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Abstract. We compute all degree 14 extensions of Q7 up to isomor-
phism, and find that there are 654 such extensions. Additionally, we
compute several invariants of these extensions in order to classify the
associated Galois group of the Galois closure of each extension.

1. Introduction

For a prime p and a positive integer n, it is well-known that there are only
finitely many degree n field extensions of the field Qp of p-adic numbers.
When p - n or p = n, all of the extensions of Qp have been classified and
data associated to these extensions is stored in an online database of local
fields created by Jones and Roberts ([7]). When p properly divides n, the
problem of classifying these extensions becomes much more complicated. In
this case, such extensions have been classified completely for all n ≤ 12.

In this paper, we focus on the case n = 14 and p = 7. We use methods
established by S. Pauli and implemented in the computer algebra system
MAGMA ([4]) to compute defining polynomials for each of these extensions
up to isomorphism. Using ramification groups, we obtain a list which in-
cludes all possible Galois groups of an irreducible degree 14 polynomial over
Q7. Employing computational methods motivated by those used in [3] to
classify degree 12 extensions of Q3, we compute several invariants of these
extensions to determine the Galois groups of their defining polynomials.

Throughout this paper we fix an algebraic closure Q7 and work in this
algebraic closure.

2. Defining Polynomials

In his thesis, Pauli developed methods to compute defining polynomials
for extensions of local fields ([8]). Using the implementation of his techniques
in MAGMA, we compute a list of defining polynomials for all extensions
of Q7. We obtain 1158 such irreducible polynomials. Sorting the exten-
sions defined by these polynomials into isomorphism classes can be done
using Panayi’s p-adic root finding algorithm, which is also implemented in
MAGMA. Two degree n extensions of Qp are isomorphic if and only if their
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defining polynomials share a common root. Table 1 gives the counts for the
extensions of Q7. Here e is the ramification degree, c is the discriminant
exponent, #Ke,c is the total number of extensions as counted by Krasner’s
mass formula, and #Qe,c

7 is the number of non-isomorphic extensions.

Table 1. Counts for Extensions of Q7

e c # Ke,c # Qe,c
7

1 0 1 1
2 7 2 2
7 14 336 27

16 336 27
18 336 27
20 336 27
22 336 27
24 336 54
26 343 28

14 8 84 6
9 84 12
10 84 6
11 84 12
12 84 6
13 84 18
15 588 48
16 588 42
17 588 48
18 588 42
19 588 96
20 588 42
21 686 56

=654

Some of the polynomials obtained have coefficients with many digits. In
order to obtain polynomials with coefficients more amenable to computation,
we randomly generated degree 14 polynomials with small integer coefficients.
Each random polynomial was checked for irreducibility using Panayi’s root
finding algorithm. If the random polynomial was irreducible, we found the
unique polynomial f in our list of 654 polynomials defining the same isomor-
phism class of extensions. If the random polynomial had coefficients with
fewer digits, we let it replace f in our list of 654 polynomials. One can see
[5] for the complete list of all 654 polynomials.

3. Ramification Groups

In this section we introduce ramification groups and use them to gain
information about the Galois groups of the Galois closures of degree 14
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extensions of Q7. For more facts about ramification groups one can see [2]
or [9].

Let L/Qp be a Galois extension and set G = Gal(L/Qp). Let νL be the
discrete valuation on L and let OL be the valuation ring. For each integer
i ≥ 1 we define the ith ramification group of G to be

Gi = {σ ∈ G : νL(σ(x)− x) ≥ i+ 1 for every x ∈ OL}.

Note that G−1 = G and that the ramification groups form a decreasing
filtration on G which is eventually trivial. Additionally, G/G0 is isomorphic
to the Galois group of the residue field extension. The following lemma gives
some structural information about the ramification groups.

Lemma 1 (Corl. 4.1.3, [2]). Let L/Qp be a Galois extension with ϖ a
uniformizer for L and let G = Gal(L/Qp). Let Ui = ⟨1 + (ϖi)⟩ and let U0

be the group of units of OL. Then

(1) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1 and hence
is abelian.

(2) G0/G1 is cyclic with order coprime to p.
(3) For i ≥ 0, Gi/Gi+1 is a direct product of cyclic groups of order p.
(4) G0 is the semi-direct product of a cyclic group of order coprime to p

and a normal subgroup which is a p-group.
(5) G and G0 are solvable.

In our case we have a degree 14 extension K/Q7 with G = Gal(Kgal/Q7)
and with Kgal the Galois closure of K in our chosen algebraic closure of
Q7. Thus G is one of the 63 solvable transitive subgroups of S14. Also, G
must contain a solvable normal subgroup G0 such that G/G0 is cyclic and
has order dividing 14 since G/G0 is isomorphic to the Galois group of the
residue field extension. Moreover, G0/G1 is cyclic and has order dividing

7[G:G0] − 1. This last statement follows from part (1) of the lemma and the
fact that U0/U1 is isomorphic to the multiplicative group of the residue field
of L. Using GAP ([6]), computations on the 63 transitive subgroups of S14

show that there only 17 possible Galois groups that can be associated to a
degree 14 extension of Q7. Listed using the T notation in the LMFDB ([1]),
these 17 groups are given by 14Tn where n is one of

1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15, 20, 22, 23, 24, 25, 32.

However, we can eliminate three of these groups. The groups 14T15, 14T22,
and 14T25 each have the low degree resolvent 3T2. This means that any
extension of Q7 whose Galois group is one of these three groups must contain
a degree 3 subfield whose associated Galois group is 3T2. This is impossible
since none of the degree 3 extensions of Q7 have the associated Galois group
3T2. Thus we can eliminate these three groups, leaving us with the following
list of 14 possible Galois groups 14Tn where n is one of

1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 20, 23, 24, 32.
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4. Galois groups

We now compute the Galois group of each of our 654 defining polyno-
mials. To accomplish this task, we compute enough invariants to uniquely
determine the Galois group of each polynomial. Following the approach used
in [3], we first summarize three of the more basic invariants that we use.

The first of these invariants is the subfield content of an extension K/Q7,
which is the list of the Galois groups of the Galois closures of the proper
nontrivial subfields of K. On the group theory side, the subfield content
for a degree 14 field extension associated with any of our 14 possible Galois
groups has been computed and is listed in the LMFDB. We list the subfield
content associated to these Galois groups in Table 2, and immediately notice
that all degree 14 extensions of Q7 must have a unique quadratic subfield.
In order to compute the subfield content of a degree 14 extension K/Q7,
we must only check if any of the finitely many degree 2 extensions of Q7

or degree 7 extensions of Q7, which have been completely classified, are
subfields of K. Such a degree 2 or degree 7 extension of Q7 is a subfield of
K if and only if the defining polynomial of the degree 2 or 7 extension has a
root in K. We already know that K must have a unique quadratic subfield,
but we will make use of the defining polynomial of that subfield later so we
still determine the quadratic subfield here.

We also make use of the order of the centralizer of the Galois group in
S14, which is equal to the order of the automorphism group Aut(K/Q7).
This automorphism group can be computed easily as MAGMA has built-in
functionality for computing Aut(K/Q7). The centralizer order of our 14
possible Galois groups is listed in Table 2 under the heading C.O.

Additionally, we use the parity of the the Galois groups, which is +1 if
G ⊆ A14 and -1 otherwise. The parity of a defining polynomial f is +1 if its
discriminant is a square in Q7 and -1 otherwise. To compute the parity of
the defining polynomials, we use the algorithm outlined in [2]. We list the
parity of each possible Galois group in Table 2.

As these invariants are not enough to distinguish all the groups, it is
necessary to use two resolvent polynomials to uniquely determine each Galois
group. The first of these is the following degree 91 linear absolute resolvent

f91(x) =
∏

1≤i<j≤14

(x− (αi + αj))

where the αi are the roots of the defining polynomial f . This can be com-
puted in terms of resultants via the formula

f91(x) =

(
Resultanty(f(y), f(x− y))

214f(x/2)

)1/2

.

If the resolvent polynomial f91(x) is square-free, then degrees of the irre-
ducible factors of f91(x) factored over Q7 correspond to the orbit lengths of
the component-wise action of G on ordered pairs (a1, a2) where a1 ̸= a2 and
a1, a2 ∈ {1, . . . , 14}. These orbit lengths are listed for some of the Galois
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groups in Table 2 under the heading O.L. If f91(x) is not square-free, we
apply a Tschirnhausen transformation to the defining polynomial f to get
a new irreducible polynomial defining the same extension as f . Eventually
we get a resolvent that is square-free.

We also use a quartic relative resolvent f4(x), analogous to one used in
[3], which relies on the unique quadratic subfield. Let f define a degree 14
extension K/Q7 and let F be the unique quadratic subfield of K. Let g be
any of the 7 quadratic polynomials obtained by factoring f over K. Then
f4(x) is the norm of x2 − disc(g(x)) down to Q7. That is,

f4(x) = (x2 − disc(g(x)))(x2 − σ(disc(g(x))))

where σ ∈ Gal(F/Q7) is the unique nontrivial automorphism. To aid in
computation, note that the coefficients of f4(x) are symmetric polynomials
in the roots of the defining polynomial of K. We are interested in the Galois
group of f4(x), which can easily be computed using MAGMA as the degree
is sufficiently small. Table 2 lists the Galois groups of f4(x) for extensions
having some of our 14 possible Galois groups. These Galois groups were
computed using polynomials with integer coefficients defining number fields
and having the given Galois group. In one case f4(x) is not irreducible,
which is why the Galois group has only two elements.

Table 2. Possible Galois Groups for p = 7

Label (14T) Subfields C.O. Parity O.L. Gal(f4)
1 7T1, 2T1 14 -1
2 7T2, 2T1 14 -1
3 7T2, 2T1 2 -1
4 7T4, 2T1 2 -1 [7, 212, 42]
5 7T3, 2T1 2 -1
7 7T4, 2T1 2 -1 [7,422]
8 2T1 7 -1
12 2T1 1 1 [143, 49]
13 2T1 1 -1 [143, 49] 4T2
14 2T1 1 -1 [42,49] 2T1
20 2T1 1 -1 [143, 49] 4T3
23 2T1 1 1 [42,49] 4T1
24 2T1 1 -1 [42,49] 4T2
32 2T1 1 -1 [42,49] 4T3

From Table 2 it is clear that the Galois groups 14T1, 14T2, 14T3, 14T5,
and 14T8 are uniquely determined by their subfield content, centralizer or-
der, and parity. By also making use of the degree 91 absolute resolvent, we
are able to distinguish the Galois groups 14T4, 14T7, and 14T12. Finally,
by using the resolvent f4(x) we are able to identify the remaining Galois
groups 14T13, 14T14, 14T20, 14T23, 14T24, and 14T32.
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We conclude by giving a count of the number of degree 14 extensions of
Q7 having each of the 14 Galois groups. Table 3 gives this data.

Table 3. Counts for degree 14 extensions of Q7 by Galois group

Galois Group (14T) Number of Extensions
1 24
2 3
3 6
4 31
5 24
7 62
8 72
12 8
13 9
14 93
20 16
23 64
24 114
32 128
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