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Abstract
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I.

Radiative Transfer and Atomic Structure

A. Radiation Theory

1.

In a radiation field, the radiant energy flowing per unit time
through a surface element do within a small solid angle df2
about a direction defined by the polar angles 8, ¢ (see Figure
I-1) within the frequency interval v to v + dv is

dE = 1,(0,¢) dv cos 8 do dS2. (I-1)

The intensity I,(60, ¢) denotes the energy flow per unit time per
unit frequency interval per unit solid angle about the direction
6, ¢ across the unit area L to this direction [erg/s/cm?/Hz /s,

where sr = steradian].

a) I, as a function of wavelength [erg/s/cm3/sr, or in terms
of Angstroms (1 A = 1078 cm), erg/s/cm?/A /st] is re-
lated to I, via

Iydx = I,dv (1-2)
or

I = (¢/\)]I,, (I-3)
since v = ¢/ .
b) The total intensity is
1:/0°° I,,du:/ooo I, d). (I1-4)
c) Once a photon is emitted into a vacuum (say from a

star’s surface), its intensity remains the same at all points
along its flight path — I, independent of 7!
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3. The brightness or strength of light corresponds to the radiation

Figure I-1: Definition of the intensity of the radiation.

flux:

a)

b)

c)

d)

Fo=nF=[" [ 1(u¢) ududs. (1-5)

1 =cosf and dS) =sinfdf d¢ = dude.
F, is called the astrophysical flux.

In an isotropic (i.e., same in all directions), I, is inde-
pendent of § and ¢ = F, = 0.

It is often useful to separate F), [erg/s/cm?/Hz] into an
outward and an inward component in a stellar atmo-

sphere:
2 1
rFf o= |7 [ Lpdude (I-6)
(0<wu<1) outward flux
27 0
TF; = /0 /_1 I, pdpdd (I-7)

(-1 <p<0) inward flux,
from which we can write

F,=F +F,. (I-8)
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5.

e) If I, is axisymmetric (i.e., independent of ¢), then the

flux equation becomes:
1
F, =27 /_1 I, pdpu. (I-9)
f) The total radiation flux is then given by
F :/0 F, dy:/o Fyd . (I-10)

g) Note that 47 R? F, = L, is the monochromatic luminos-

ity, where R is the radius of a star.

h) F, =1, if I, is isotropic outward and zero inward.

Unlike intensity, flux does scale with distance = an object gets

fainter the farther away it is:

f, = (%)2 F, = iaify. (I-11)

a) f, is the observed flux of a star of radius R, at a distance
d.

b) a, is the angular diameter (in radians) of the star as seen

at distance d.
The magnitude, (m;,), of a star can be related to the integrated
flux as seen from Earth (f;,) by
ms, = G5, — 2.5 log f;,. (I-12)

a) fi (= fix fadA) is the observed flux at the top of the
Earth’s atmosphere in wavelength band d .

b) The magnitude that corresponds to this flux is called the

apparent magnitude.



Donald G. Luttermoser, ETSU -4

Table I-1: Broad Band Filters
|Filter | A(4) [0 Q)| 4L
3650 700 —-38.40
4400 1000 —-37.86
5500 900 —-38.52
7000 2200 -39.39
8800 2400 -40.20
12,500 | 3800 —41.20
22,000 | 4800 -43.50
34,000 | 7000 —45.20
50,000 | 12,000 | —46.60
104,000 | 57,000 | —49.80
1 absolute zero-point constant when
fx is in units of watts/cm?/A.

ZZO R a0 <™

c) TableI-1 lists the most commonly used photometric mag-
nitudes and their absolute zero-point constant (g, ).

6. Ground-based observations must be corrected for atmospheric
extinction, filter transparency, etc. The observed flux, £, is
related to the apparent (i.e., above the Earth’s atmosphere)

flux, f\, by the following convolution:

= [T eaNer(Ner(Nep(Nhdy,  (113)

where

$4(N\) = fractional transmission of the Earth’s atmosphere,
¢ (N\) = fractional transmission of the telescope,

¢r(A) = fractional transmission of the filter, and

ép(\) = efficiency of the detector (1.0 corresponds to 100%).

a) We can eliminate ¢r, ¢, dp, by observing a (flux) stan-
dard star, with the same instrument set-up, for compar-
ison with the object (Vega is an example of a standard
star).
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b) ¢4 also can be determined with a standard star, but it
takes a little more work, since the standard is usually
in a different part of the sky with respect to the object
(hence sky transparency will be different).

B. Blackbody Radiation

1. Matter that is in thermodynamic equilibrium (TE) emits
thermal radiation => blackbody (BB) radiation.

a) TE will be discussed in §4 of the notes (i.e., Stellar Inte-

riors).

b) Max Planck first to derive the law of BB radiation —
intensity as a function of frequency (or wavelength), I,

(OI‘ I)\)

c) A BB is an opaque body that is a perfect absorber (and
perfect radiator) => any energy incident on a BB will
be radiated away at the temperature of the body.

d) A BB radiator emits light that is characterized only by
its temp with a spectral shape called a Planck curve
(see Figure 1-2). Its monochromatic specific inten-
sity is given by Planck’s Law and is called the Planck

Function:
2h13/c?
B, = Tk 1 (erg/s/cm’ /Hz/sr), (I-14)
or in wavelength space:
2hC2/A5 3
By = Vo ] (erg/s/cm” /sr), (I-15)

2. The temperature of an object can be deduced if the object emits
a thermal spectrum.
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b)

d)

T = 10,000 K

/

Flux

T = 3000 K

A

Figure I-2: The Planck curve as a function of wavelength.

The monochromatic (one color) flux of a blackbody is
F, =nB, (or F\ = nB,)), since I, = B,.

The integrated or total flux of a BB can be found by
integrating the Planck function over the whole spectrum:

F =0T, (I-16)

which is called the Stefan-Boltzmann Law and o =

5.6696x 1079 erg/s/cm?/K* is called the Stefan-Boltzmann

constant.

The wavelength where the peak BB flux arises can be
found by taking the derivative of the Planck function
and finding the maxima:

V. _02898emK _ 2.898 x 107A K
maxr — T - T )
which is called the Wien Displacement Law.

(I-17)

As can be seen by these 2 laws, the hotter a BB, the
bluer the light and the brighter it becomes.
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3. A BB spectrum contains no lines — it is a continuum — a

continuous band of colors.

C. The Equation of Radiative Transfer

1.

If a photon is traveling within a medium (4.e., non-vacuum), its
intensity does change as it propagates through the gas depend-
ing on the opacity of the gas.

a) The opacity, x [cm™1], of a gas measures how opaque

the gas is.

b) It is the inverse of the mean-free-path, L [cm], of the pho-

ton = the distance a photon travels before it interacts

with another particle.

c) The opacity dictates how deep we can see into a gas.
As such, the optical depth along depth s (s increasing
outward) of a gas is defined by

dr, = —k, ds, (I-18)

T, increases in the opposite direction to s, 7, = 0 at the

top and getting larger as you go inward.

d) One typically does not see deeper into a gas than 7, ~ 1.

As a photon travels through a gas along a small length ds in
direction 6 (u = cos ), I, is attenuated by the following expres-
sion:

al,

— w1, 1-19
Is = (I-19)

Besides this absorption process, particles in the gas can also
emit photons (i.e., emission). Hence, I, can increase along this

path by
dl,

2y e, 1-20
ho =€ (1-20)
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6.

where €, [erg/s/cm?/Hz/sr| is the emissivity of the gas.

Summing these 2 equations gives the manner in which photons
travel through a gas = the Equation of Radiative Trans-
fer:

drl,
17 % =€y — Ry I,/. (1—21)

We can divide each term by x, and get

dI,
1 ar, =1,-S,. (I-22)
a) S, is called the source function and is the ratio of the
number of photon creation events divided by the number
of photon destruction events (S, = €,/k,) for a given

region of gas.

b) Assuch, you can view the transfer equation as the change

in intensity of a photon equals the incident intensity on a
volume of gas plus any photons created by the gas minus
any photons destroyed by the gas.

c) Often S, will be separated into a continuum component
and a line component: S, = S + S¢.

For gas in thermodynamic equilibrium, the emissivity of the gas
is given by

€, = Ky By(T), (1-23)
hence the source function becomes the Planck function for this
gas and the transfer equation is somewhat easy to solve:

1
I,=1I,.e ™"+ = [ B,(r,)dt 1-24
, L ], Bow) (1-24)

For nonthermodynamic equilibrium gas, however, S, is much
more difficult to ascertain, since it will depend upon both the

-8



Donald G. Luttermoser, ETSU

mean intensity (J, = % J I, du) of the photons and the thermal
nature of the gas in the volume of interest = the equation of
transfer becomes a integral-differential equation in I,!

D. Opacity

1. The opacity of gas is a measure of the resistance to photon flow.

2. The concept of opacity is what links radiative transfer to atomic
physics. The opacity of the gas is a function of atomic transition
rates, which are related to transition cross sections.

3. There are 2 basic types of opacity in gas: (1) continuous opac-
ity and (2) line opacity.

4. There are 4 basic continuum processes involving the interaction

of radiation and matter.

a) Bound-free (ionization or b-f) transitions = e~ lib-
erated from atom, ion, or molecule. The inverse process
(free-bound) is called recombination.

i) Photoionizations => photon absorption liberates

e~. The reverse process is called radiative recom-
bination.

ii) Collisional ionizations => atom, ion, or molecule
collides with an electron (typically) or some other
particle (i.e., H I, Hy, He I, etc.). The reverse
process is called collisional recombination.

b) Free-free (f-f) transitions.

i) f-f absorption = free e~ absorbs photon in vicin-
ity of an ion = KE of e~ is altered.
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ii) Bremsstrahlung = free e~ altered by E-field of
an ion giving up a photon (inverse f-f).

c) 3-body ionizations and recombinations = pho-
toexcitation (i.e., e~ jumps from a lower to upper bound
state through photon absorption) followed immediately
by a collisional ionization (3 particles = atom, photon,
colliding particle) and the inverse process is called 3-
body recombination.

d) Scattering = photon redirected in its flight path and
not absorbed by the gas.

i) Thomson or electron scattering results from a free
e~ (or ion) oscillating in an EM field — important
in hot stars.

ii) Compton scattering results from an actual colli-
sion between a photon and electron (or some type
of charged particle) — generally not important in
stellar atmospheres (requires high energy [i.e., X-
ray| photons).

iii) Rayleigh scattering results when the oscillating
EM field of a photon perturbs, in an oscillating
manner, the bound e~ in the atom or molecule
as the photon passes. This in turn affects the
EM field of the photon — important in cool stars,
causes the Earth’s sky to be blue.

iv) Mie scattering results from photons scattering
off of dust particles.
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Figure I-3: Schematic of the b-f and b-b absorption coefficients of hydrogen.

5. H~ opacity (H I4+e7) is a special type of b-f opacity and domi-
nates all continuous opacities at visual As in many stars (includ-
ing the Sun) = only 1 bound state. The extra e™ is bound to
the H atom with an energy of 0.754 eV. There is also f-f opacity
from H™ = important at IR wavelengths.

6. H b-f opacities are a very strong continuous opacity source in
all stars shortward of 912 A and in B, A, and F stars at UV and
visual wavelengths.

a) Figure I-3 shows the functional form of the hydrogen
absorption coefficients. The b-f opacity (k, = nij=pa,) of
H (and H-like ions) varies as v ™3 for v > Vippeshold:
64 74 m el0 Z4

_ bf
O[n(l/) - 3 \/§C h6 n5 1/3 gn (V)

Z4
— 2.8154 x 1029W @l (v)  cm?, (I-25)

where e = the electrostatic constant, Z = nuclear charge
(i.e., Z=1 for H), n = the principal quantum number,
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J o—) J J
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NV = photon —p =free electron
hv,, E.

Figure I-4: The 5 processes involving bound-bound transitions. For each subframe, the left side
represents “before” the interaction, and the right side, “‘after” the interaction.

and g%/ (v) is the Gaunt factor (quantum correction to
the classical physics formula) of order unity (see Karsas,
W.J. and Latter, R. 1961, Astrophys. Journ. Suppl., 6,
167).

b) The location of the b-f edges for H-like ions (called jumps
in flux spectra) can be found by

h3 2 2
T 911.75358 A. (1-26)

)\:7—:
" 2rmetZ2 72

7. There are 5 distinct physical processes involving bound-bound
(b-b) transitions or line opacity (see Figure I-4):

a) Radiative excitation: e~ jumps from a lower state “4” to

(1]

an upper state “5” with an energy difference AE;; via a
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b)

d)

8. A transition will typically occur if certain selection rules are

photon absorption of energy hv;; such that AE;; = hv;;.

Spontaneous de-excitation (or emission): a bound e~ in
an upper state has a finite lifetime in such state and can
spontaneously (i.e., without external stimuli) decay to a
lower state. This decay leads to a lower energy state of
the e™, which must be conserved by the emission of a
photon — again AE;; = hy;;.

Stimulated de-excitation (or emission): a bound e” in an
upper state can decay to a lower state if the atom/ion
is bombarded by radiation of frequency hv;; = nhy;; +
E; = E; + (n + 1)hy;.

Collision excitation: e~ jumps from a lower to upper
state via a free e” collision E, + E; = E; + E. (E, =
E. — AE;;).

Collisional de-excitation: free e~ collision induces an ex-
cited bound e~ to decay to a lower state, which adds
to the free e~ energy = E. + E; = E; + E| (E =
E. + AE;).

satisfied (see next section).

9. The line opacity has the following functional form (neglecting

stimulated emission):

2
e

Ky = Ny = n; — fiiby, (I-27)
mc

or in wavelength units (note that ¢(v) dv = —¢(A) dA)

me2\2

Ky = N0y =N, WQOJC@'NSA, (I-28)

I-13
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where n; is the number density in the lower state, & = the cross
section of the transition, me? /mc = the classical oscillator cross
section, f;; = the oscillator strength, a quantum correction

to the classical cross section, and ¢ = the line profile.

a)

b)

d)

Eqgs. [-27 & 1-28 result from a semi-classical treatment of
the matter-radiation interaction (classical EM — har-
monic oscillator & quantum mechanics of matter «+—

fig)-

e — 0.02654 cm? |

The functional form of ¢, will depend upon the char-
acteristic of the broadening involved (i.e., natural, pres-
sure, Doppler, etc.) — more to come in §II. It is always
normalized such that [j° ¢, dv = 1.

fij, the absorption oscillator strength, is inversely
proportional to the probable amount of time an e~ will
reside in the jth level. Allowed transitions: f;; > 1072
(strongest: f;; ~ 1). Forbidden transitions: f;; < 1078
(with semi-forbidden transitions in between the two).

E. Atomic Structure and Spectroscopic Notation

1.

As can be seen, in order to determine the opacity of a gas at a
given wavelength, one must know the number of electrons in a
given state. In this course, we will only worry about gas that it

is thermal equilibrium and in a steady state.

a)

In this case, statistical mechanics shows us that the num-
ber density (n = number per unit volume) in state j is
related to number density in state ¢ (j > i) by Boltz-
mann’s equation:

Y = 91 exp|(E; — Ej)/ksT). (1-29)

n; gi

I-14
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b)

i) g is the multiplicity (or statistical weight) of
the level (see Table I-2).

ii) FE is the energy of the level and ezp is the long-
hand notation of the base e = 2.71828.

iii) kp is Boltzmann’s constant (1.3806x 10716 erg/K)
and T the temperature of the gas.

Also in such a gas, ionization equilibrium is achieved
(i.e., ionization rate = recombination rate) and Saha’s
equation applies:

Nivi o upe1 (2emkp T)3? s

n
Nk ¢ Uk h3

(1-30)

i) N is the total number of atoms in ionization
stages k and the next higher ion stage k + 1.

ii) m, is the electron number density.

iii) u =1y g;e F/*s7T is called the partition func-
tion for ions k and k + 1.

iv) A is Planck’s constant (6.6262 x 1072 erg s) and
Xk 1S the ionization potential of ion k.

v) The lowest ion stage are neutral atoms with k =
0.

In astrophysics, ionic stages are labeled with Roman nu-
merals: neutral with “I” (e.g., H I, He I, Fe I), singly
ionized atoms with “II” (H II, He II, Fe II), doubly ion-
ized with “III” (He III, C III, Fe III), etc.
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2. Each element/ion has an electronic configuration associated with
it, which is based on the periodic table. Each e~ in that config-
uration has a characteristic set of quantum numbers.

a) n = principal quantum number = shell ID

n =12 3 4 5 6
shel : K L M N O P

Each shell can contain a maximum of 2n? e”s.

b) ¢ = orbital angular momentum quantum number —>
subshell ID.

0 =012345 (n—1)
subshell s pdf g h ...
i) Each subshell can contain a max of 2(2¢+1) e”s.

ii) The orbital angular momentum vector can have
2¢ + 1 orientations in a magnetic field from —/¢ to

+£:

— <my </

c) s = spin angular momentum gquantum number => spin
direction (i.e., up or down).

S = —

2

The spin angular momentum vector can have 2s+1 (=2)
orientations in a B-field.

m$=:t§

d) j = total angular momentum quantum number.

j=£L*ts

I-16
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The total angular momentum vector can have 25 + 1
orientations (—j < m; < j) in a B-field.

e) Ezamples:
i) Ane withn=2,¢=1, and j = 3/2 is denoted
by 2ps3/s.

ii) The lowest energy state of neutral sodium, Na I,
has an e~ configuration of 1s?2s%2p%3s. (NOTE:
the exponents indicate the number of e~s in that
subshell, no number = 1.) The K- and L-shells are
completely filled — the 3s e~ is called a valence

e .

3. For one e atoms (i.e., H I, He II, C VI, Fe XXVI, etc.), the
principal (n) levels have energies of

2mimet 72

n?h? '

where Z = charge of the nucleus.

E,=— (1-31)

a) Negative energies => bound states
Positive energies = free states
Ionization limit (n — oo) in Eq. I-31 has E = 0.

b) In astronomical spectroscopy, we set E; = 0 and repre-
sent atoms in terms of energy level diagrams (see Figure
I-5), where the energy levels are determined by

1
E, =13.6 Z* (1 — ﬁ> eV, (1-32)

n — oo defines the ionization potential (IP) of the
atom (or ion), so that for H: IP = 13.6 eV, for He II: IP
= 54.4 eV, etc.
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Figure I-5: A partial Grotrian diagram of neutral hydrogen. The lowest 7 levels are shown with
various transitions labeled.

c) NOTE:1eV =1.602x 1072 erg = 8066 cm™' = 12,398 A
= 11,605 K.

d) The lowest energy state (£ = 0) is called the ground
state. States above the ground are said to be excited.

4. For atoms or ions with several e~s, the angular momentum vec-
tors are normally coupled as follows (Russell-Saunders or LS
coupling):

a) Orbital angular momenta { are added vectorally: L =
sl

b) Ditto for spin: S =Y 5.
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c)

d)

5. Hund’s Rules (see Figure I-6): For any given electron config-

L and S combine vectorally to give the total angular

momentum J: |[L — S| < J < L+ S.

A particular pair of values for S and L constitutes a

term.

i) A level or state is designated by its spectro-
scopic notation: 25tV [ ;

L =01 2 3 4 5
state : S P D F G H
ii) 2S5+ 1 = multiplicity of the state = number

of J-levelsif L > S. If L < S, 2L+ 1 = number
of J-levels in the state.

iii) S=0= 25+ 1=1= singlet state
S=1/2=25+1=2= doublet
S=1=— 25+1=3 = triplet, etc.

iv) A level can have odd or even parity depending
upon whether the arithmetic sum of the /-values
of the participating e~s is odd or even (i.e., P
is an even parity state while ' P° is an old parity
state.

uration,

a)
b)

c)

Higher S = lower energy.

Higher L (for this S value) => lower energy.

Higher J = higher energy if subshell is less than half-

filled, lower energy if more than half-filled.
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Spectroscopic
Notation
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Figure I-6: Hund’s rules demonstration: Example of energy splitting in the LS coupling scheme.

6. Various terminology is used to describe transitions in spectroscopy.
Table I-2 defines and relates some of these terms (from Allen

1976, Astrophys. Quant., 3rd Ed., p.53).

7. LS or Russell-Saunders coupling: For lighter atoms with
several e”s outside closed shells, a spin-orbit interaction ex-
ists between the e”s which is small compared to the nuclear
Coulomb (i.e., electrostatic) interaction. The LS coupling tech-
nique (i.e., the spin-orbit interaction is treated as a perturba-
tion) is used in these cases to describe the electronic states and
transition probabilities. The following are LS selection rules
governing dipole radiative transitions:

a) Only one e~ jumps.

b) Al = =£1 (parity rule).
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Table I-2: Atomic Terminology

Atomic Specification Statistical Transition

Division Weight ¢

State Specified by L, S, J, M, 1 Component of
or L,S, My, Mg line

Level Specified by L, S, J, e.g., 3P1/2 2J+1 Spectrum line

Term Group of levels specified by (28 +1)(2L +1) Multiplet
LS

Polyad Group of terms from one parent Super-
term with same multiplicity or S multiplet

Configuration Specified by n and ¢ of all Transition
electrons array

c) For terms:

i) AS=0.
ii) AL=0,+l.
iii) AJ=0,41 (but J=0+ J=0).

8. A transition is allowed if none of the selection rules are violated.
Allowed transitions from the ¥ = 0 state are called resonance
lines (i.e., the Ca II K line is a resonance line from the 4s2S; /2
state to the 4p 2P§ /2 State, note that the LS dipole selection rules
are not violated). Allowed transitions, for example, are labeled
as “Ca II K” or “Ca II 3934 A” or “Ca II \3934.”

9. A transition is said to be semi-forbidden if the AS rule (spin
forbidden) or the AL rule (orbit forbidden) are violated. Semi-
forbidden transitions are labeled with one right-side square bracket
— “C II] A2325.”

10. A transition is said to be forbidden (or completely forbidden)
if both the AS and AL rules are violated and/or the transition
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11.

12.

13.

14.

15.

involves no change in parity and/or J = 0 — J = 0. Forbidden
transitions are labeled with both square brackets = “[O III]
A5006.”

Radiative transitions can occur if one or more of the selection
rules are violated via a magnetic dipole interaction or electric

quadrapole interaction.

Transitions between spectroscopic terms in the same subshell
are called intersystem (or intercombination) lines and are
always semi-forbidden or completely forbidden (note that the
transitions among the 3P, 1S, and 'D terms in the 2p? subshell
of N II and O III in Figure I-7 are intersystem lines — the 5006 A
line between 2p? 3P and 2p?!D is the famed nebular line, which
give nebulae that greenish tint to the naked eye).

Transitions within the ground state multiplet are called fine-
structure lines and are always forbidden (A¢ = 0,AJ = 1).
They are almost always in the IR or far-IR (e.g., C II 158
pm, 2P /2 —2P, /2). These lines are responsible for cooling low-
temperature (30-300 K) gas in space.

Hyperfine lines are transitions resulting from an electron spin
flip in the ground state (e.g., H I 21 cm line).

When an excited state is not directly coupled via dipole transi-
tions to the ground state, it is called a metastable state since
it behaves as an e reservoir like the ground state (i.e., the lower

level of the He 110,830 A line).
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Figure I-7: A partial Grotrian diagram of N II and O III. Note that the *P term is considered the
ground state of these ions since it lies at the lowest energy. The 'S and 'D states are said to be

metastable.
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16.

When elements and ions have the same total number of elec-
trons, they are said to be isoelectronic sequences of each
other. For instance, Figure I-7 displays a Grotrian diagram
of the N II and O III ions, which have the same e~ configura-
tions as C I. Hence C I, N II, and O III are all isoelectronic
sequences of each other.
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