
Astronomy 1010: Astronomy I

Homework 2 Solutions
Solution Set for Universe: Origins & Evolution

by Snow & Brownsburger

This is the solution set for problems assigned in ASTR-1010: Astronomy I. This set is from
problems assigned from the current textbook in the class, Universe: Origins and Evolution by
Snow and Brownsburger.

1. Review Question 6-1:

Explain why we say that light has properties of both waves and particles.

This is due to the fact that when experiments are performed with light to test a wave nature,
it shows such a nature, meanwhile, when tests are performed to test a particle nature, it
also shows that type of nature. Diffraction and interference are wave-like properties, the
photoelectric effect represents a particle-like property.

2. Review Question 6-2:

Discuss possible reasons why the human eye is sensitive to the particular set of wavelengths that
we know as visible light. (Hint: Consider the wavelengths that might be seen by life-forms living
on a planet orbiting a much hotter or much cooler star than the Sun.)

The Earth’s atmosphere allows sunlight from 4000 Å to 7000 Å (i.e., the visible band)
to pass through unimpeded to it surface from space (it also allows radio waves to pass).
Evolution has allowed those species capable of seeing well at those wavelengths to survive
and propagate. The Sun’s temperature of 6000 K causes the maximum amount of sunlight
to be emitted at 5000 Å (yellow light, this is why the Sun looks yellow to us). The human
eye, as well as the eyes of most species on Earth, are most sensitive at 5000 Å, once again,
due to evolution — those that see the best at wavelengths where the Sun produces most of
it light will be able to hunt better and survive.

3. Review Question 6-3:

Explain how the color of a star is related to its surface temperature.

By Wien’s law, we know that the hotter then star, the bluer it is, the cooler the star, the
redder it is.

4. Review Question 6-6:

Explain how the same atom can form emission lines in one situation and absorption lines in
another.

An absorption line results when a photon is absorbed by an atom, causing an electron in an
atom to jump from a lower energy state to a higher energy state, whereas, an emission line

results when an excited electron jumps back from a higher to lower energy level producing
a photon. If one is looking at gas in the line-of-sight of a continuum source, atoms in that
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gas will selectively absorb light from the continuum at specific wavelengths corresponding to
the energy differences between the electronic states of the atoms in the gas, producing dark
lines on the bright continuum of colors. Then the electrons cascade back down producing
photons that can be sent out in any direction. As such, if we look at the same gas, but now
with the continuum source off to one side, we see emission lines coming from the same atoms
that caused the absorption lines in the line-of-sight direction.

5. Review Question 6-7:

What is ionization and how does it occur?

Ionization is caused by an electron being ripped off of an atom causing the atom to have an
excess positive charge. This can happen in one of two ways: (1) energetic collisions between
atoms can knock off electrons and (2) high energy photons can be absorbed by the atom and
knock off a bound electron from the atom.

6. Problem 6-1:

Calculate the frequency and energy of a photon whose wavelength is λ = 5560 Å.

The frequency ν is related to wavelength λ by ν = c/λ, where c = 3.00 × 108 m/s is the
speed of light, so

ν =
c

λ
=

3.00 × 108 m/s

5560 Å × 10−10 Å/m

=
3.00 × 108 m/s

5.560 × 10−7 m
= 5.40 × 1014 /s

= 5.40 × 1014 Hz

The energy of a photon is given by E = h c/λ, where h = 6.63 × 10−34 J·s is Planck’s
constant, so

E =
h c

λ
=

(6.63 × 10−34 J·s) (3.00 × 108 m/s)

5560 Å × 10−10 Å/m

= 3.57 × 10−19 J .

7. Problem 6-3:

How long does it take to send a radio message from Earth to a spacecraft flying by Saturn?
(Assume Saturn is at opposition.) With this time frame in mind, would it make more sense to
control the probe directly from Earth as it flies by Saturn or to preprogram the probe’s maneuvers
before the planetary encounter?

A radio signal travels at the velocity of light c and velocity is related to distance d and the
amount of time it takes to travel that distance t by c = d/t. So the amount of time it takes
a radio signal to travel a distance d is t = d/c. Saturn’s distance from the Sun (dSaturn) is
9.555 AU and the Earth’s (d⊕) is 1 AU. When Saturn is at opposition it distance from Earth
is d = dSaturn − d⊕ = 9.555 − 1.0 AU = 8.555 AU. So the time needed to send a signal to
Saturn from Earth is

t =
8.555 AU × 1.496 × 1011 m/AU

3.00 × 108 m/s
=

1.28 × 1012 m

3.00 × 108 m/s
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= 4.27 × 103 s ×

1 hr

3600 s
= 1.19 hours

This means that a round trip communication between spacecraft and Earth would be 2.4
hours which is too long of a time to tell the spacecraft what to do should any unforeseen
circumstance happen. One would have to preprogram the spacecraft to react to certain
situations.

8. Problem 6-4:

An average body temperature for an adult human is 98.6◦F (∼310 K). When the person is sick
with a fever, however, the body temperature can rise to around 102◦F (∼312 K). Assuming a
human radiates like a blackbody, how much more energy would a person emit when feverish than
when healthy?

Set up the ratio
Ff

Fn

=
σT 4

f

σT 4
n

=
(

Tf

Tn

)4

,

where the subscript f represents fever and n represents normal body temperature. Then
Ff/Fn = (312 K/310 K)4 = (1.00645)4 = 1.026. The fractional energy increase is then

Ff − Fn

Fn

=
Ff

Fn

−

Fn

Fn

=
Ff

Fn

− 1 = 1.026 − 1 = 0.026.

Multiplying this by 100% give an increase of energy output of 2.6%.

9. Problem 6-5:

Calculate the wavelengths of maximum emission for a star of surface temperature 25,000 K; a
star of surface temperature 2,500 K; the Sun’s corona at a temperature of 2,000,000 K; and a
human body of temperature 310 K. What type of telescope would be best suited to observe each
of these bodies?

With T1 = 25, 000 K, T2 = 2, 500 K, T3 = 2, 000, 000 K, and T4 = 310 K, use Wien’s law to
calculate the maximum flux wavelength:

λmax =
0.0029 m K

T

then

λmax(1) =
0.0029 m K

25, 000 K
= 1.16 × 10−7 m ×

1010 Å

1 m
= 1160 Å

λmax(2) =
0.0029 m K

2, 500 K
= 1.16 × 10−6 m ×

1010 Å

1 m
= 11, 600 Å

λmax(3) =
0.0029 m K

2, 000, 000 K
= 1.45 × 10−9 m ×

1010 Å

1 m
= 14.5 Å

λmax(4) =
0.0029 m K

310 K
= 9.35 × 10−6 m ×

1010 Å

1 m
= 93, 500 Å.
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The 25,000 K star maximum flux is at UV wavelengths (1160 Å), hence one would need
an UV telescope above the Earth’s atmosphere. The 2,500 K star maximum flux is in the
near IR (11,600 Å), hence one would need an IR telescope. The solar corona’s maximum
flux is at X-ray wavelengths (14.5 Å), hence one would need an X-ray telescope above the
Earth’s atmosphere. The human body’s maximum flux is at IR wavelengths (93,000 Å =
9.3 microns), hence one would need an IR telescope/detector.

10. Problem 6-8:

The rest, or laboratory, wavelength of a particular transition of hydrogen called Hα (H–alpha) is
6563 Å. Suppose the Hα transition is observed in a star at a wavelength of 6565 Å. What can
you say about the relative motion of this star along your line of sight?

Hα at rest: λ◦ = 6563 Å at rest is observed at λ = 6565 Å. Since 6565 Å is longward of
6563 Å, the observed line is redshifted, hence the object is traveling away from us at a speed:

v =
∆λ

λ◦

c =

(

6565 Å − 6563 Å

6563 Å

)

3.00 × 105 km/s

=

(

2 Å

6563 Å

)

3.00 × 105 km/s = (3.05 × 10−4) · 3.00 × 105 km/s

= 91.4 km/s

11. Problem 6-9:

How much greater is the light-gathering power of a 10 m telescope than that of a 4 cm telescope?

The light gathering power of one telescope with respect to another is

LGPA

LGPB

=
D2

A

D2

B

=
(

DA

DB

)2

,

where D is the diameter of the objective of the telescope. Let the 10 m telescope be A in
the equation above and the 4 cm telescope be B, then

LGPA

LGPB

=

(

10 m × 100 cm/m

4 cm

)

2

=
(

1000 cm

4 cm

)2

= 2502 = 62, 500.

The 10 m telescope collects 62,500 times as much light as the 4 cm telescope.

12. Problem 6-10:

Suppose you purchase a reflecting telescope with a 20 cm diameter mirror. Ignoring the effects
of atmospheric “seeing” and assuming you have perfect optics, what is the smallest angle you
can resolve with your new telescope?

D = 20 cm and assume λ = 5000 Å, then

α = 2.1 × 105

(

λ

D

)

arcsec = 2.1 × 105

(

5000 Å × 10−8 cm/Å

20 cm

)

arcsec

= 2.1 × 105

(

5.000 × 10−5 cm

20 cm

)

arcsec

= 2.1 × 105
(

2.50 × 10−6
)

arcsec

= 5.25 × 10−1 arcsec = 0.525 arcsec.
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13. Review Question 13-4:

Why are the granules in the solar photosphere brighter than the descending gas that surrounds
them?

The granule center is brighter than the edge because the gas is hotter at the center than it is
at the edges. The gas in the center is rising up from the hotter interior, cools at the surface
and sinks back down at the granule edges.

14. Review Question 13-8:

Why do we say that the solar activity cycle is 22 years long, even though the sunspot maxima
occur every 11 years?

The number of sunspots in the Sun’s photosphere goes from a maximum number down to a
minimum, then back up to a maximum approximately every 11 years. During this cycle, the
magnetic field of the sunspot pairs might have north pointing in the direction of rotation.
Then during the next 11 year cycle, south will be pointing in the direction of rotation. The
following cycle will once again have north pointing in the direction of rotation. As such,
even though maximum to maximum is every 11 years, the complete magnetic cycle is twice
this or 22 years.

15. Problem 13-6:

Calculate the wavelength of maximum emission for the solar photosphere (temperature of 5,800 K),
the chromosphere (20,000 K), and the corona (2× 106 K). How can each of these layers best be
observed?

For Tph = 5,800 K, Tchr = 20,000 K, and Tcor = 2.00 × 106 K, we get

λmax(ph) =
0.0029 m K

5, 800 K
= 5.00 × 10−7 m ×

1010 Å

1 m
= 5000 Å

λmax(chr) =
0.0029 m K

20, 000 K
= 1.45 × 10−7 m ×

1010 Å

1 m
= 1450 Å

λmax(cor) =
0.0029 m K

2.0 × 106 K
= 1.45 × 10−9 m ×

1010 Å

1 m
= 14.5 Å

For the photosphere, a normal optical telescope can be used since λmax is at visual wave-
lengths; for the chromosphere, an UV telescope would have to be used; and for the corona,
an X-ray telescope would have to be used.

16. Problem 13-7:

If the average speed of the solar wind between the Sun and the Earth is 250 km/s, how long does
it take for a particle of solar wind to reach the Earth once it is emitted from the Sun? How is
your answer related to the time it takes for a solar flare to begin to affect radio communications
on the Earth?

Once again, velocity v is defined by v = d/t, where t is the time interval over which the
object has traveled a distance d. Here, v = 250 km/s and d = 1 AU = 1.496 × 108 km.
Hence, the time it will take to for a solar wind particle to get to Earth is

t =
d

v
=

1.496 × 108 km

250 km/s
= 5.984 × 105 s = 6.93 days.
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Radio communications are typically disrupted 3 or 4 days after a solar flare has erupted
on the Sun. Since this travel time of the charged particles shot out of the Sun is about half
of what the typical solar wind particle travel time is, the particles emitted from a solar flare
must be traveling twice as fast (i.e., 500 km/s) as a solar wind particle.

17. Problem 13-8:

Suppose the temperature in a sunspot were one half the temperature in the surrounding photo-
sphere. How much less intense would the radiation be from the sunspot than from the photo-
sphere?

This is just a Stefan-Boltzmann Law question. Here Tsp = 1

2
Tph, hence the flux would be

reduced by

Fsp

Fph

=

(

Tsp

Tph

)4

=

(

1/2Tph

Tph

)4

=
14

24
=

1

16
= 0.0625,

or the spot is only 6.25% as bright as the surrounding photosphere.


