Practice Test

Chapter 3

Name ____

Instructions. Show your work and/or explain your answers. (**Note:** Concepts from "DIFF GEOM" sections included only in the last problem).

1. Find the equation of the tangent plane to the level surface

$$x + z^2 = y + 1$$

at the point (2,2,1).

Solution: Since $x - y + z^2 = 1$, we let $U(x, y, z) = x - y + z^2$. Thus,

$$\nabla U = \langle 1, -1, 2z \rangle$$

The normal to the surface is $\mathbf{n} = \langle 1, -1, 2 \rangle$ and the equation is

$$1(x-2) - 1(y-2) + 2(z-1) = 0$$

which results in $z = -\frac{1}{2}x + \frac{1}{2}y + 1$.

2. Find the level surface representation of the parametric surface

$$\mathbf{r}(u,v) = \langle v \sin(u), v^2, v \cos(u) \rangle$$

Solution: Clearly, $x = v \sin(u)$, $y = v^2$, and $z = v \cos(u)$. We can eliminate u by noticing that

$$x^{2} + z^{2} = v^{2} \sin^{2}(u) + v^{2} \cos^{2}(u) = v^{2}$$

Since $y = v^2$, we eliminate v by noticing that $x^2 + z^2 = y$.

3. Find the level surface representation of the parametric surface

$$\mathbf{r}(u,v) = \langle e^u \cosh(v), e^u \sinh(v), e^{-u} \rangle$$

Solution: Clearly, $x = e^u \cosh(v)$, $y = e^u \sinh(v)$, and $z = e^{-u}$. To eliminate v we notice that

$$x^{2} - y^{2} = e^{2u} \cosh^{2}(v) - e^{2u} \sinh^{2}(v) = e^{2u} \left[\cosh^{2}(v) - \sinh^{2}(v)\right] = e^{2u}$$

To eliminate u, we notice that $z^2 = e^{-2u}$, so that

$$(x^2 - y^2) z^2 = e^{2u} e^{-2u} = 1$$

so that the surface is given by $x^2z^2 - y^2z^2 = 1$.

4. Find the parametric equation of the tangent plane to the parametric surface

$$\mathbf{r}(u,v) = \langle v \sin(u), v^2, v \cos(u) \rangle$$

at $(u, v) = (\frac{\pi}{4}, 1)$.

Solution: $\mathbf{r}_u = \langle v \cos(u), 0, -v \sin(u) \rangle$ and $\mathbf{r}_v = \langle \sin(u), 2v, \cos(u) \rangle$. Thus, we have

$$\mathbf{r}_{u}\left(\pi/4,1\right) = \left\langle \frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}\right\rangle \ \ and \ \ \mathbf{r}_{v}\left(\pi/4,1\right) = \left\langle \frac{1}{\sqrt{2}},2,\frac{1}{\sqrt{2}}\right\rangle$$

Since $\mathbf{r}(\pi/4,1) = \langle 1/\sqrt{2}, 1, 1/\sqrt{2} \rangle$, the parameterization of the tangent plane is

$$\mathbf{L}(du, dv) = \mathbf{r}(\pi/4, 1) + \mathbf{r}_{u}(\pi/4, 1) du + \mathbf{r}_{v}(\pi/4, 1) dv$$

$$= \left\langle \frac{1}{\sqrt{2}}, 1, \frac{-1}{\sqrt{2}} \right\rangle + \left\langle \frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}} \right\rangle du + \left\langle \frac{1}{\sqrt{2}}, 2, \frac{1}{\sqrt{2}} \right\rangle dv$$

$$= \left\langle \frac{1}{\sqrt{2}} + \frac{du}{\sqrt{2}} + \frac{dv}{\sqrt{2}}, 1 + 2dv, \frac{-1}{\sqrt{2}} - \frac{du}{\sqrt{2}} + \frac{dv}{\sqrt{2}} \right\rangle$$

5. Find the image of the unit square under the coordinate transformation

$$T(u,v) = \langle u^2 - v^2, 2uv \rangle$$

Solution: Since $x = u^2 - v^2$ and y = 2uv, we have

$$v = 0: x = u^2, y = 0 \Longrightarrow x \ge 0$$

$$u = 1: x = 1 - v^2, y = 2v \Longrightarrow x = 1 - \frac{y^2}{4}$$

$$v = 1: x = u^2 - 1, y = 2u \Longrightarrow x = \frac{y^2}{4} - 1$$

$$u = 0: \quad x = -v^2, y = 0 \Longrightarrow x \le 0$$

Putting them all together yields the following region:

6. Find the matrix of rotation through an angle of $\theta = 45^{\circ}$. Then use this to rotate the line v = u + 1 through an angle of 45° .

Solution: The rotation matrix is

$$R_{\pi/4} = \begin{bmatrix} \cos\left(\frac{\pi}{4}\right) & -\sin\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$$

Thus, rotation of the vector $\langle u, v \rangle$ results in

$$T\left(u,v\right) = \left[\begin{array}{cc} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right] = \left[\begin{array}{c} \frac{1}{2}\sqrt{2}u - \frac{1}{2}\sqrt{2}v \\ \frac{1}{2}\sqrt{2}u + \frac{1}{2}\sqrt{2}v \end{array}\right]$$

That is, $x = \frac{1}{2}\sqrt{2}u - \frac{1}{2}\sqrt{2}v$ and $y = \frac{1}{2}\sqrt{2}u + \frac{1}{2}\sqrt{2}v$. Since v = u + 1, we get

$$x = \frac{1}{2}\sqrt{2}u - \frac{1}{2}\sqrt{2}(u+1) = -\frac{\sqrt{2}}{2}$$

$$y = y = \frac{1}{2}\sqrt{2}u + \frac{1}{2}\sqrt{2}(u+1) = \sqrt{2}u + \frac{1}{2}\sqrt{2}$$

Thus, v = u + 1 is mapped to the line $x = \frac{-\sqrt{2}}{2}$.

7. Convert the following into polar coordinates and solve for r:

$$y = 3x + 1$$

Solution: Since $x = r \cos(\theta)$ and $y = r \sin(\theta)$, we have

$$r \sin(\theta) = 3r \cos(\theta) + 1, \qquad r = \frac{1}{\sin \theta - 3 \cos \theta}$$

2

8. Convert the following into polar coordinates and solve for r:

$$x^2 + y^2 = x + y$$

Solution: $r^2 = r \cos(\theta) + r \sin(\theta)$ implies that

$$r = \cos(\theta) + \sin(\theta)$$

9. Sketch the graph of $r=4\pi-\theta$ in polar coordinates when θ is in $[0,4\pi]$. Then find and sketch the tangent vector to the curve when $\theta=\pi$

Solution: To sketch the curve, we use a table of values of r versus θ :

$$\theta \qquad 0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \qquad 2\pi \qquad \frac{5\pi}{2} \qquad 3\pi \qquad \frac{7\pi}{2} \qquad 4\pi$$

$$r \quad 4\pi \approx 12.57 \quad \frac{7\pi}{2} \approx 11.0 \quad 3\pi \approx 9.42 \quad \frac{5\pi}{2} \approx 7.85 \quad 2\pi \approx 6.28 \quad \frac{3\pi}{2} \approx 4.71 \quad \pi \approx 3.14 \quad \frac{\pi}{2} \approx 1.57 \quad 0$$

We plot the points in polar coordinates to obtain the curve.

The Jacobian in polar coordinates yields the tangent vector:

$$\mathbf{v} = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \begin{bmatrix} r'(\theta) \\ 1 \end{bmatrix}$$

Since $r(\pi) = 3\pi$ and $r'(\theta) = -1$, we have

$$\mathbf{v} = \begin{bmatrix} \cos(\pi) & -3\pi\sin(\pi) \\ \sin(\pi) & 3\pi\cos(\pi) \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3\pi \end{bmatrix}$$

That is, the tangent vector is $\mathbf{v} = \langle 1, -3\pi \rangle$, which is shown in the plot above.

10. Find the Jacobian determinant and area differential of the coordinate transformation

$$T(u,v) = \langle u - v, u^2 + v^2 \rangle$$

Solution: Since x = u - v and $y = u^2 + v^2$, the jacobian is

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$
$$= 1 \cdot 2v - (-1) \cdot 2u$$
$$= 2u + 2v$$

Thus, the area differential is dA = |2u + 2v| dudv.

11. What is the unit surface normal for the surface $x^2 + y^2 + z^2 = 2x$? What is the unit surface normal for the surface in *cylindrical* coordinates?

Solution: Writing $x^2 + y^2 + z^2 - 2x = 0$ leads us to define $U = x^2 + y^2 + z^2 - 2x$. Thus, $\nabla U = \langle 2x - 2, 2y, 2z \rangle$ and

$$\|\nabla U\| = \sqrt{(2x-2)^2 + 4y^2 + 4z^2}$$

$$= \sqrt{4x^2 - 8x + 4 + 4y^2 + 4z^2}$$

$$= \sqrt{4(x^2 - 2x + y^2 + z^2) + 4}$$

$$= \sqrt{4(0) + 4}$$

$$= 2$$

Thus, the unit surface normal is

$$\mathbf{n} = \frac{\nabla U}{\|\nabla U\|} = \langle x - 1, y, z \rangle \tag{1}$$

In cylindrical coordinates, $U = r^2 + z^2 - 2r\cos(\theta)$ and the gradient is given by

$$\nabla U = U_r \mathbf{e}_r + \frac{1}{r} U_\theta \mathbf{e}_\theta + U_z \mathbf{k}$$

where $\mathbf{e}_r = \langle \cos(\theta), \sin(\theta), 0 \rangle$ and $\mathbf{e}_{\theta} = \langle -\sin(\theta), \cos(\theta), 0 \rangle$. Thus, in cylindrical coordinates, we have

$$\nabla U = (2r - 2\cos(\theta)) \langle \cos(\theta), \sin(\theta), 0 \rangle + \frac{1}{r} (2r\sin(\theta)) \langle -\sin(\theta), \cos(\theta), 0 \rangle + 2z \langle 0, 0, 1 \rangle$$

$$= \langle 2r\cos(\theta) - 2\cos^2(\theta), 2r\sin(\theta) - 2\cos(\theta)\sin(\theta), 0 \rangle + \langle -2\sin^2(\theta), 2\sin(\theta)\cos(\theta), 0 \rangle + \langle 0, 0, 2z \rangle$$

$$= \langle 2r\cos(\theta) - 2(\cos^2(\theta) + \sin^2(\theta)), 2r\sin(\theta) - 2\cos(\theta)\sin(\theta) + 2\cos(\theta)\sin(\theta), 2z \rangle$$

$$= \langle 2r\cos(\theta) - 2, 2r\sin(\theta), 2z \rangle$$

That is, $\nabla U = \langle 2r\cos(\theta) - 2, 2r\sin(\theta), 2z \rangle$, and as shown above, $\|\nabla U\| = 2$, so that

$$\mathbf{n} = \frac{\nabla U}{\|\nabla U\|} = \langle r\cos(\theta) - 1, r\sin(\theta), z \rangle$$

Notice that you could have obtained the same result by simply applying cylindrical coordinates to (1).

12. Find the pullback of the surface $x^2 + y^2 + z^2 = 2x$ into spherical coordinates, and then use the result to construct a parameterization of the surface.

Solution: In spherical coordinates, $\rho^2 = x^2 + y^2 + z^2$, $r = \rho \sin(\phi)$ and $x = r \cos(\theta) = \rho \sin(\phi) \cos(\theta)$. Thus, the surface becomes

$$\rho^2 = \rho \sin(\phi) \cos(\theta)$$
 or $\rho = \sin(\phi) \cos(\theta)$ for $\rho \neq 0$

Since also $y = \rho \sin(\phi) \sin(\theta)$ and $z = \rho \cos(\phi)$, the parameterization of the surface is

$$\mathbf{r}(\phi, \theta) = \langle \rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi) \rangle$$
$$= \langle \sin^2(\phi) \cos^2(\theta), \sin^2(\phi) \cos(\theta) \sin(\theta), \sin(\phi) \cos(\phi) \cos(\theta) \rangle$$

13. Use the fundamental form of the plane in polar coordinates to find the length of the polar curve $r = e^{-\theta/4}$, θ in $[0, 2\pi]$.

Solution: The fundamental form of the plane in polar coordinates is given by

$$ds^2 = dr^2 + r^2 d\theta^2$$

which leads to an arclength formula of

$$L = \int_{a}^{b} \frac{ds}{d\theta} d\theta = \int_{0}^{2\pi} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

Substituting $r = e^{-\theta/4}$ and $r' = -e^{-\theta/4}/4$ leads to

$$L = \int_0^{2\pi} \sqrt{e^{-\theta/2} + \frac{1}{16}e^{-\theta/2}} d\theta$$

$$= \int_0^{2\pi} e^{-\theta/4} \sqrt{1 + \frac{1}{16}} d\theta$$

$$= \sqrt{\frac{17}{16}} \left. \frac{e^{-\theta/4}}{-1/4} \right|_0^{2\pi}$$

$$= -e^{-\frac{1}{2}\pi} \sqrt{17} + \sqrt{17}$$

14. Find the fundamental form of the surface $\mathbf{r}(u, v) = \langle v \sin(u), v \cos(u), v \rangle$. Then use it to compute the arclength of

$$v = \sin\left(\frac{u}{\sqrt{2}}\right), u in \left[0, \frac{\pi}{4}\right]$$

Solution: $\mathbf{r}_{u} = \langle v \cos(u), -v \sin(u), 0 \rangle$ and $\mathbf{r}_{v} = \langle \sin(u), \cos(u), 1 \rangle$. Thus,

$$g_{11} = \mathbf{r}_u \cdot \mathbf{r}_u = v^2 \cos^2(u) + v^2 \sin^2(u) = v^2$$

$$g_{12} = \mathbf{r}_u \cdot \mathbf{r}_v = v \cos(u) \sin(u) - v \sin(u) \cos(u) = 0$$

$$g_{22} = \mathbf{r}_v \cdot \mathbf{r}_v = \sin^2(u) + \cos^2(u) + 1 = 2$$

Thus, the fundamental form is

$$(ds)^2 = v^2 (du)^2 + 2 (dv)^2$$

and correspondingly, the arclength integral is

$$L = \int_0^{\pi/4} \sqrt{v^2 + 2\left(\frac{dv}{du}\right)^2} \, du$$

Since $dv/du = \cos(u/\sqrt{2})/\sqrt{2}$, the arclength is

$$L = \int_0^{\pi/4} \sqrt{\sin^2\left(\frac{u}{\sqrt{2}}\right) + \frac{2}{\left(\sqrt{2}\right)^2}\cos^2\left(\frac{u}{\sqrt{2}}\right)} du$$
$$= \int_0^{\pi/4} \sqrt{\sin^2\left(\frac{u}{\sqrt{2}}\right) + \cos^2\left(\frac{u}{\sqrt{2}}\right)} du$$
$$= \int_0^{\pi/4} du = \frac{\pi}{4}$$

- 15. DIFF GEOM: For the right circular cone, $\mathbf{r}(r,\theta) = \langle r\cos(\theta), r\sin(\theta), r \rangle$, do the following:
 - (a) Show that curves of the form $\theta = k$ for k constant are geodesics on the cone. What are these curves?
 - (b) Find the fundamental form of the cone and calculate the shortest distance between the points with coordinates $(r, \theta) = (1, \pi)$ and $(r, \theta) = (3, \pi)$.

- (c) What are the principal curvatures of the surface?
- (d) What are the mean and Gaussian curvatures of the surface? Do you obtain the same Gaussian curvature if you use the theorem Egregium?

Solution: (a) Curves of the form $\theta = k$ are parameterized by

$$\boldsymbol{\rho}(t) = \langle r(t)\cos(k), r(t)\sin(k), r(t) \rangle$$

for some unknown function r(t), and the acceleration is $\boldsymbol{\rho}''(t) = \langle r'' \cos(k), r'' \sin(k), r'' \rangle$. However, $\mathbf{r}_r = \langle \cos(\theta), \sin(\theta), 1 \rangle$ and $\mathbf{r}_{\theta} = \langle -r \sin(\theta), r \cos(\theta), 0 \rangle$. Clearly, we have

$$\boldsymbol{\rho}'' \cdot \mathbf{r}_r = r'' \cos^2(k) + r'' \sin^2(k) + r'' = r''$$
 and $\boldsymbol{\rho}'' \cdot \mathbf{r}_\theta = 0$

If r'' = 0, then r(t) = pt + c for constants p and c. Thus, $\theta = k$ constant and r = mt + b for m, b constant parameterizes a geodesic, which implies that $\theta = k$ for k constant is a geodesic. These are straight lines on the cone that pass through the origin.

(b) Since $\mathbf{r}_r = \langle \cos(\theta), \sin(\theta), 1 \rangle$ and $\mathbf{r}_{\theta} = \langle -r\sin(\theta), r\cos(\theta), 0 \rangle$, we have $g_{11} = \mathbf{r}_r \cdot \mathbf{r}_r = 2$ and $g_{22} = \mathbf{r}_{\theta} \cdot \mathbf{r}_{\theta} = r^2$ with $g_{12} = 0$ (the parameterization is orthogonal). Thus, the fundamental form is

$$ds^2 = 2dr^2 + r^2d\theta^2$$

However, on $\theta = k$, the differential $d\theta = 0$, so that we have

$$ds = \sqrt{2}dr$$

Since r ranges from 1 to 3, this implies that

$$L = \int_{1}^{3} \sqrt{2} dr = 2\sqrt{2}$$

(c) Since $\mathbf{r}_r \times \mathbf{r}_\theta = \langle -r \cos \theta, -r \sin \theta, r \rangle$, the surface normal is

$$\mathbf{n} = \frac{\mathbf{r}_r \times \mathbf{r}_{\theta}}{\|\mathbf{r}_r \times \mathbf{r}_{\theta}\|} = \frac{1}{\sqrt{2}} \left\langle -\cos\left(\theta\right), -\sin\left(\theta\right), 1 \right\rangle$$

Since $\mathbf{r}_{rr} = \mathbf{0}$, $\mathbf{r}_{r\theta} = \langle -\sin(\theta), \cos(\theta), 0 \rangle$ and $\mathbf{r}_{\theta\theta} = \langle -r\cos(\theta), -r\sin(\theta), 0 \rangle$, the normal curvature of the cone is given by

$$\kappa_{n}(\xi) = \frac{\mathbf{r}_{rr} \cdot \mathbf{n}}{\|\mathbf{r}_{r}\|^{2}} \cos^{2}(\xi) + \frac{\mathbf{r}_{r\theta} \cdot \mathbf{n}}{\|\mathbf{r}_{r}\| \|\mathbf{r}_{\theta}\|} \sin(2\xi) + \frac{\mathbf{r}_{\theta\theta} \cdot \mathbf{n}}{\|\mathbf{r}_{\theta}\|^{2}} \sin^{2}(\xi)$$

$$= \frac{\langle -\sin(\theta), \cos(\theta), 0 \rangle \cdot \langle -\cos(\theta), -\sin(\theta), 1 \rangle}{r\sqrt{2}} \sin(2\xi) + \frac{\langle -r\cos(\theta), -r\sin(\theta), 0 \rangle \cdot \langle -\cos(\theta), -\sin(\theta), 1 \rangle}{r^{2}\sqrt{2}} \sin^{2}(\xi)$$

$$= \frac{r}{r^{2}\sqrt{2}} \sin^{2}(\xi)$$

$$= \frac{1}{r\sqrt{2}} \sin^{2}(\xi)$$

Thus, the principal curvatures occur when $\xi = 0$ and when $\xi = \pi/2$, and are correspondingly

$$\kappa_1 = 0 \qquad and \qquad \kappa_2 = \frac{1}{r\sqrt{2}}$$

(d) The mean curvature is

$$H = \kappa_1 + \kappa_2 = \frac{1}{r\sqrt{2}}$$

and the Gaussian curvature is 0 since $\kappa_1 = 0$. Using the theorem Egregium, we would obtain

$$K = \frac{-1}{2\sqrt{g}} \left[\frac{\partial}{\partial \theta} \left(\frac{g_{11,\theta}}{\sqrt{g}} \right) + \frac{\partial}{\partial r} \left(\frac{g_{22,r}}{\sqrt{g}} \right) \right]$$

where $g_{11} = 2$, $g_{22} = r^2$, and $g = g_{11}g_{22} = 2r^2$. Thus,

$$K = \frac{-1}{2r\sqrt{2}} \left[\frac{\partial}{\partial \theta} \left(\frac{0}{\sqrt{g}} \right) + \frac{\partial}{\partial r} \left(\frac{2r}{r\sqrt{2}} \right) \right]$$
$$= \frac{-1}{2r\sqrt{2}} \left[\frac{\partial}{\partial \theta} \left(0 \right) + \frac{\partial}{\partial r} \left(\frac{2}{\sqrt{2}} \right) \right]$$
$$= 0$$

Thus, the cone is a surface that can be "made with a piece of paper" without stretching or tearing the paper.