MATH 1530 CAPSTONE TECHNOLOGY PROJECT
SPRING 2017

Problem 1: Identify Variable Type. Which of these questions from the class survey produced variables that are categorical and which are quantitative? Use your word processor to underline/highlight the best option.
a. CHILDREN

Categorical
Quantitative
State an appropriate plot for this variable: Boxplot or Histogram
b. RELATIONS
Categorical

Quantitative
State an appropriate plot for this variable: Bar graph or Pie Chart
c. CLASS

Categorical
Quantitative
State an appropriate plot for this variable: Bar graph or Pie Chart

Problem 2: Sampling. In the survey data, the variable "NUMBER" is the favorite number between 0 and 50 for each student.
a. Type the last 10 observations from the column representing the variable NUMBER into the table below, and use this as your sample data for part (b). Then calculate the mean favorite number of these last 10 observations and report the value below.

N	1	2	3	4	5	6	7	8	9	10
NUMBER	7	13	41	22	39	3	31	12	7	8

b. The mean favorite of the last 10 students is 18.3. (Type the value into the space provided.)
c. Next, select a random sample of size $\mathrm{n}=10$ (Go to Calc > Random Data > Sample from Columns). Type the number 10 in the "Number of rows to Sample" slot. Enter the variable "ID" and "NUMBER" into the "From columns" slot. Enter C17-C18 into the "Store samples in" slot. Record the data for your sample in the table below.

| N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | 267 | 53 | 441 | 582 | 75 | 432 | 768 | 139 | 774 | 710 |
| NUMBER | 33 | 22 | 13 | 21 | 3 | 6 | 41 | 23 | 7 | 30 |

d. Calculate and report the mean favorite number for your random sample of 10 students. The sample mean favorite number is 19.9. ANSWERS WILL VARY
e. Suppose we think of all the students who responded to the survey as a population for the purposes of this problem. In that case, the population mean favorite number is 16.454. Discuss (two or more complete sentences) the differences and similarities between 16.454 and the answers you got in (b) and (d).
Instructors will need a bit of fibility in ow to interpret this one's answer.
The 'convenience sample' mean found in (b.) To. worestimates the 'population' mean 16.454, but that hardly matters. As it is not a random vole, there is no long-run guarantee that means from such samples would or would not come close to the population in v. The oRS' mean found in part (d.) of 19.9 is above the population mean of 16.454. However, in trang, tho 'roution of sample means centered around the population mean. Students may further remark rat more sal ples would have a more even mix of \bar{x} values above and below the population mean.

Problem 3(e): If your E number ends in an even number ($0,2,4,6$, or 8) then do this question. (Omit this page/problem if your E\# ends with an odd number.)

Question 1 of the SPRING 2017 survey asked students, "What is your age (in years)?"
a. Create an appropriate graph to display the distribution of the variable called AGE and insert it here.

b. Which of the following best describes the shape of the distribution? Underline (or highlight) your answer.

Skewed left Uniform Skewed right Bimodal Symmetric
c. Using Minitab, calculate the basic statistics for the data collected on AGE. Copy and paste all of the Minitab output here.

Descriptive Statistics: AGE

| | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | N | N^{*} | Mean | SE Mean | StDev | Variance | Minimum | Q1 | Median | Q3 | |
| AGE | 775 | 0 | 20.493 | 0.187 | 5.215 | 27.199 | 12.000 | 18.000 | 19.000 | 20.000 | 58.000 |

Variable	$I Q R$
AGE	2.000

Choose statistics that are appropfiate for the shape of the distribution to describe the center and spread of AGE.
d. Which statistic will you use to describe the center of the distribution? Median
e. In one or two sentences, describe why this statistic was chosen. Since the shape of the distribution is skewed right, the median should be used to describe the center of the distribution instead of the mean because the median is robust to outliers while the mean is highly affected by outliers.
f. What is the value of that statistic? 19
g. Which statistic(s) will you use to describe the spread of the distribution? Q1, Q3, and possible IQR
h. What is (are) the value(s) of that (those) statistic(s)? $Q 1=18, Q 3=20$, and possible $\operatorname{IQR}=2$
i. Are there any outiers in this distribution? Justify your answer using the IQR rule or an appropriate plot

IQR rule says that any value below Q1 - 1.5*IQR or above Q3 + 1.5*IQR are outliers,
IQR = Q3- Q1 $=20-18=2$, so 1.5 * $1 Q R=1.5 * 2=3$.
Q1-1.5*IQR $=18-3=15$ and $Q 3+1.5^{*} \operatorname{lQR}=20+3=23$
Any value of 'AGE' below 15 or above 23 would be considered outliers.

Yes, there are definitely outliers in the distribution of 'AGE.'

Minitab shows outliers with * on a boxplot:

Problem 3(0): If your E number ends in an odd number ($1,3,5,7$, or 9) then do this question. (Omit this page/problem if your E \# ends with an even number.)

Question 4 of the SPRING 2017 survey asked students, "Approximately, how many phone calls do you make per day?"
a. Create an appropriate graph to display the distribution of the variable called CALLS and insert it here.

b. Which of the following best describes the shape of the distribution? Underline (or highlight) your answer. Skewed left

Uniform
Skewed right
Bimodal
Symmetric
c. Using Minitab, calculate the basic statistics for the data collected on CALLS. Copy and paste all of the Minitab output here.

Descriptive Statistics: CALLS

Choose statistics that are appropriate for the shape of the distribution to describe the center and spread of CALLS.
d. Which statistic will you use to describe the center of the distribution? Median
e. In one or two sentences, describe why this statistic was chosen. Since the shape of the distribution is skewed right, the median should be used to describe the center of the distribution instead of the mean because the median is robust to outliers while the mean is highly affected by outliers.
f. What is the value of that statistic? 3
g. Which statistic(s) will you use to describe the spread of the distribution? Q1, Q3, and possible IQR
h. What is (are) the value(s) of that (those) statistic(s)? $Q 1=2, Q 3=5$, and possible IQR $=3$
i. Are there any outliers in this distribution? Justify your answer using the IQR rule or an appropriate plot

IQR rule says that any value below Q1 - 1.5*IQR or above Q3 + 1.5*IQR are outliers,
$\operatorname{IQR}=\mathrm{Q} 3-\mathrm{Q} 1=5-2=3$, so 1.5 * $\mathrm{QR}=1.5 * 3=4.5$.
Q1-1.5* $\mathrm{IQR}=2-4.5=-2.5$ and $Q 3+1.5 * \operatorname{lQR}=5+4.5=9.5$
Any value of 'CALLS' below - 2.5 or above 9.5 would be considered outliers.

Yes, there are definitely outliers in the distribution of 'CALLS.'

Minitab shows outliers with * on a boxplot:

Problem 4: CLASS versus AGE. Question 1 of the survey asked students, "What is your age (in years)?" Question 2 of the survey asked students, "What is your classification in college? (Freshman/first-year, Sophomore, Junior, Senior)"
a. Create a suitable graph to display the distribution of CLASS and insert it here.

Note: Other appropriate graph(s) may have been proc ced.
b. What is the mode of this distribution? (Please underline one option.)

> Freshman/first-year
c. Create a side-by-side boxplot to display the age of students for the different levels of CLASS. (Go to Graph > Boxplot > One Y with Groups > OK. Select AGE for the "Graph variables" slot and CLASS for the "Categorical variables for grouping" slot.) Insert your graph here.

Use the side-by-side boxplot found in part (c) to answer the following questions.
d. Which class has the oldest student? Senior
e. Which class has the youngest student? Junior
f. Which class has the largest IQR? Senior

Problem 5: MILES vs. GAS. On the SPRING 2017 Math 1530 survey, question 12 asked students, "Approximately, how many miles do you live from campus? (Enter 0 if you live on campus)" and question 13 asked students, "Approximately, how do you spend on gas (in U.S. dollars) a week?" We are interested in seeing whether we can use the number of miles to predict the amount of dollars spent on gas for a week.
a. Create an appropriate graph to display the relationship between MILES and GAS. Insert it here.

b. Does the plot show a positive association, a negative association, or no association between these two variables? EXPLAIN what this means with respect to the variables being studied.

Positive association: As miles increases, the nount you nd on gas in a week increases.

c. Describe the form of the relationship between MILES and GAS.

Linear

d. Report the value of the correlation between this pair of variables? $r=0.494$
e. Based on the information displayed in the graph and the correlation you just reported, how would you describe the strength of the association?

The strength is fa
modera
f. Using Minitab, obtain the equation for the least squares regression of GAS against MLLES. Copy \& paste the output here.

```
The regression equation is
```

GAS $=16.11+0.4824$ MILES
g. Interpret the value of the slope in the least squares regression equation you found in part (f).

For every additional mile lived from campus, the estimated dollars spent on gas in week increase by $\$ 0.4824$.
h. Use the regression equation in part (f) to predict amount of dollars spent on gas for a week for a student that lives 5 miles from campus. (Show your math.)

Predicted amount of dollars $=16.11+0.4824^{*} 5=\$ 18.52$
i. How well does the regression equation fit the data? Explain. Justify your answer with appropriate plot(s) and summary statistics.

The association is a weak one and can be so clearly in fitted line plot. There are several points that are scattered far away from the regression line. Thin quared conelation $\left(R^{2}\right)$ indicates that 24.3% of the variation we observed in amount spent on gas in a week is olained by the linear relationship with the number of miles a student lives from campus.

Note: Another scatterplot that is useful to see whether the model makes sense is the residual plot. This helps in determining the appropriateness of the regression model. Recall that the residuals are Residual = Observed Data - Predicted Data. The residual plot shouldn't have any interesting features, like direction or shape. It should stretch horizontally with about the same amount of scatter about the horizontal line at 0 . There should be no bends and no outliers. We see that the plot above may possibly be cause to worry.

Problem 6 (T): Flip a fair coin. If it lands on tails do this problem (Omit this page/problem AND DO PROBLEM 6(H) if it lands on heads.)

LGBT AND AGE GROUP Question 9 from the SPRING 2017 Math 1530 survey asked students "In the U.S., more Americans are identifying as LGBT. Do you, personally, identify as lesbian, gay, bisexual, or transgender? (Yes, No)" and Question 1 of the survey asked students, "What is your age (in years)?" This variable was divided into three age groups: Ages "12 to 20 ", " 21 to 25 ", and "Over 25 ". We named this variable AGE GROUP. We want to check if there is a relationship between LGBT AND AGE GROUP among ETSU students. Assume the students who took the (SPRING 2017 Math 1530) class survey are from an SRS of ETSU students.
a. Create an appropriate graph to display the relationship between LGBT and AGE GROUP Insert your graph here.

b. Create an appropriate two-way table to summarize the data. Insert your table here. (IN MINITAB: STAT \rightarrow TABLES \rightarrow CROSS TABULATION AND CHI-SQUARE, Make sure to select "Options" and click "No variables" under the Display missing values for").

Tabulated Statistics: LGBT, AGE GROUP

SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.)
c. What is the probability that this student identifies as LGBT and is aged 12 to 20 ?
$P=59 / 775=0.0761=7.61 \%$
d. What is the probability that this student identifies as LGBT or is aged 12 to 20 ?
$\mathrm{P}=(72+597-59) / 775=0.7871=78.71 \%$
e. What is the probability that this student does not identify as LGBT given that the student is aged over 25 ? $P=60 / 66=0.9091=90.91 \%$
f. What is the probability that this student is aged over 25 given that the student does not identify as LGBT? $P=60 / 703=0.0853=8.53 \%$

Problem $6(\mathrm{H})$: Flip a fair coin. If it lands on heads do this problem (Omit this page/problem AND DO PROBLEM 6(T) if it lands on tails.)

GUNS AND TERRORISM Question 10 from the SPRING 2017 Math 1530 survey asked students "Are you satisfied with America's law or policies on guns? (Yes, No)" and Question 11 from the SPRING 2017 Math 1530 survey asked students "Are you satisfied with America's security with terrorism? (Yes, No)" We want to check if there is a relationship between GUNS and TERRORISM among ETSU students. Assume the students who took the (SPRING 2017 Math 1530) class survey are from an SRS of ETSU students.
a. Create an appropriate graph to display the relationship between GUNS and TERRORISM. Insert your graph here.

b. Create an appropriate two-way table to summarize the data. Insert your table here. (IN MINITAB: STAT \rightarrow TABLES \rightarrow CROSS TABULATION AND CHI-SQUARE. Make sure to select "Options" and click "No variables" under the Display missing values for").

Tabulated Statistics: GUNS, TERRORISM

SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.)
c. What is the probability that this student is satisfied with America's law or policies on guns and the student is satisfied with America's security with terrorism?
$P=234 / 775=0.3019=30.19 \%$
d. What is the probability that this student is satisfied with America's law or policies on guns or the student is satisfied with America's security with terrorism?
$P=(451+315-234) / 775=0.6865=68.65 \%$
e. What is the probability that this student is satisfied with America's law or policies on guns given that the student is not satisfied with America's security with terrorism?
$P=217 / 460=0.4717=47.17 \%$
f. What is the probability that this student is not satisfied with America's security with terrorism given that this student is satisfied with America's law or policies on guns?
$P=217 / 451=0.4812=48.12 \%$

Problem 7: In 2013, Gallup found that the ideal number of children Americans want is 2.6 children per family. (http://www.gallup.com/poll/164618/desire-children-norm.aspx). Question 3 of the survey asked students, "What is your ideal number of children? " A professor feels that this number may be lower for college students. Is ETSU student's ideal number of children, on average, less than 2.6 children?
a. Create a suitable graph to display the distribution of CHILDREN reported by our sample of college students and insert it here.

Perform a test of significance to see if ETSU college student's ideal number of children, on average, is lower than the 2.6 children reported by Gallop using $\alpha=0.05$.
b. Write the correct null and alternative hypothesis for the test: $H_{0}: \mu=2.6$ children versus $H_{a}: \mu<2.6$ children
c. Use Minitab to perform the appropriate test. Copy and paste the output for the test here.

One-Sample T: CHILDREN

Test of $\mu=2.6 \mathrm{vs}<2.6$

d. What is the name of your test statistic and what is its value? t test statistic, $t=-7.84$
e. What is the P-value for the test? $P=0.000$
f. State your decision regarding the hypotheses being tested.

Because the P-value $=0.000$ is small, we reject the null hypothesis. We believe $\mathrm{H}_{\mathrm{a}}: \mu<2.6$ children.

g. State your conclusion. USE COMPLETE SENTENCES.

Based on the sample data provided, we did reject the null hypothesis. We believe that ETSU students' ideal number of children, on average, is less than the reported 2.6 children reported by Gallup.
h. Is the P-value valid in this case?
i. What assumptions are you making in order to carry out this test?

Combined answer for part (h) and (i): ASSUMING the sample of ETSU college students fr η th wath 30 survey can be treated as a random/representative sample of college students, the s nple size, $\mathrm{n}=77$, is large enough for the t-statistic to be valid.

Bonus Problem: Question 13 on the SPRING 2017 Math 1530 asked, "What is your religious identification? (Protestant/Other Christian, Catholic, Mormon, Jewish, Muslim, Other Non-Christian religion, None/Atheist/Agnostic)" The Gallup took a survey of U.S. adults in December 2016 and reported that and reported that 18.2% of U.S. adults said their religion identification was None/Atheist/Agnostic (http://www.gallup.com/poll/200186/five-key-findingsreligion.aspx??_source=Religion\&g_medium=newsfeed\&g_campaign=tiles). Is the same true for the population of all U.S. college/university students?
a. Create an appropriate graph to display the distribution of RELIGION and insert it here.

b. How many of the students surveyed said "None/Atheist/Agnostic?" 148

Tally for Discrete Variables: RELIGION

d. Assume (for the purpose of this problem) that we may treat the SPRING 2017 sample of Math-1530 students as a simple random sample drawn from the population of all U.S. college/university students. Use Minitab to calculate a 95% confidence interval for the proportion of students in the population who chose "None/Atheist/Agnostic" to the survey question (based on our sample data). Copy and paste the Minitab output here.
(In Minitab, go to Stat > Basic Statistics > 1-proportion, then choose "Summarized data" from the drop-down menu and put in 148 and 775 for the number of events and trials, respectively.)

Test and Cl for One Proportion

Sample	X	N	Sample p	95% CI	
1	148	775	0.190968	$(0.163868$,	$0.220442)$

Test and Cl for One Proportion

Sample	X	N	Sample p	$95 \% \mathrm{CI}$	
1	148	775	0.190968	$(0.163294$,	$0.218641)$

Using the normal approximation.
e. Interpret the confidence interval you reported in part (d)

With 95% confidence, the true proportion of stur' its would chose "None/Atheist/Agnostic" to the survey question is between 16.39% and $22.04^{\circ} \%$.
f. What do you think? Do our results contradict the results obtained from survey by Gallup or do they appear to agree with it? EXPLAIN.

Because the value 18.2% is in the calculate
aence interval, our sample suggests that the proportion of US college/university stude, that chose "None/Atheist/Agnostic" to the survey question is 18.2%. Therefore, 18.2% is within the $\quad \% \mathrm{Cl}$ so 0 results did appear to be in agreement with the Gallup poll.

