbling number for trees of
diameter four. Any tree of diameter four can be obtained by appending pendant vertices
to the existing vertices of K1,n for n ≥ 2. Label the center of the star as x and its leaves
as y1, ..., yn. Suppose that we append c ≥ 0 pendant vertices to x, namely x1, ..., xc, and
ai ≥ 1 pendant vertices to yi, namely yi,1, ..., yi,ai for 1 ≤ i ≤ n. Note that for i ̸= j

and for any ℓ and m, the vertices yi,ℓ, yi, x, yj, and yj,m induce a path of length four,
and this construction gives all trees of diameter four. The resulting graph will be denoted
K1,n(c; a1, ..., an), and without loss of generality, we will assume that a1 ≥ a2 ≥ ... ≥ an.
An example is shown in Figure ??.

Corollary 13. If G = K1,n(c; a1, ..., an), where a1 ≥ a2 ≥ . . . ≥ an, is a tree of diameter
four, then

ψR(G) =


8n− 7 if c = 0 and a1 = 1,

8n− 6 if c = 0 and a1 ≥ 2,

8n− 3 if c ≥ 1 and a1 = 1,

8n− 2 if c ≥ 1 and a1 ≥ 2.
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Proof. If c = 0 and a1 = 1, then G is the star K1,n with each edge subdivided exactly once.
We first show that ψR(G) ≥ 8n − 7. Suppose that all 8n − 8 pebbles are placed on y1,1.
Note that {y1,1, y2, y3, ..., yn} is a dominating set of G whose distance from y1,1 is minimum.
Using pebbling moves, we can move at most 4n − 5 pebbles to y1 (leaving two). We can
then move at most 2n− 3 pebbles to x using pebbling moves. This allows us to distribute
at most n − 2 pebbles amongst y2,...,yn. Using a similar argument, it is straightforward
to check that 8n − 7 pebbles placed on y1,1 will yield a domination cover. We now show
that ψR(G) ≤ 8n − 7. Our strategy is to look at how different pebble placements reduce
the number of pebbles needed on y1,1. These reductions are based on the distance of the
vertex to a minimal dominating set. Note that each additional pebble placed on y1 reduces
the amount of pebbles needed on y1,1 by two. Similarly, each additional pebble placed on
x will reduce the amount of pebbles needed on y1,1 by four. The first pebble placed on yi
(where i = 2, ..., n) will reduce number of pebbles needed on y1,1 by eight, each subsequent
pebble will reduce it by four. If yi is not assigned an initial pebble, then the first pebble
placed on yi,1 will reduce the number needed on y1,1 by eight. However, each additional
pebble on yi,1, will neither increase nor decrease the number of required pebbles. In any
case, this reduces the number of pebbles needed initially. Hence ψR(G) = 8n− 7.

Now assume that c = 0 and a1 ≥ 2. Then γ(K1,n(0; a1, ..., an)) = n, and by Theorem ??,
ψR(G) ≤ 8n − 6. To show that we can do no better, suppose that all 8n − 7 pebbles are
initially placed on y1,1. Note that {y1, ..., yn} is a dominating set of G whose distance from
y1,1 is minimum. Using pebbling moves, we can move at most 4n − 4 pebbles to y1. We
then remove 4n− 6 pebbles from y1 (leaving two) using pebbling moves and place 2n− 3

on x. But to reach each yi for 2 ≤ i ≤ n from x requires 2(n − 1) = 2n − 2 > 2n − 3

pebbles. Thus, a domination cover cannot be reached. Hence, ψR(G) ≥ 8n − 6, and so
ψR(G) = 8n− 6.

Next assume that c ≥ 1 and a1 = 1. We show that 8n − 4 pebbles will not guarantee
a domination cover. Suppose that 8n− 4 pebbles are placed on the vertex y1,1. Note that
either y1,1 or y1 must be in any dominating set. Thus, we can move at most 2n− 2 pebbles
to x. Since a pebble must be left on x or a leaf neighbor of x, there are at most 2n − 4

pebbles on x that can be moved. But again at least 2n− 2 pebbles are necessary to cover
each yi for 2 ≤ i ≤ n from x. Hence, this does not yield a domination cover, and so,
ψR(G) ≥ 8n−3. Note that if 8n−3 pebbles are placed on y1,1, then using pebbling moves,
we remove 8n − 4 pebbles from y1,1 (leaving one), and place 4n − 2 pebbles on y1. We
remove these pebbles and place 2n− 1 on x. We then use pebbling moves to remove 2n− 2

pebbles from x (leaving one) and place one on each of y2,...,yn. This gives a domination
cover. To show that we can do better, we use a similar pebble reduction argument as above
to show that ψR(G) = 8n − 6. As this argument is nearly identical to the earlier one, we
omit it.
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Finally, assume that c ≥ 1 and a1 ≥ 2. We first show that 8n − 3 pebbles will not
guarantee a domination cover. Again, we assume that 8n − 3 pebbles are placed on the
vertex y1,1. Note that {x, y1, ..., yn} is a dominating set of minimum distance from y1,1. As
before, we can remove at most 8n− 4 pebbles from y1,1 (leaving one) and place 4n− 2 on
y1. We can then remove at most 4n − 4 pebbles from y1 (leaving two) and place 2n − 2

pebbles on x. Since a pebble must be left on x or a leaf neighbor of x, there are at most
2n − 4 pebbles on x that can be moved. But again at least 2n − 2 pebbles are necessary
to cover each yi for 2 ≤ i ≤ n from x. Hence, this does not yield a domination cover, and
so, ψR(G) ≥ 8n − 3. Note that if 8n − 2 pebbles are placed on y1,1, then using pebbling
moves, we remove all 8n− 2 pebbles from y1,1 and place 4n− 1 pebbles on y1. We remove
4n− 2 pebbles from y1 (leaving one) and place 2n− 1 pebbles on x. We then use pebbling
moves to remove 2n− 2 pebbles from x (leaving one) and place one on each of y2,...,yn to
form a domination cover. To show that we can do better, we use a similar pebble reduction
argument as above to show that ψR(G) = 8n − 2. As this argument is nearly identical to
the earlier one, we omit it.

Next we characterize the trees attaining the upper bound of Theorem ??. For this
purpose, we define a family of trees T . A tree T is in T if and only if T is a star K1,n

for n ≥ 2, a double star Sr,s for (r, s) ̸= (1, 1), the diameter four tree K1,n(0; a1, ..., an) for
n ≥ 2 and a1 ≥ 2, or T can be obtained from a double star S1,s for s ≥ 1 by adding at
least one pendant vertex adjacent to each leaf of S1,s. Note that the tree T obtained from
a double star in this manner has diameter five.

Theorem 14. A non-trivial tree T with γ(T ) = γ and diam(T ) = d has ψR(T ) = 2d−1γ −
2d−1 + 2 if and only if T ∈ T .

Proof. First assume that T ∈ T . If T is the star K1,n for n ≥ 2, then γ(T ) = 1, diam(T ) =

2, and by Corollary ??, ψR(T ) = 2 = 2d−1γ− 2d−1+2. If T is a double star Sr,s for (r, s) ̸=
(1, 1), the γ(T ) = 2, diam(T ) = 3, and by Corollary ??, ψR(T ) = 6 = 2d−1γ − 2d−1 + 2.
If T is the tree K1,n(0; a1, ..., an) for n ≥ 2 and a1 ≥ 2, then γ(T ) = n, diam(T ) = 4, and
by Corollary ??, ψR(T ) = 8n− 6 = 2d−1γ − 2d−1 + 2. If T is obtained from a double star
S1,s for s ≥ 1 by adding at least one pendant vertex adjacent to each leaf of S1,s, then
γ(T ) = s + 1 and diam(T ) = 5. By Theorem ??, ψR(T ) ≤ 16s + 2. Next we show that
ψR(T ) ≥ 16s + 2. Suppose T is formed from the double star S1,s with centers x and y

where x is adjacent to one leaf z and y is adjacent to s ≥ 1 leaves. Let z′ be a pendant
vertex adjacent to z, and consider the pebbling distribution that places 16s+1 pebbles on
z′. Now at most 8s pebbles can be to z (leaving one on z′). But then at least one of z, x,
and y must have a pebble to dominate x. Hence, at most 2s−1 pebbles can be moved to y.
But to reach a domination cover, at least one pebble must be moved from y to each of the
s support vertices adjacent to y, and so, 2s pebbles are required on y. Hence, a domination
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cover cannot be reached from the pebbling distribution that places 16s + 1 pebbles on z′,
and so ψR(T ) = 16s+ 2 = 2d−1γ − 2d−1 + 2.

Next assume that T is a non-trivial tree with domination number γ and diameter d
such that ψR(T ) = 2d−1γ − 2d−1 + 2. The proof of Theorem ?? implies that for equality
to hold, d ≥ 2. Moreover, the proof implies that for sharpness in the bound to occur, the
pebbling distribution placing all ψR(T ) pebbles on a periphal leaf u′ with support neighbor
u, at least one of u and u′ is in some domination cover D and every vertex in D \ {u} is at
distance exactly d− 2 from u. Furthermore, d− 2 ≤ 3 for otherwise at least one vertex on
a shortest path between u and a vertex in D is not dominated by the vertices of D. Hence,
d ≤ 5.

If d = 2, then T is a starK1,n for n ≥ 2 and ψR(T ) = 2 = 2d−1γ−2d−1+2. And T ∈ T , as
desired. If d = 3, then T is the double star. By Corollary ??, ψR(T ) = 6 = 2d−1γ−2d−1+2

if and only if T = Sr,s for (r, s) ̸= (1, 1), so T ∈ T . If d = 4, then the proof of Corollary ??
implies that ψR(T ) = 2d−1γ − 2d−1 + 2 if and only if T is the tree K1,n(0; a1, ..., an) with
a1 ≥ 2. Again, T ∈ T .

If d = 5, then T must have a support vertex u that is distance three from every other
vertex in the domination cover. By the proof of Theorem ??, we may assume that every
support vertex with the possible exception of u is in the domination cover. Note that the
leaf neighbors of u are peripheral vertices. Let w be the non-leaf neighbor of u. It follows
that no neighbor of w is a support or a leaf vertex, and that w has degree 2. Let x be
the other neighbor of w. Furthermore, our diameter condition implies that every support
vertex of T is adjacent to x and w is the only neighbor of x that is not a support vertex.
Hence, T can be obtained from a double star S1,s with centers w and x for s ≥ 1 by adding
at least one pendant vertex adjacent to each leaf of S1,s. Again, T ∈ T , as desired.

Note that the difference between ψR(T ) and 2d−1γ − 2d−1 + 2 can be arbitrarily large.
To see this, take the path on n vertices (see Theorem ??).

5 Domination Cover Rubbling and Domination
We begin with the following straightforward observation relating γ(G) and ψR(G).

Observation 15. For any graph G, γ(G) ≤
⌈
ψR(G)

2

⌉
.

Proof. By definition, if we place ψR(G) pebbles on any single vertex of G, then we can reach
a domination cover. From this, we simply note that the largest number of vertices which
can receive pebbles from this distribution after pebbling and rubbling moves is

⌈
ψR(G)

2

⌉
,

which proves the result.
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Using Theorem ??, we give an upper bound on the domination cover rubbling number of
connected graphs. We will use the following well-known bound on the domination number.

Theorem 16. [?, Thm. 2.24] For any graph G, γ(G) ≥
⌈
diam(G)+1

3

⌉
.

Theorem 17. If G is a connected graph with domination number γ(G) = γ, then

ψR(G) ≤ 23γ−2(γ − 1) + 2.

Proof. Let G be a connected graph, and let S be a γ-set of G. Consider a spanning tree
T of G formed by removing an edge from each cycle C of G as follows. If there is an edge
uv on C where both u and v are in S or both u and v are in V \ S, then remove uv. If
every edge on C is between the vertices of S and the vertices of V \S, then, without loss of
generality, u ∈ S and v ∈ V \S and v has another neighbor in S. Hence, after removing uv
to rid G of cycle C, the set S is still a dominating set of T , and so, the resulting graph T

is a tree dominated by S. Since removing edges cannot decrease the domination number,
|S| = γ(G) ≤ γ(T ) ≤ |S|, so γ(T ) = γ(G) = γ and S is a γ-set of T .

Let d = diam(T ). Theorem ?? implies that d ≤ 3γ(T )− 1. By Theorem ??, ψR(T ) ≤
2d−1γ − 2d−1 + 2 ≤ 23γ−2γ − 23γ−2 + 2.

Observe that adding edges to T cannot increase the domination cover rubbling number
and since γ(T ) = γ(G) = γ, ψR(G) ≤ ψR(T ) ≤ 23γ−2γ − 23γ−2 + 2.

Next we consider the bound of Theorem ?? for graphs with domination number two.
That is, if γ(G) = 2, then by Theorem ??, ψR(G) ≤ 18. We show that if γ(G) = 2

and ψR(G) = 18, then diam(G) ∈ {4, 5}, and we characterize the extremal graphs having
diameter five.

For two sets of vertices X and Y , let [X,Y ] denote the edges joining a vertex in X and
a vertex in Y . If all possible edges in [X,Y ] are present, we say [X,Y ] is full; and if there
are no edges in [X,Y ], then we say [X,Y ] is empty. A set X dominates a set Y if every
vertex in Y is adjacent to a vertex in X. A graph with at least one vertex is non-null. For
non-null graphs GA1, KB1, GC1, GC2, KB2, and GA2, let the vertex set be A1, B1, C1, C2,
B2, and A2, respectively. We define a family of graphs F as follows.

Graph G is in F if G can be obtained from the disjoint union of non-null graphs GA1,
KB1, GC1, GC2, KB2, and GA2, where KB1 and KB2 are complete graphs, by adding edges
such that

1. [Ai, Bi] and [Bi, Ci] are full for i ∈ {1, 2},

2. zero or more edges are added between vertices of Ai and vertices of Ci provided at
least one vertex in Ai has no neighbor in Ci and no vertex in Ai dominates Ci for
i ∈ {1, 2}, and
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3. every vertex of C1 is adjacent to at least one vertex of C2 and every vertex of C2 is
adjacent to at least one vertex of C1.

Note that [A1, B2], [A1, C2], [A1, A2], [B1, C2], [B1, B2], [B1, A2], [C1, B2], and [C1, A2]

are empty. The path P6 is an example of a graph in F . As an example of a family of graphs
in F , consider the blow-up of a path P6 = (v1, v2, . . . , v6) which is formed by replacing each
vi, for 1 ≤ i ≤ 6, with a non-null clique Vi, and adding all possible edges between the
vertices of Vi and Vi+1 for 1 ≤ i ≤ 5.

We say that two vertices u and v are twins if they have the same closed neighborhoods,
that is, N [u] = N [v]. Note that with this definition of twins, u and v are necessarily
adjacent. For a vertex u, let T [u] denote the set of twins of u. Note that u ∈ T [u]. We
note that if G ∈ F , then diam(G) = 5, γ(G) = 2, and every γ-set contains a vertex of B1

and a vertex of B2. Moreover, if u ∈ Bi, then Bi = T [u] for i ∈ {1, 2}.

Theorem 18. Let G be a graph with γ(G) = 2. If ψR(G) = 18, then diam(G) ∈ {4, 5}.
Moreover, ψR(G) = 18 and diam(G) = 5 if and only if G ∈ F .

Proof. Let G be a graph with γ(G) = 2 attaining the upper bound of Theorem ??, that
is, ψR(G) = 18. Theorem ?? implies that diam(G) ≤ 5. To show that diam(G) ≥ 4, we
first prove a claim about the vertices in any arbitrary γ-set of G.

Claim 1. If {u, v} is a γ-set of G, then d(u, v) = 3.

Proof. By assumption, γ(G) = 2. Let {u, v} be a γ-set ofG. Since {u, v} is a dominating set
and G is connected, it follows that d(u, v) ≤ 3. Suppose, for contradiction that d(u, v) ≤ 2.
First assume that u and v are adjacent. We show that any pebble distribution of six pebbles
on G yields a domination cover, contradicting the fact that ψR(G) = 18. Clearly, three
pebbles placed on {u, v} will yield a domination cover after at most one pebbling move.
Thus, we may assume that at most two pebbles are placed on exactly one of u and v, say
u, and no pebble is placed on v. If four pebbles are assigned such that two are in N [u] and
two pebbles are in N [v], then pebbling or rubbling moves will reach both u and v, giving a
domination cover using four pebbles. Thus, without loss of generality, we may assume that
at most one pebble is placed on the vertices of N(v) \ {u}. Suppose first that no pebble is
placed in N(v) \ {u}, that is, six pebbles are placed in N [u]. No matter how these pebbles
are arranged in N [u], a series of pebbling and rubbling moves can result in at least three
pebbles on u. Then a pebbling move will reach v while leaving a pebble on u to form a
domination cover. Next suppose that N(v) \ {u} contains one pebble, leaving five pebbles
in N [u]. No matter how the five pebbles are placed in N [u], it is possible to use pebbling
and rubbling moves to result in at least two pebbles on u. But then at most one rubbling
move places a pebble on v while leaving a pebble on u, giving a domination cover.
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Next assume that d(u, v) = 2. For this case, we show that any pebble distribution
of ten pebbles on G yields a domination cover, and again have a contradiction. Clearly,
placing a pebble on each of u and v forms a domination cover using two pebbles. If four
pebbles are assigned such that two are in N [u] and two pebbles are in N [v], then pebbling
or rubbling moves will reach both u and v, giving a domination cover using four pebbles.
Hence, without loss of generality, we may assume that at most one pebble is placed in N [v],
else we are finished. If no pebble is placed in N [v], then no matter how ten pebbles are
placed in N [u] \ N [v], pebbling and rubbling moves can result in five pebbles on u. We
can then remove four pebbles from u and place two pebbles on a vertex in N(u) ∩ N(v)

using pebbling moves. Finally, we can move the two pebbles from N(u) ∩N(v) and place
a pebble on v using a pebbling move. This results in a domination cover.

If one pebble is placed in N [v] and nine pebbles in N [u] \ N [v], then pebbling and
rubbling moves can result in at least four pebbles on u. Since u and v have a common
neighbor x, at least one pebble can be moved from u to x, while leaving two pebbles on
u. Then, either there is a pebble on v or a rubbling move from x and the other vertex in
N(v) with a pebble can place a pebble on v, forming a domination cover. This completes
the proof of Claim ??. (�)

Claim ?? implies that for any γ-set S = {u, v} of G, {N [u], N [v]} is a partition of the
vertex set of G. Our next claim shows that diam(G) ≥ 4.

Claim 2. For every γ-set S, there exists a vertex at distance four from a vertex in S.

Proof. Let S = {u, v} be a γ-set of G. By Claim ??, d(u, v) = 3. Thus, every vertex in
N [u] (respectively, N [v]) is at distance at most four from v (respectively, u). Suppose, to
the contrary, that d(u,w) ≤ 3 and d(v, w) ≤ 3 for every w ∈ V . To reach a contradiction,
we show that any pebble distribution of seventeen pebbles can reach a domination cover.

As before, we may assume that at most one pebble is placed in N [v] or at most one is
placed in N [u], else we are finished. Without loss of generality, suppose that N [v] contains
at most one pebble. If no pebble is placed in N [v], then no matter how seventeen pebbles
are placed in N [u], it is possible to use pebbling and rubbling moves that result in at least
eight pebbles on u, and one pebble on a vertex w in N(u). If d(w, v) = 2, then pebbling
moves from u can place an additional three pebbles on w while leaving at least two pebbles
on u. Then two pebbles can be moved from w to a neighbor, say x, of v. Finally, the
pebbling move p(x→ v) creates a domination cover. If d(w, v) = 3, then w has a neighbor
w′ ∈ N(u), such that w′ is adjacent to a vertex x ∈ N(v). But then the rubbling move
r(u,w → w′) followed by three pebbling moves from u can place four pebbles on w′ while
leaving a pebble on u. Then two pebbles can be moved from w′ to x, and the pebbling
move p(x→ v) creates a domination cover.
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Suppose next that there is one pebble in N [v] and sixteen pebbles are placed in N [u].
No matter how the sixteen pebbles are placed in N [u], pebbling and rubbling moves can
result in at least eight pebbles on u. Since d(u, v) = 3, pebbling moves can leave two
pebbles on u and reach a vertex in N(v). Now either v has a pebble or v can be reached
by a pebbling or rubbling move. Thus, we have a domination cover and a contradiction.
This completes the proof of Claim ??. (�)

By Claim ?? and previous remarks, we have that diam(G) ∈ {4, 5}. To complete the
proof of the theorem, we characterize the extremal graphs G having diam(G) = 5. That
is, for a graph G with γ(G) = 2, we show that ψR(G) = 18 and diam(G) = 5 if and only if
G ∈ F .

Let G ∈ F . Then γ(G) = 2 and diam(G) = 5. To show that ψR(G) = 18, it suffices to
show that there is a pebble distribution of seventeen pebbles that cannot reach a domination
cover. Let w be a vertex in A1 that has no neighbor in C1, and consider a placement of
seventeen pebbles on w. Since there is a vertex in A2 whose neighborhood is contained in
B2 ∪ A2, to reach a domination cover at least one pebble must be moved to the vertices
of B2 ∪ A2. From w, it requires sixteen pebbles to move a single pebble along a path
to a vertex in B2, but this leaves only one pebble on w and neither w nor any vertex in
B2 dominates the vertices of C1. Hence, a domination cover cannot be reached from this
pebble distribution. Thus, ψR(G) = 18.

Next assume that diam(G) = 5 and ψR(G) = 18. Let {u, v} be a γ-set of G. Necessarily,
d(u, v) = 3 and {N [u], N [v]} is a partition of V (G). Let B1 = T [u] and B2 = T [v]. Let
C1 be the set of vertices in N(u) are adjacent to a vertex in N(v), and let C2 be the set of
vertices in N(v) with a neighbor in C1. Let A1 = N(u)\(B1∪C1) and A2 = N(v)\(B2∪C2).
Since u ∈ B1 and v ∈ B2, Bi ̸= ∅. By Claim ??, d(u, v) = 3 for any u ∈ B1 and v ∈ B2,
implying that Ci ̸= ∅ for i ∈ {1, 2}. Note that for i ∈ {1, 2}, Bi induces a complete graph,
Bi ∩Ci = ∅, and [Bi, Ci] is full. Morever, if Ai ̸= ∅, then [Ai, Bi] is full for i ∈ {1, 2}. Also,
[A1, B2], [A1, C2], [A1, A2], [B1, C2], [B1, B2], [B1, A2], [C1, B2], and [C1, A2] are empty.

Since diam(G) = 5, there is a vertex in A1 that has no neighbor in C1 and a vertex in
A2 that has no neighbor in C2. Further note that no vertex in Ai dominates Ci, because
such a vertex would be in Bi. Hence, G ∈ F . This completes the proof of the theorem. �

We note that there are extremal graphs G having γ(G) = 2, ψR(G) = 18, and
diam(G) = 4. For an example of such a graph, see Figure ??.

Although Theorem ?? shows that the bound in Theorem ?? is sharp for graphs G
with γ(G) = 2, we think the bound can be improved as follows for graphs having larger
domination number.
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Figure 2: A diameter four graph G with γ(G) = 2 and ψR(G) = 18

Conjecture 19. If G is a connected graph, then

ψR(G) ≤ 2

(
8γ(G) − 1

7

)
.

If Conjecture ?? is true, it is also sharp for paths Pn with n ≡ 0 (mod 3).
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