Kepler’s Problem

Suppose a satellite with mass m in orbit about the earth has a position r (¢) and
a velocity v (t) at time ¢.

If » = ||r|| denotes the distance to the satellite at time ¢ and if we assume that
the earth is a perfect sphere centered at the origin with a radius of R, = 3963.21
miles, then the magnitude of the earth’s gravitational force F (r) acting on the
object satisfies an inverse square law of the form
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where k = 95194.14 % for the earth’s gravitational field.
The direction of F' is in the opposite direction of r, which is in the direction of
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That is, if we define the unit vector

then the direction of the gravitational force is —u () . Thus, the force of gravity is
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Moreover, since Force =mass x acceleration, we have
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where for motion about the earth, k = 95,194.14 :;éz . The equation (0.1) is called
Kepler’s problem, and solutions to (0.1) are called Keplerian orbits. As we saw in

the last section, uniform circular motion is a special type of Keplerian orbit.

EXAMPLE 1 A satellite is 100 miles above the earth and has a period
of T = 5234. 14 seconds, or T = 1 hour, 27 minutes and 14 seconds.
Show that its parametrization is a Keplerian orbit.



Solution: Since the satellite’s orbit is given by
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its velocity and acceleration are
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However, the acceleration can be rewritten as
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v (t) = —r(t)- (525114) = —(1.441017 x 107%) r (2)

Consider now that

;—fr(t) - %r(t} — — (1.419065 x 107%) r (1)

which is very close to the value of v’/ (t).

Check your Reading: Why does the r® term appear in (0.1) if it is called the
inverse square law?

Conservation of Angular Momentum

Let’s derive some of the properties of the solutions to Kepler’s problem. To begin
with, let us notice that
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Since dr/dt = v is velocity and since dv/dt = r” is acceleration, (0.1) implies that

—(rxv) = vxv+rxr’
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That is, the time derivative of r X v vanishes, so that r x v itself must be a
constant vector. We let L =(Lq, Lo, L3) denote this constant, and we say that L
is the angular momentum vector. That is,

L=rxv

where the angular momentum vector L is constant. This result is more widely
known as the conservation of angular momentum.



EXAMPLE 2 A satellite has initial position ro = (3000, 4000, 0) and
an initial velocity of vo = (2,2,1) . What is its angular momentum?

Solution: Since L =r (t) x v (¢) for all time ¢, we must also have
L=r(0) x v(0). Thus,

L = (3000, 4000, 0) x (2,2, 1) = (4000, —3000, —2000)

Since r and v must be perpendicular to L at all times, the fact that L is constant
implies that r and v are in the plane with normal L. That is, conservation of
angular momentum implies that the motion of the satellite is in the plane with
normal L.

L= rxv
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We can use this result to determine the plane of motion of a Keplerian orbit.

EXAMPLE 3 What is the equation of the plane of the orbit of the
satellite in example 27

Solution: The plane of motion must contain the point r (0) = (3000, 4000, 0) .
Since L = (4000, —3000, —2000) is normal to the plane, we have
4000 ( — 3000) — 3000 (y — 4000) — 2000 (2 — 0) = 0

which reduces to z = 2x — 1.5y. Thus, the satellite’s orbit must be in
the plane z = 2x — 1.5y for all time.

Check your Reading: What is the initial speed of the satellite in the previous
example?

Conservation of Energy

Let’s find another conserved quantity—i.e., a quantity which is constant along a
Keplerian orbit. Notice that
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since dv/dt is the acceleration a of the object. Likewise, let us notice that
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since r = 4/r - r, and notice that this simplifies to
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Kepler’s problem implies that r’ = —kr/r3, so that r”/ — —kr/r3 = 0 and thus
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Thus, the quantity %vz — % is constant. That is, there is a constant H such that
1 k

H=_-v?—= 0.2
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Moreover, since _7]“ is the potential energy of the satellite, and since %1)2 is the
kinetic energy of the satellite, the quantity H is the total energy or Hamiltonian
energy of the satellite, and the equation (0.2) is called the Law of Conservation
of Energy. Moreover, if H < 0, then that means that the potential energy is
dominant and thus that the satellite cannot escape the earth’s gravitational field.
However, if H > 0, then the kinetic energy is dominant, and thus, the satellite
will eventually escape from earth’s gravitational field.

EXAMPLE 4 Find the total energy for the satellite which at time
t = 0 is at the point r (0) = (3000, 4000, 0) with an velocity of v (0) =
(2,2,1).

Solution: To begin with, we notice that

r(0) = |r(0)] = \/ (3,000)° + (4,000)* 4 02 = 5,000 miles
v(0) = [v(0)|=v22+22+12=3



Since k = 95194.14 ML the total energy is given by
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Moreover, H < 0 implies that the satellite is in a closed orbit—i.e., its
orbit is an ellipse.

EXAMPLE 5 Suppose a satellite moving in a circle with radius R at
a constant speed has a period of T. What is its energy integral?

Solution: To begin with, the position vector of the satellite is

= oo (22) o (22))

Thus, the satellite’s velocity and speed are

v = (i () oo ()
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Since r = R, the energy integral is

g L(2BR\* k2R’ K
) T R T2 R

The result in example 5 can be greatly improved. In particular, the acceleration
of the satellite is
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Keplers’ problem says that
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Solving for the period T' then yields

Substitution into H in example 5 yields
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Moreover, the speed v in example 5 is
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Indeed, the results of example 5 can be extended into the following theorem:



Theorem 1: In order for a satellite to orbit the earth at a distance
R from its center, it is necessary that the initial velocity v (0) be per-
pendicular to r (0), that ||r (0)|| = R, and that
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In that case, the Hamiltonian energy will be H = 3.

Check your Reading: Why is it necessary for v (0) to be perpendicular to r (0)
in theorem 17

Black Holes

Finally, let us notice that we can use conservation of energy to study more exotic
objects in space, such as a black hole. Indeed, let us conclude by using the law of
conservation of energy to determine to what size the earth would have to collapse
in order for it to become a black hole.

To begin with, H = 0 is known as the minimum escape energy since H < (
means no escape and H > 0 implies escape. Since light travels at a speed of
¢ = 186,000 miles per second, we must determine the radius r such that light at
velocity ¢ corresponds to the minimum escape energy. That is, we must solve for
rwhen H=0and v=c:
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The result is r = 2k/c?, which means that the radius of the earth would have to

be
2k 2-(95,194.14
=== 2-(95,194.14) > ) _ 55032 x 107° miles
c (186,000)

Indeed, converting to feet and then inches yields

r = 5.5032 x 10 %miles x 5280f—t2, x 12

m

1 0.34868 inches
ft
That is, the entire earth would have to be compressed into a sphere which is a
little less that 3/8 of an inch in order for it to form a black hole.

Exercises

Use the given initial conditions to find L, the equation of the plane containing the
orbit, and the total energy H of the orbit. Does the satellite remain in orbit about
the earth, or will it eventually escape the earth’s gravitational field?

1. r(0)=(1,2,1),v(0) =(2,2,1) 2. r(0)=(1,3,2),v(0)=(1,2
3. r(0)=1(2,2,1), v(0) =(0,0,2) 4. r(0)=(1,0,0), v(0) = (0,1
5. r(0)=(1,0,0), v(0) =(0,1,0) 6. r(0)=(1,0,0), v(0)=(0,0
7. r(0)=(4063,0,0), v (0) = (0,4.8,0) 8. r(0)=(4063,0,0), v (0) = {(
9. r(0)=(4063,0,0), v (0) = (0,5.2,0) 10. r(0) = (4063,0,0), v (0) = {
11. r(0) = (5,5,2), v(0) = (-5, —5,—2) 12. r(0)=(1,0,0), v(0) =(0,0
13. (Energy Integral) In this exercise, we show using a different method that
ok

where H is a constant.



(a) Compute < ($v?) using the fact that
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Then write the result as the dot product of two vectors.

(b) Compute %é using the fact that
k k
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Then write the result as the dot product of two vectors.

(¢) Combine the results in (a) and (b). What is the result? What does
this say about H?

14. Show that ¢ (r) = —k/r is a potential for

F( ) = —kx —ky —kz
H¥2 = (22 + 92 + 22)%2 (22 + 92 + 22)%27 (22 4 42 4 22)/?

where r = /22 + 2 + 22.




