Part 2: Area of a Parallelogram

In the last section, we saw that the 2 dimensional vectors u = á u1,u2,0 ñ and v = á v1,v2,0 ñ can be written in polar form as
u = á || u|| cos( a) ,|| u|| sin( a),0 ñ
v = á || v|| cos( b) ,|| v|| sin( b),0 ñ
       
Let's compute u×v in polar form using the formula (4):
u×v
=


0,0,
|| u|| cos( a)
|| u|| sin( a)
|| v|| cos( b)
|| v|| sin( b)


=
á 0,0,|| u|| cos( a)|| v|| sin( b) -|| v|| cos( b) || u|| sin(a) ñ
=
á 0,0,|| u|| || v||[ sin( b) cos( a) -sin(a) cos( b) ] ñ
Simplifying with the difference of two angles formula for the sine function yields
u×v = á 0,0,|| u|| || v|| sin( b-a) ñ
However, the angle q between u and v is related to b and a by q = | b-a| . In fact, the following can be shown:      

Theorem 3.3: If q is the angle formed by u and v, then
|| u×v|| = || u|| || v|| sin( q)             

       

Moreover, since a parallelogram can be cut into two parts which form a rectangle with height || v|| sin( q) and base || u|| ,

the area of the parallelogram formed by u and v is || u|| || v|| sin( q) . Thus, theorem 3.3 implies that


The latter result follows from the fact that u-v bisects the parallelogram formed by u and v.

       

EXAMPLE 3    Find the area of the triangle with vertices at P1( 2,2) , P2( 4,4) , and P3(6,1) .

Solution: It is easy to see that u = á2,2 ñ and v = á 4,-1 ñ . As vectors in R3, we have u = á2,2,0 ñ and v = á 4,-1,0 ñ . Thus, their cross product is

u×v
=


2
0
4
0
,
0
2
0
-1
,
2
2
4
-1


=
á 0,0,  2·( -1) -4·2   ñ
=
á 0,0,-10 ñ
Since the triangle has half of the area of the parallelogram formed by u and v, the area of the triangle is
Area = || u×v|| =  
1
2
02+02+(-10) 2
  = 5  units2

       

EXAMPLE 4    Find the area of the triangle with vertices P1( 3,0,2) , P2( 4,6,1) , and P3(0,5,4) .

Solution: To do so, we first construct the vectors u and v:
u  =  

P1P2

  = á4-3,6-0,1-2 ñ = á 1,6,-1 ñ
v  = 

P1P3

  = á0-3,5-0,4-2 ñ = á -3,5,2 ñ
As vectors in R3, we now have u = á2,2,0 ñ and v = á 4,-1,0 ñ . Thus, their cross product is
u×v
=


6
-1
5
2
,
-1
1
2
-3
,
1
6
-3
5


=
á 6·2-5·( -1) ,( -1) ·( -3) -2·1,1·5-( -3) ·6 ñ
=
á 17,1,23 ñ
Since the triangle has half of the area of the parallelogram formed by u and v, the area of the triangle is
Area = || u×v|| =  
1
2
172+22+232
  = 14.335  units2

Maple/Javaview Figure

           

Check your Reading: What is the area of the parallelogram spanned by u and v in example 4?