Exercises

Use a graphing calculator or computer algebra system to sketch each surface and then find the level surface representations of each of the following parametric equations.
1.
r = á vsin( u) ,vcos( u),v ñ
2.
r = á vsin( u),v,vcos( u) ñ
3.
r = á sin( u) cos( v),cos( u) ,sin( u) sin( v) ñ
4.
r = á sin( v) sin( u) ,cos( v) sin( u) ,cos(u) ñ
5.
r = á 2sin( u) cos( v),3cos( u) ,2sin( u) sin( v) ñ
6.
r = á 2sin( u)cos( v) ,2cos( u) ,sin( u) sin( v) ñ
7.
r = á sin( u) cosh( v),sinh( v) ,cos( u) cosh( v) ñ
8.
r = á sin( u)cosh( v) ,sin( u) sinh( v) ,cos( u) ñ
9.
r = á sec( u) sin( v),sec( u) cos( v) ,tan( u) ñ
10.
r = á vsin( u),vcos( u) ,v2sin( 2u) ñ
11.
r = á evsin( u) ,evcos(u) ,e-v ñ
12.
r = á sin( v) cos( u) ,sin( v) sin(u) ,sin2( v) cos( 2u) ñ

Find ru and rv for each of the following surfaces. Compute their dot product to determine if the parametrization is orthogonal or not.
13.
r = á vsin( u) ,vcos( u),uv ñ
14.
r = á vsin( u),v2,vcos( u) ñ
15.
r = á sin( u) cos( v),cos( u) ,sin( u) sin( v) ñ
16.
r = á sin( v)sin( u) ,cos( v) sin( u) ,cos(u) ñ
17.
r = á evsin( u) ,evcos(u) ,e-v ñ
18.
r = á 2sin( u) cos( v) ,2cos( u) ,sin(u) sin( v) ñ

Find the equation of the tangent plane to r(u,v)  at the point r( p,q) for the given ( p,q) . 
19.
r = á vsin( u) ,vcos( u),uv ñ
20.
r = á vsin( u),v2,vcos( u) ñ
( p,q) = ( p/3,1)
( p,q) = ( p/4,1)
21.
r = á vsin( u) ,vcos( u),v ñ
22.
r = á sin( v)sin( u) ,cos( v) sin( u) ,cos(u) ñ
( p,q) = ( p/6,2)
( p,q) = ( p/3,p/4)
23.
r = á evsin( u) ,evcos(u) ,e-v ñ
24.
r = á sin( u) cosh( v) ,sin( u) sinh(v) ,cos( u) ñ
( p,q) = ( p,1)
( p,q) = ( p,ln2)

Find the surface of revolution obtained by revolving the following surfaces about the x-axis. Then find ru and rv and determine if the parametrization is orthogonal.
25.
y = x,  x in [ 0,1]
26.
y = x+1,  x in [0,1]
27.
y = x-x2, x in [ 0,1]
28.
y = x-x3, xin [ 0,1]
29.
y = cosh( x) , x in [ -1,1]
30.
y = sin( x) , x in [ 0,p]

       

31. The helicoid is the surface parametrized by
r( u,v) = á sinh( v) cos(u) ,sinh( v) sin( u) ,u ñ
Graph the helicoid for (u,v) in [0,2p]×[0,1].  How is the helicoid related to a helix?  Is the parametrization orthogonal?

32. A catenoid is the surface parametrized by
r( u,v) = á cosh( v) cos(u) ,cosh( v) sin( u) ,v ñ
Graph both the catenoid and the helicoid in exercise 31.  How are they similar?  How do they differ?

33. A Mobius strip is a surface parametrized by
r( u,v) = cos( u) +vcos æ
è
 u
2
ö
ø
cos( u) ,sin( u) +vcos æ
è
 u
2
ö
ø
sin( u) ,vsin æ
è
 u
2
ö
ø
for u in [ 0,2p] and v in [ -0.3,0.3] . Graph the Mobius strip with either a graphing calculator or a computer. What is the parametrization of its tangent plane when u = p and v = 0.1? (see problem 31)

34. Show that every parametric equation of the form
r( u,v) = á f( v) cos(u) ,f( v) sin( u) ,f( v) ñ
is a parametrization of a section the cone x2+y2 = z2. Is the parametrization orthogonal?

35. Use an identity for the hyperbolic trigonometric functions to prove that
sech2( A) +tanh2( A) = 1
Then show that the Mercator parametrization
r( q,m) = á R sech( m) cos( q) ,R sech( m) sin( q) ,Rtanh( m) ñ
is indeed a parametrization of the sphere of radius R centered at the origin.

36. Show that r( t,u,v) = á sin( t) cos( v) ,cos( t) cos(v) ,sin( u) sin( v) ,cos( u)sin( v) ñ is a parametrization of the sphere in 4 dimensions given by
x2+y2+z2+w2 = 1

37. Find another parametrization of the sphere of radius R centered at the origin by revolving the upper half circle
y =
R2-x2
,    x  in  [ -R,R]
about the x-axis. Is the parametrization orthogonal?

38. If a curve r( v) = á 0,f(u) ,g( u) ñ for u in [ a,b] is revolved about the y-axis, then the resulting surface of revolution is parametrized by
r( u,v) = á g( u) sin(v) ,f( u) ,g( u) cos( v) ñ
where ( u,v) is in[ a,b] ×[ 0,2p] .

Find the parametrization of the torus which results from revolving the circle

r( u) = á 0,rcos( u) ,R+rsin( u) ñ
for u in [ 0,2p] about the y-axis, where R > r > 0 are constants.

39. Determine the longitude q0 and latitude j0 of your present location, and then use (2) to find rq, rj, and the equation of the tangent plane to the earth at your location.

40. Write to Learn: Find the formula for revolving y = f(x) , x in [ a,b] , about the z-axis. Present and explain your formula in a short essay.

41.  Write to Learn:  Stereographic projection assigns to each point (u,v,0) the point ( x,y,z) on the unit sphere that is on the line from the point (0,0,1) through the point (u,v,0) .

Use similar right triangles to show that stereographic projection leads to the following parameterization of the sphere.

r( u,v) =
 2u
u2+v2+1
,  2v
u2+v2+1
,  u2+v2-1
u2+v2+1