Astronomy II (ASTR1020) — Exam 4 Test No. 4D

13 November 2001

The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don't forget to write your name and the Test No. (e.g., 4D) on the Scantron sheet. You may keep these test questions. There are 32 questions on this exam and you will be graded out of 30 points. As such, 2 of the questions can be considered as extra credit.

Useful Constants

G =	$6.673 \times 10^{-11} \text{ m}^3/\text{s}^2/\text{kg}$	g	=	9.80 m/s^2
c =	$3.00 \times 10^5 \text{ km/s}$	h	=	$6.626 \times 10^{-34} \text{ J s}$
k =	$1.38 \times 10^{-23} \text{ J/K}$	H_{\circ}	=	50 km/sec/Mpc
$M_{ m moon} =$	$7.35 \times 10^{22} \text{ kg}$	M_{\odot}	=	$1.99 \times 10^{30} \text{ kg}$
	$5.98 \times 10^{24} \text{ kg}$	R_{\oplus}	=	$6.38 \times 10^{6} \text{ m}$
$R_{\odot} =$	$6.96 \times 10^8 \text{ m}$	T_{\odot}	=	5800 K
1 AU =	$1.50 \times 10^{11} \text{ m}$	L_{\odot}	=	$3.90 \times 10^{26} \text{ W}$
e =	$1.60 \times 10^{-19} \text{ C}$	σ	=	$5.67 \times 10^{-8} \text{ W/m}^2/\text{K}^4$
$m_e =$	$9.11 \times 10^{31} \text{ kg}$	m_p	=	$1.67 \times 10^{-27} \text{ kg}$
1 ly =	$9.46 \times 10^{15} \text{ m}$	1 pc	=	$3.09 \times 10^{16} \text{ m}$
1 km =	$10^3 \mathrm{m}$	1 hr	=	$3600 \mathrm{\ s}$
1 mi =	5280 ft	1 mi	=	1.609 km
1 day =	24 hrs	1 yr	=	365.24 days
1 Å =	10^{-10} m	1 nm	=	10^{-9} m
$10^3 =$	one thousand	10^{6}	=	one million
$10^9 =$	one billion	10^{12}	=	one trillion

Useful Equations

$$D = \frac{\alpha d}{206265} \qquad e = \frac{h}{2a} = \frac{a - b}{a} \qquad E = mc^{2}$$

$$r_{p} = a(1 - e) \qquad r_{a} = a(1 + e) \qquad 2a = r_{p} + r_{a}$$

$$v_{t} = 4.74 \,\mu d \,\left(\text{km/s}\right) \qquad \frac{v_{r}}{c} = \frac{\lambda - \lambda_{o}}{\lambda_{o}} = \frac{\Delta \lambda}{\lambda_{o}} \qquad \nu = c/\lambda$$

$$P^{2} = \left[\frac{4\pi^{2}}{G(m_{1} + m_{2})}\right] a^{3} \qquad F = G\left(\frac{m_{1}m_{2}}{r^{2}}\right) \qquad F = \sigma T^{4}$$

$$L = 4\pi R^{2}F = 4\pi\sigma R^{2}T^{4} \qquad \frac{L}{L_{\odot}} = \left(\frac{R}{R_{\odot}}\right)^{2} \left(\frac{T}{T_{\odot}}\right)^{4} \qquad d = 1/p$$

$$\lambda_{\text{max}} = \frac{0.0029 \text{ m K}}{T} \qquad E = h\nu = \frac{hc}{\lambda} \qquad P_{\text{yr}}^{2} = a_{\text{AU}}^{3}$$

$$m_{2} - m_{1} = -2.5 \log\left(\frac{f_{2}}{f_{1}}\right) \qquad m - M = 5 \log d - 5 \qquad F = ma$$

$$M_{\text{bol}} - M_{\text{bol}}(\odot) = -2.5 \log\left(\frac{L}{L_{\odot}}\right) \qquad M_{1} + M_{2} = \frac{a^{3}}{P^{2}} \qquad v = \sqrt{v_{r}^{2} + v_{t}^{2}}$$

$$t_{\text{MS}} = \left(\frac{M_{\odot}}{M}\right)^{3} \times 10^{10} \,\text{yr} \qquad v_{\text{esc}} = \sqrt{\frac{2GM}{R}} \qquad v_{r} = H_{\odot}d$$

$$z = \frac{\Delta \lambda}{\lambda_{o}} = \frac{\sqrt{1 + v_{r}/c}}{\sqrt{1 - v_{r}/c}} - 1 \qquad z = \frac{\Delta \lambda}{\lambda_{o}} = \frac{v_{r}}{c} \,\left(v_{r} \ll c\right) \qquad \frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{4}$$

$$T = \frac{1 \,\left(\text{km/s/Mpc}\right)}{H_{\odot}} \times 10^{12} \,\text{yr} \qquad q_{o} = \frac{8\pi G}{3} \,\frac{\rho}{H_{o}^{2}}$$

1. Which of th	ne following is <u>no</u>	t true about open	star clusters?		
a) contains	10^5 to 10^6 stars				
b) contain F	Pop I stars				
c) often nea	r stellar nurserie	\mathbf{S}			
d) entirely fe	ound in galactic	disk			
e) all of the	se are true				
2. What is the	e maximum mass	of a neutron star	?		
a) $3.0M_{\odot}$	b) $10M_{\odot}$	c) $1.4M_{\odot}$	d) $50M_{\odot}$	e) $0.4M_{\odot}$	
3. The science	that describes t	he physics of elect	crons and other	subatomic partic	les is called
a) general rela	ativity	b) special relat	ivity	c) classical mecha	nics
d) quantum n	nechanics	e) electronics			
4. Rapidly spi	nning neutron st	ars with intense n	nagnetic field a	re called	
a) pulsars	b) drunks	c) white dwa	arfs d) Σ	ζ-ray bursters	e) black hole
, -	,	·	,		,
5. White dwar	fs are stable due	to the weight of	the star being l	palanced by	
a) radiation	pressure from the	ne intense light wi	thin the white	dwarf.	
b) degenerat	te neutron pressu	ire.			
c) internal g	gas pressure resul	lting from thermo	nuclear reaction	ns.	
d) degenerat	te electron pressi	ire.			
e) fast spin	of the star				

6. A black hole is an o	bject that has collapsed down	to a
a) neutron star	b) singularity	c) white dwarf
d) quark star	e) Herbig-Haro object	
7. Supernovae with no	hydrogen Balmer lines seen in	n their spectra results from what process?
a) Gradual mass tra	ensfer onto a white dwarf.	
b) The iron-core box	unce of a massive star.	
c) A run away He-fl	ash.	
d) Gradual mass tra	nsfer onto a neutron star.	
e) Rapid mass trans	efer onto a white dwarf.	
a) magnetic waves	b) radiation transport	n inside a white dwarf? c) conduction
d) acoustic waves	e) convection	
9. The metal poor star	rs <u>seen</u> in the Galaxy are called	d what type stars?
a) Population II	b) Population III	c) Population I
d) Population IV	e) Population V	
10. There is substantia	al observational evidence that	what exists at the center of the Milky Way?
a) a stellar black hole	b) a large magnetar	c) a supermassive black hole
d) the Borg	e) a large pulsar	

11. Supernovae with	hydrogen Balmer	lines seen in th	neir spectra results	from what process?
a) Gradual mass transfer onto a neutron star.				
b) Rapid mass tran	b) Rapid mass transfer onto a white dwarf.			
c) The iron-core be	ounce of a massiv	ve star.		
d) Gradual mass ti	cansfer onto a wh	ite dwarf.		
e) A run away He-	flash.			
12. Small open cluste	ers containing ab	out 10 stars are	called	
a) globulars	b) spiral arn	ns c) a	ssociations	
d) H II regions	e) black hole	es		
13. Currently the Su	n is in which spir	al arm?		
a) Orion b) C	Cygnus c)	Sagittarius	d) Pegasus	e) Perseus
14. Supernovae that	are produced the	iron-core bound	ce of a massive star	r are called
a) Type II supernova	a b) nov	7a	c) Type II	II supernova
d) X-ray bursters	e) Tyj	pe I supernova		
15. How was the Sun's location in the Galaxy determined?				
) D: 4:1 4: 6	1 1			
a) Distribution of galactic star clusters in the Galaxy.				
b) Period-luminosity relation of Mira variables.				
c) Distribution of globular star clusters in the Galaxy.				
d) Period-luminosity relation of Cepheid variables.e) Through the spiral density wave theory.				
e) Through the spiral density wave theory.				

16. Supernovae that are productive are called	ced by rapid mass transfer onto	a white dwarf by a binary companion	
a) Type I supernova	b) nova	c) Type III supernova	
d) X-ray bursters	e) Type II supernova		
17. Self-sustaining star forma	tion means that		
a) supernova explosions cau star formation, and so or		evolve and supernova causing further	
b) stars can form all by the	emselves without help from spir	ral density waves or supernovae.	
c) stars always produce pla	netary systems that can suppo	rt life.	
d) stars produce their energ	gy through thermonuclear react	zions.	
e) none of the above			
18. Which of the following de	scribe the Pauli Exclusion Prin	nciple?	
a) Singularities have infinite density.			
b) No two electrons can share the same quantum state at the same time in the same location.			
c) Particles with the same charge will repel each other.			
d) Particles with the opposite charge will repel each other.			
e) Like Rudolf, let's exclude Pauli from our reindeer games.			
19. The <i>gradual</i> transfer of m	ass from a normal star onto a v	white dwarf will cause a	
a) Type I supernova	b) gamma ray burster	c) Type II supernova	
d) wormhole	e) nova		

fashion in the out	curve of the Milky ver regions of the Gala off rather sharply in Galaxy?	axy. On the oth	er hand, light that is	s emitted from mat	ter
a) dark matter	b) photons	c) C	and B stars		
d) shock waves	e) supernova	e			
21. Which of the	following is <u>not</u> a spi	ral tracer?			
a) H II regions	b) OB assoc	iations	c) neutral hy	drogen gas	
d) white dwarfs	e) all of the	se are tracers			
a) Galileo	the event horizon are b) Schwartzschild rightest absolute mag	c) Newtor	d) Chandras	sekhar e) Eir	ıstei
a) -17 b) -	c) -26	d) -13	e) -5		
24. The <u>best</u> stell	ar black hole candida	ate yet observed	is		
a) Cyg X-1	b) LMC X-3	c) SS 433	d) SMC X-1	e) V404 Cyg	
25. Which one of black hole candida	the following items te?	below is <u>not</u> no	ecessarily a characte	ristic of an observal	ble
a) The unseen	companion in a binar	y star system n	nust have a mass gre	ater than $3M_{\odot}$.	
b) The black ho	ole must have an acci	etion disk arou	nd it.		

c) There must be a rapidly fluctuating X-ray signal from a binary star system.

e) It must be an unseen companion in a binary star system.

d) The candidate must be close enough for a trigonometric parallax to be obtained.

26. Of the following sample	e, which would be	considered the yo	ungest stellar type?	
a) Population I stars b) Population II stars c) Population		c) Population III stars		
d) Disk Population stars	e) all have	the same age		
27. What is Geminga?				
a) The name of the white	e dwarf in orbit ab	out Sirius.		
b) The name of the robo	t in the movie <i>The</i>	Day the Earth S	Stood Still.	
c) A pulsar with a high p	proper motion.			
d) The nearest stellar bla	ack hole candidate.			
e) The brightest star in the constellation of Gemini.				
28. Approximately how ma	ny stars are there	in the Milky Way	Galaxy?	
a) four thousand	b) four	c)	400 hundred trillion	
d) four million	e) four hundred bi	llion		
29. The <i>gradual</i> transfer of	mass from a norm	al star onto a ne	itron star will cause a(n)	
a) X-ray burster	b) nova	c) Type l	II supernova	
d) Type I supernova	e) wormhole			

c) A massive collapse star whose escape velocity exceeds the speed of light.
d) A rapidly spinning neutron star with an intense magnetic field.
e) One of Snow White's dwarfs.
31. Which of the following is <u>not</u> true about globular star clusters?
a) contains 10^5 to 10^6 stars
b) contain Pop II stars
c) spherical in shape
d) entirely found in galactic disk
e) all are true
32. Which of the following is <u>not</u> true of the galactic halo?
a) It is composed of Population I stars.
b) There is almost no ISM there.
c) Stellar orbits are highly elliptical.

30. Which of the following describes a black dwarf?

b) An old white dwarf star that has cooled off.

a) Another name for a mini-black hole.

d) Its shape is spherical.

e) Globular clusters are found there.