Part 1: Definition of the Integral

Iterated integrals are used primarily as a tool for computing double integrals, where a double integral is an integral of f( x,y) over a region R. In this section, we define double integrals and begin examining how they are used in applications.

To begin with, a set of numbers { x0,xj,rj} , j = 1,¼,m, is said to be a tagged partition of [a,b] if
a = x0 < x1 < x2 < ¼ < xm = b
and if xj-1 £ rj £ xj for all j = 1,...,m. Moreover, if we let Dxj = xj-xj-1, then the partition is said to be h-fine if Dxj £ h for all j = 1,¼,n.

If { x0,xj,rj} , j = 1,¼,m, is an h-fine tagged partition of [ a,b] , and if {y0,yk,tk} , k = 1,¼,n is a l-fine tagged partition of [ c,d] , then the rectangles [ xj-1,xj]×[ yk-1,yk] partition the rectangle [a,b] ×[ c,d] and the points (rj,tk) are inside the rectangles [ xj-1,xj]×[ yk-1,yk] .

The Riemann sum of a function f( x,y) over this partition of [ a,b] ×[ c,d] is

m
å
j = 1 
n
å
k = 1 
f( rj,tk) DxjDyk
We then define the double integral of f( x,y) over [ a,b] ×[ c,d]  to be the limit as h,l approach 0 of Riemann sums over h,l fine partitions:
 
[ a,b] ×[ c,d]
    f( x,y)dA =
lim
h® 0 

lim
l®0 
m
å
j = 1 
n
å
k = 1 
f( sj,tk) DxjDyk

To define the double integral over a bounded region R other than a rectangle, we choose a rectangle [ a,b] ×[ c,d] that contains R,

and we define g so that g( x,y) = f( x,y) if ( x,y) is in R and g( x,y) = 0 otherwise. The double integral of f( x,y) over an arbitrary region R is then defined to be

  f( x,y) dA = g( x,y) dA
R [ a,b] ×[c,d]

It then follows from the definition that the double integral satisfies the following properties:
R   [ f( x,y) +g( x,y) ] dA
=
R   f( x,y) dA + R   g( x,y) dA
(1)
[ f( x,y) -g( x,y) ] dA
=
R   f( x,y) dA-R   g( x,y) dA
(2)
R   kf( x,y) dA
=
kR   f( x,y) dA
(3)
where k is a constant.      

EXAMPLE 1    Evaluate the integral of f+g over R if
R   f( x,y) dA= 3    and    R   g( x,y) dA = 2
(4)

Solution: We use property (1) to write
R   [ f( x,y) +g( x,y) ] dA = R   f( x,y) dA + R   g( x,y) dA = 3+2 = 5

           

Check your Reading: What is the integral of f-g over R given (4)?