If a solid S has a mass density of m( x,y,z) , then its first moments are defined to be
|
|
|
|
EXAMPLE 7 Find the center of mass of the rectangular bar [ 0,1] ×[ 0,1] ×[ 0,3] when the mass density is given bySolution: The mass of the box is
r( x,y,z) = 4-y kg per meter The triple integral easily reduces to a system of 3 iterated integrals
M = ![]()
( 4-y) dV The remaining integrals are given by
M = ó
õ1
0ó
õ3
0ó
õ1
0( 4-y) dzdydx = 7.5 kg Evaluating these integrals and computing the coordinates of the center of mass yields
Myz
=
![]()
x r( x,y,z)dV = ó
õ1
0ó
õ3
0ó
õ1
0( 4-y) x dzdydx
Mxz
=
![]()
y r( x,y,z)dV = ó
õ1
0ó
õ3
0ó
õ1
0( 4-y) y dzdydx
Mxy
=
![]()
z r( x,y,z)dV = ó
õ1
0ó
õ3
0ó
õ1
0( 4-y) z dzdydx Thus, the center of mass is ( 0.5,1.2,0.5) .
Myz
=
3.75 kg-m,
x = 3. 75 7.5
= 0.5 m
Mxz
=
9 kg-m,
y = 9 7.5
= 1.2 m
Mxy
=
3.75 kg-m,
z = 3. 75 7.5
= 0.5 m