Part 4: Moments and Centers of Mass

If a solid S has a mass density of m( x,y,z) , then its first moments are defined to be
Myz =   xm( x,y,z) dV,    Mxz ym( x,y,z) dV 
Mxy  zm( x,y,z) dV
Since the mass of S is given by
M m( x,y,z) dV
the moments allow us to generalize the concept of center of mass to arbitrary solids. In particular, the center of mass of a solid with mass density m( x,y,z) is defined to be the point in R3 with coordinates
x
 =   Myz
M
,   
y
 =   Mxz
M
,   
z
 =   Mxy
M

       

EXAMPLE 7    Find the center of mass of the rectangular bar [ 0,1] ×[ 0,1] ×[ 0,3] when the mass density is given by
r( x,y,z) = 4-y    kg  per  meter
Solution: The mass of the box is
M ( 4-y) dV
The triple integral easily reduces to a system of 3 iterated integrals
M = ó
õ
1

0 
ó
õ
3

0 
ó
õ
1

0 
( 4-y) dzdydx = 7.5  kg
The remaining integrals are given by
Myz
=
x  r( x,y,z)dV = ó
õ
1

0 
ó
õ
3

0 
ó
õ
1

0 
( 4-y) x dzdydx
Mxz
=
y  r( x,y,z)dV = ó
õ
1

0 
ó
õ
3

0 
ó
õ
1

0 
( 4-y) y dzdydx
Mxy
=
z  r( x,y,z)dV = ó
õ
1

0 
ó
õ
3

0 
ó
õ
1

0 
( 4-y) z dzdydx
Evaluating these integrals and computing the coordinates of the center of mass yields
Myz
=
3.75  kg-m,       
x
 =   3. 75
7.5
= 0.5  m
Mxz
=
9  kg-m,       
y
 =   9
7.5
= 1.2  m
Mxy
=
3.75  kg-m,       
z
 =   3. 75
7.5
= 0.5  m
Thus, the center of mass is ( 0.5,1.2,0.5) .