Kepler’s Second Law

Since Keplerian motion is in a plane, we can assume that the plane containing
the motion is the zy-plane. We also assume that the sun is at the origin of the
zy-plane. Our immediate task then becomes that of determining the area of the
“sector” shaded in blue below:

As was shown earlier in this semester, the area is

Area = //dA
R

where R is the region shaded in blue above. However, by Green’s theorem we have

%jéydxfxdy: //dA (0.1)
R

OR
so that the area is given by
1 1 1
Area = E/ydxfxdy+§/ ydxfxdy+§/ ydx — xdy
Cy Ca Cs
where the curves Cy, Co and Cs are as shown below:
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Now, the curve Cj is the line segment from (0,0) to the point (p,q), so it is

parametrized by
z=pt tel0,1]

y=qt
As a result, we have

1 1 [t/ dx dy
i/ydxfxdy = 5/0 <yaxa)dt

C1

1
/ (qt-p—pt-q)dt
0
1
/ (pqt — pqt) dt
0



Likewise, the integral over C5 vanishes, and thus we have
1
Area = 3 / xdy — ydx
C>
Now, since r (t) is in the zy-plane, it must be of the form
r(t)=[f(t),g(t),0]

As a result, the area swept out by r (¢) over the interval [a, b] is given by

1 rb dy dx
Area = 3 [ (%‘%)‘“
1 [ ' /
_ 5/a (F(t) g () —g(t) f' (t) dt

However, it is easy to see that

e x vl = f(t)g"(t) —g(t) f () (0.2)

Thus, the area swept out by r (¢) over the time interval [a, b] is

1 b
Area = 5/ [|lr x v||dt

EXAMPLE 1 Find the area swept out by
r (t) = [3cos(t),3sin(t),0]

over the time interval [0, 7] .

Solution: First, we compute r x v:
r xv=10,0,9

and then we compute

1 /" 1 (/7 1
Area:—/ ||r><v||dt:—/ 9dt = =97
2 J 2 )y 2

In fact, the region swept out by r (¢) is the upper half circle of radius
3, which indeed has an area of 97/2.

If r (¢) is a Keplerian motion, then we have already shown that r x v is constant.
Thus, if
L=]rxv]||

then the area swept out over a time interval [a, D] is

A —1/det—1L(b— )
Tea—2 ; —2 a

Suppose now that [p, g| is a time interval with the same length as [a, b]—that is,
that p — ¢ = b — a. Then clearly, we must have

%L(b—a)=%L(p—q)



which implies that the area swept out over the time interval [a, b] is the same as
the area swept out over the time interval [p, q] . That is, equal areas are swept out
in equal times.

Check Your Reading: What type of curve is given in example 17

The Lenz Vector

The energy and angular momentum constants can be used to obtain a particularly
nice form of the solutions, one that can subsequently be used to study orbits of
satellites and other celestial phenomena.

To begin with, lets write the energy and angular momentum conservation laws
in polar coordinates. In polar coordinates, r =ru, where u = [cos (9) ,sin (9),0].
It follows that

du de ,df
- — =u = 0.3
dt [ S (0) 7COS (9) 70] dt u dt ( )
It is then rather easy to show that
da df
=== 1
ux-— = [0,0,1]
Let’s now convert L = r X v into polar coordinates. The velocity v is
V*i(ru)*rd—u+ﬁu
dt Codt o dt
since r =r u. It follows that the angular velocity vector is
L = rxv
= rux r@ + ﬁ u
B dt — dt
d d
= 72 (uxd—ltl) +rd—:; (uxu)
Since u x u =0, (0.3) implies that
du de
=r? — ) =r— 1 4
L=r (uxdt> e [0,0,1] (0.4)
which further implies that the magnitude of L is
do
L=r*— 0.5
" (0.5)
Moreover, in polar coordinates, the acceleration vector is
_E
r’ = = :r_f [rcos (0),rsin (6),0]
from which we get
—k
"= = [cos (0) ,sin (), 0]
As a result, we have
" xL = —-[cos(0),sin(6),0] x rzd—e [0,0,1]
’)"2 ) ) dt ) )
do .
= —kJE [cos (0),sin (0),0] x [0,0,1]
do
= k [—sin#,cosb,0] pn (0.6)



Thus, from (0.3) we know that

But L is constant, so

%(r'xL):r”xL

Combining these last two equations yields

d du
il L) = k=—
a Vb= kg
which implies that for some constant b,
vxL=ku+b

Finally, since r =ru, we have u = r/r so that we get
k
VXL:;I‘—b (0.7)
The vector b in (0.7) is called the Lenz vector. From it we can derive the polar

equation of motion. To do so, we assume that p lies along the x-axis, so that the
angle between r and b is 6.

The dot product of r with the Lenz vector thus yields
k
r~(v><L):;(r-r)—r-b
However, a property of the cross and dot product implies that
rr(vxL) =L (rxv)=L-L=1L?

Moreover, since

L = %rzfrbcosw)

kr —rbcos (0)
= r(k—0bcos(9))

As a result, we have

L2
"T % —bcos (0)
If we now divide the numerator and denominator by k, then we have
B L?/k
1—2cos(0)

Thus, we let € = b/k and let p = L?/k. As a result, the equation of the orbit is

b

T 1—ccos (0) (0.8)

r



Check Your Reading: What type of orbit does (0.8) reduce to when ¢ = 07

Energy and Kepler’s 3rd law

Let’s derive two more very important concepts in the study of Kepler’s problem.
Equation (0.7) implies that the Lenz vector is given by

k
b= -r—vxL
r
while the energy equation says that

= =y — —
2 r
Let’s combine these two, along with the definition b = ke to find an equation
relating the eccentricity to the total energy H.
To begin with, let’s notice that

b-b = (Er—vxL)- (Er—vxL>
r T
k? k
- —r-r—2-r-(vxL)+(vxL) (vxL)
T r
E2e2 — k2f25(rxv).L+(vxL)~(vXL)
r

using the triple scalar product. By definition, L = r X v and as a consequence,
v L L. Thus, ||v x L|| = vLsin (§) = vL, so that

k
ke = K —2-L-L+|vxL|?
T
k
K2 e? = k2 —2=L%+%L7
T
1
= k*+2L? <—v2 - 5)
2 r
k%e? = K?*+4+2I°H
As a result, we have
L2 L2

g? =1+2H5 or e=\[1+2H
The relationship between energy and eccentricity is fundamental to Kepler’s
problem, as is Kepler’s third law, which follows from the fact that the equation of

the orbit is
p

1 —ecos (0)

where € = b/k and p = L?/k. The semi-major axis a satisfies the equation

r

r(0)+r(7) =2a

so that it follows that
'% p

1—e¢ * 1+e¢
Solving for the parameter p leads to

p=a(l—¢e?)




and since p = L?/k, we have
L*=a(l1-¢*k (0.9)

Now, we define T to be the period of the orbit—that is, the time required to
sweep out the entire ellipse. Thus, the area of the entire ellipse is

I 1
Area = - |lr x v||dt = - LT
2 Jo 2

However, the area of an ellipse is wab, where b is the semi-minor axis, which is
the greatest distance from the y-axis to the ellipse:

By definition, the focus F5 is a distance 2ea from Fi, so that by symmetry and
the Pythagorean theorem, we have

b=ay1—¢e2

As a result, we have
1
ma’y/1—e2 = §LT
which upon solving for T and squaring yields

dm?a* (1 —€?)

73 =172 (0.10)

Finally, we combine (0.9) with (0.10) to obtain

4m?a* (1 —€?)

73 =a(l-€)k
cancellation then yields
An?a® = kT?
which we rewrite as L
2 3
T = 4—7(_204

That is, the square of the period is proportional to the cube of the semi-major axis.

Check Your Reading: What is T in days for the earth’s orbit about the sun?

Orbits of Satellites

The basic idea in rocketry is that upon final engine cutoff, the rocket will have an
position rg and a velocity of vg. That is, at engine cutoff, a satellite will enter a
Keplerian orbit with an initial position of ry and an initial velocity of vy.



Thus, it is imperative that we know how to determine the equation of a Keplerian
orbit given only k, the initial velocity ro and the initial velocity vg. For convenience
in this task, we will measure all distances in miles and all times in seconds. Thus,
in terms of miles and seconds we have

£

k=GM =95,194. 14

and the radius of the earth as R = 3963 miles.
Given the initial data ro and vg, the angular velocity is easily determined as

L= ||I‘0 X V0||
However, in proving Kepler’s first law,
L?/k
r =
1 —ecos ()

the eccentricity ¢ arises as an arbitrary constant. Before Kepler’s laws can be
considered useful, we must have a means of determining the eccentricity from the
initial data ro and vg.

The eccentricity e, on the other hand, is the result of two calculations. First,

we use the energy equation
1, k
- ——=H 0.11
21) T ( )

to determine the total energy H, after which the eccentricity follows from

/ L2

which is verified in appendix 3. Notice that if H is positive, then ¢ > 1, if H =0,
then e = 1 and if H < 0, then ¢ < 1. Thus, elliptical orbits correspond to a negative
total energy, which is to say that the potential energy is always dominant.

EXAMPLE 2 Suppose that at time ¢ = 0, a satellite is observed to
have the initial data

ro = [0,4063,0] x [4,0,0] and vo = [4,0,0]
—that is, 100 miles above the earth traveling at 4 miles per second.
What is the equation of its orbit?
Solution: It is easy to show that
roxvg = [0,0, —16252]
so that the parameter L is given by

L= ||I‘0XVO|| = 16,252



Likewise, it is obvious that rq = 4063 miles and vg = 4. Thus, the
energy of the orbit is

1 E 1, 5 95194.14
H=-v}——=-(4)°" - ——— = —15.4295
305~ W 4063
and the eccentricity of the orbit is
16252)*
= J1+2(-15.4205) L2 317y
(95194. 14)

Because the orbit begins on the y-axis, we use sin () in place of cos ()
in the equation of the orbit.

L2k (16252)% / (95194. 14)

"T1-0317Lsin(9) 11— 0.3171sin (6)

which reduces to
2774.62

" T 1-0.317Lsin (0)

Unfortunately, the orbit in example 2 is not a very good orbit in the sense that
the rocket will definitely strike the earth. Indeed, as shown below, the rocket’s
orbit shown in black intercepts the “earth” shown in heavy blue.
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Let’s try again with slightly faster satellite.

EXAMPLE 3 Let ry = [4063,0,0] and suppose that
vo = [0,5,0]

—that is, let’s suppose it enters a Keplerian orbit at 5 miles per second.
What is the equation of the orbit?

Solution: In this case, L is
L = ||roxvo|| = ][0,0,20315]|| = 20,315

Likewise, it is obvious that rg = 4063 miles and vy = 5. Thus, the
energy of the orbit is

1 ko1 _, 95194.14
H= -2 =527 _ _10.9295
2%0 7 7 3 %) 4063



and the eccentricity of the orbit is

(20315)*

= 0.067
(95194. 14)

= \/1 +2(—10.9295)

This orbit begins on the x-axis, but let’s use — cos () in place of cos ():

B L?/k (20315)°/(95194.14)  4335.3427
~ 1+0.067cos(#)  14+0.067cos(d) 1+ 0.067cos(6)

which is shown below along with the “earth” shown in blue.
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Moreover, we can use Kepler’s third law to determine how long it
takes for the satellite to orbit the earth. In particular, we will show in
appendix 2 that

L?/k
1-—¢?
Consequently, for this orbit we have

(20315)% / (95194.14)
B — (0.067)2

so that by Kepler’s third law, we have

An? A
\/laB \/9519721 - (4354.892)° = 5852.49 sec

which is approximately an hour and 40 minutes.

= 4354.892

Exercises

Construct the ellipse corresponding to the given initial conditions. Does the object
ever hit the earth? If not, does it escape from the earth’s gravitational field? If
both questions have an answer of no, then determine the period of the satellite.

1. 1o =[4063,0,0], vo =[0,7,0] 2. 1= [5000,0,0], vo = [0,1,0]
3. ro=[4163,0,0], vo =[0,5,0] 4. ro=[4063,0,0], vo = [7,0,0]
5. 1o =[4163,0,0], vo =[0,7,0]

)
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The escape velocity of a particle at a distance ry from the earth’s center is
the speed vg necessary to make the total energy H equal to 0. Explain why
this is a good definition of escape velocity and then determine the escape
velocity of an object at the earth’s surface (rg = 3963).

When ry L vq, then L = rqug. Suppose that g = 4063 so that L = 4063vy.
What initial velocity vg will result in a circular orbit (i.e., ¢ = 0). How fast
is that in miles per hour, and what is the period of that orbit?

Verify (0.4).
Verify (0.6).



