ASTR-3415: Astrophysics Course Lecture Notes Section I

Dr. Donald G. Luttermoser East Tennessee State University

> Spring 2003 Version 1.2

Abstract			
These class notes are designed for use of the instructor and students of the course ASTR-3415: Astrophysics. This is the Version 1.2 edition of these notes.			

I. Radiative Transfer and Atomic Structure

A. Radiation Theory

1. In a radiation field, the radiant energy flowing per unit time through a surface element $d\sigma$ within a small solid angle $d\Omega$ about a direction defined by the polar angles θ , ϕ (see Figure I-1) within the frequency interval ν to $\nu + d\nu$ is

$$dE = I_{\nu}(\theta, \phi) \, d\nu \, \cos\theta \, d\sigma \, d\Omega. \tag{I-1}$$

- 2. The intensity $I_{\nu}(\theta, \phi)$ denotes the energy flow per unit time per unit frequency interval per unit solid angle about the direction θ, ϕ across the unit area \perp to this direction [erg/s/cm²/Hz/sr, where sr \equiv steradian].
 - a) I_{λ} as a function of wavelength [erg/s/cm³/sr, or in terms of Ångstroms (1 Å = 10^{-8} cm), erg/s/cm²/Å/sr] is related to I_{ν} via

$$I_{\lambda} d\lambda = I_{\nu} d\nu \tag{I-2}$$

or

$$I_{\lambda} = (c/\lambda^2) I_{\nu} , \qquad (I-3)$$

since $\nu = c/\lambda$.

b) The total intensity is

$$I = \int_0^\infty I_\nu \, d\nu = \int_0^\infty I_\lambda \, d\lambda. \tag{I-4}$$

c) Once a photon is emitted into a vacuum (say from a star's surface), its intensity remains the same at all points along its flight path $\longrightarrow I_{\nu}$ independent of r!

Figure I–1: Definition of the intensity of the radiation.

The brightness or strength of light corresponds to the radiation 3. flux:

$$\mathcal{F}_{\nu} = \pi \, F_{\nu} = \int_{0}^{2\pi} \int_{-1}^{1} I_{\nu}(\mu, \phi) \, \mu \, d\mu \, d\phi. \tag{I-5}$$

- $\mu = \cos \theta$ and $d\Omega = \sin \theta \, d\theta \, d\phi = d\mu \, d\phi$.
- F_{ν} is called the **astrophysical flux**. b)
- In an **isotropic** (i.e., same in all directions), I_{ν} is inde- \mathbf{c} pendent of θ and $\phi \Longrightarrow F_{\nu} = 0$.
- It is often useful to separate F_{ν} [erg/s/cm²/Hz] into an d) outward and an inward component in a stellar atmosphere:

$$\pi F_{\nu}^{+} = \int_{0}^{2\pi} \int_{0}^{1} I_{\nu} \, \mu \, d\mu \, d\phi \tag{I-6}$$

$$\pi F_{\nu}^{-} = \int_{0}^{2\pi} \int_{-1}^{0} I_{\nu} \, \mu \, d\mu \, d\phi$$
 (I-7)

$$(-1 \le \mu \le 0) \quad \text{inward flux},$$

from which we can write

$$F_{\nu} = F_{\nu}^{+} + F_{\nu}^{-}.$$
 (I-8)

e) If I_{ν} is axisymmetric (i.e., independent of ϕ), then the flux equation becomes:

$$\mathcal{F}_{\nu} = 2\pi \, \int_{-1}^{1} \, I_{\nu} \, \mu \, d\mu. \tag{I-9}$$

f) The total radiation flux is then given by

$$\mathcal{F} = \int_0^\infty \mathcal{F}_\nu \ d\nu = \int_0^\infty \mathcal{F}_\lambda \, d\lambda \ . \tag{I-10}$$

- g) Note that $4\pi R^2 \mathcal{F}_{\nu} = L_{\nu}$ is the monochromatic luminosity, where R is the radius of a star.
- h) $\mathcal{F}_{\nu} = \pi I_{\nu}$ if I_{ν} is isotropic outward and zero inward.
- 4. Unlike intensity, flux does scale with distance \Longrightarrow an object gets fainter the farther away it is:

$$f_{\nu} = \left(\frac{R_{\star}}{d}\right)^2 \mathcal{F}_{\nu} = \frac{1}{4} \alpha_{\star}^2 \mathcal{F}_{\nu}. \tag{I-11}$$

- a) f_{ν} is the observed flux of a star of radius R_{\star} at a distance d.
- b) α_{\star} is the angular diameter (in radians) of the star as seen at distance d.
- 5. The magnitude, $(m_{\delta\lambda})$, of a star can be related to the integrated flux as seen from Earth $(f_{\delta\lambda})$ by

$$m_{\delta\lambda} = q_{\delta\lambda} - 2.5 \log f_{\delta\lambda}.$$
 (I-12)

- a) $f_{\delta\lambda} \ (= \int_{\delta\lambda} f_{\lambda} d\lambda)$ is the observed flux at the top of the Earth's atmosphere in wavelength band $\delta\lambda$.
- b) The magnitude that corresponds to this flux is called the apparent magnitude.

Filter	λ (Å)	$\delta\lambda$ (Å)	$q_{\delta\lambda}^{\dagger}$
U	3650	700	-38.40
В	4400	1000	-37.86
V	5500	900	-38.52
R	7000	2200	-39.39
I	8800	2400	-40.20
J	$12,\!500$	3800	-41.20
K	22,000	4800	-43.50
L	34,000	7000	-45.20
M	50,000	12,000	-46.60
N	104,000	57,000	-49.80

Table I-1: Broad Band Filters

† absolute zero-point constant when f_{λ} is in units of watts/cm²/Å.

- c) Table I-1 lists the most commonly used photometric magnitudes and their absolute zero-point constant $(q_{\delta\lambda})$.
- 6. Ground-based observations must be corrected for atmospheric extinction, filter transparency, etc. The observed flux, f_{λ}^{obs} , is related to the apparent (i.e., above the Earth's atmosphere) flux, f_{λ} , by the following convolution:

$$f_{\lambda}^{obs} = \int_{0}^{\infty} \phi_{A}(\lambda)\phi_{T}(\lambda)\phi_{F}(\lambda)\phi_{D}(\lambda)f_{\lambda}d\lambda, \qquad (I-13)$$

where

 $\phi_A(\lambda)$ = fractional transmission of the Earth's atmosphere,

 $\phi_T(\lambda)$ = fractional transmission of the telescope,

 $\phi_F(\lambda)$ = fractional transmission of the filter, and

 $\phi_D(\lambda) = \text{efficiency of the detector (1.0 corresponds to 100\%)}.$

a) We can eliminate ϕ_T , ϕ_F , ϕ_D , by observing a (flux) standard star, with the same instrument set-up, for comparison with the object (Vega is an example of a standard star). b) ϕ_A also can be determined with a standard star, but it takes a little more work, since the standard is usually in a different part of the sky with respect to the object (hence sky transparency will be different).

B. Blackbody Radiation

- 1. Matter that is in **thermodynamic equilibrium** (TE) emits thermal radiation ⇒ **blackbody (BB) radiation**.
 - a) TE will be discussed in $\S 4$ of the notes (i.e., Stellar Interiors).
 - b) Max Planck first to derive the law of BB radiation intensity as a function of frequency (or wavelength), I_{ν} (or I_{λ}).
 - c) A BB is an opaque body that is a perfect absorber (and perfect radiator) \Longrightarrow any energy incident on a BB will be radiated away at the temperature of the body.
 - d) A BB radiator emits light that is characterized only by its temp with a spectral shape called a **Planck curve** (see Figure I-2). Its **monochromatic specific intensity** is given by **Planck's Law** and is called the **Planck Function**:

$$B_{\nu} = \frac{2h\nu^3/c^2}{e^{h\nu/k_BT} - 1}$$
 (erg/s/cm²/Hz/sr), (I-14)

or in wavelength space:

$$B_{\lambda} = \frac{2hc^2/\lambda^5}{e^{hc/\lambda k_B T} - 1} \quad (\text{erg/s/cm}^3/\text{sr}), \tag{I-15}$$

2. The temperature of an object can be deduced if the object emits a thermal spectrum.

Figure I–2: The Planck curve as a function of wavelength.

- a) The monochromatic (one color) flux of a blackbody is $\mathcal{F}_{\nu} = \pi B_{\nu}$ (or $\mathcal{F}_{\lambda} = \pi B_{\lambda}$), since $I_{\nu} = B_{\nu}$.
- b) The integrated or total flux of a BB can be found by integrating the Planck function over the whole spectrum:

$$\mathcal{F} = \sigma T^4, \tag{I-16}$$

which is called the **Stefan-Boltzmann Law** and $\sigma = 5.6696 \times 10^{-5} \, \text{erg/s/cm}^2/\text{K}^4$ is called the *Stefan-Boltzmann constant*.

c) The wavelength where the peak BB flux arises can be found by taking the derivative of the Planck function and finding the maxima:

$$\lambda_{max} = \frac{0.2898 \text{ cm K}}{T} = \frac{2.898 \times 10^7 \text{ Å K}}{T},$$
 (I-17)

which is called the Wien Displacement Law.

d) As can be seen by these 2 laws, the hotter a BB, the bluer the light and the brighter it becomes.

3. A BB spectrum contains no lines — it is a **continuum** \rightarrow a continuous band of colors.

C. The Equation of Radiative Transfer

- 1. If a photon is traveling within a medium (*i.e.*, non-vacuum), its intensity <u>does</u> change as it propagates through the gas depending on the opacity of the gas.
 - a) The **opacity**, κ [cm⁻¹], of a gas measures how opaque the gas is.
 - b) It is the inverse of the mean-free-path, L [cm], of the photon \Longrightarrow the distance a photon travels before it interacts with another particle.
 - c) The opacity dictates how deep we can see into a gas. As such, the **optical depth** along depth s (s increasing outward) of a gas is defined by

$$d\tau_{\nu} = -\kappa_{\nu} \, ds,\tag{I-18}$$

 τ_{ν} increases in the opposite direction to s, $\tau_{\nu} = 0$ at the top and getting larger as you go inward.

- d) One typically does not see deeper into a gas than $\tau_{\nu} \approx 1$.
- 2. As a photon travels through a gas along a small length ds in direction θ ($\mu = \cos \theta$), I_{ν} is attenuated by the following expression:

$$\mu \frac{dI_{\nu}}{ds} = -\kappa_{\nu} I_{\nu}. \tag{I-19}$$

3. Besides this absorption process, particles in the gas can also emit photons (i.e., emission). Hence, I_{ν} can increase along this path by

$$\mu \frac{dI_{\nu}}{ds} = \epsilon_{\nu}, \tag{I-20}$$

where ϵ_{ν} [erg/s/cm³/Hz/sr] is the **emissivity** of the gas.

4. Summing these 2 equations gives the manner in which photons travel through a gas ⇒ the Equation of Radiative Transfer:

$$\mu \frac{dI_{\nu}}{ds} = \epsilon_{\nu} - \kappa_{\nu} I_{\nu}. \tag{I-21}$$

5. We can divide each term by κ_{ν} and get

$$\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} - S_{\nu}. \tag{I-22}$$

- a) S_{ν} is called the **source function** and is the ratio of the number of photon creation events divided by the number of photon destruction events $(S_{\nu} = \epsilon_{\nu}/\kappa_{\nu})$ for a given region of gas.
- b) As such, you can view the transfer equation as the change in intensity of a photon equals the incident intensity on a volume of gas plus any photons created by the gas minus any photons destroyed by the gas.
- c) Often S_{ν} will be separated into a *continuum* component and a *line* component: $S_{\nu} = S_{\nu}^{\ell} + S_{\nu}^{c}$.
- **6.** For gas in thermodynamic equilibrium, the emissivity of the gas is given by

$$\epsilon_{\nu} = \kappa_{\nu} B_{\nu}(T), \tag{I-23}$$

hence the source function becomes the Planck function for this gas and the transfer equation is somewhat easy to solve:

$$I_{\nu} = I_{\nu,\circ} e^{-\tau_{\nu}/\mu} + \frac{1}{\mu} \int_{\tau_{\nu}} B_{\nu}(\tau_{\nu}) dt$$
 (I-24)

7. For nonthermodynamic equilibrium gas, however, S_{ν} is much more difficult to ascertain, since it will depend upon both the

mean intensity $(J_{\nu} = \frac{1}{2} \int I_{\nu} d\mu)$ of the photons and the thermal nature of the gas in the volume of interest \Longrightarrow the equation of transfer becomes a *integral-differential equation* in I_{ν} !

D. Opacity

- 1. The opacity of gas is a measure of the resistance to photon flow.
- 2. The concept of opacity is what links radiative transfer to atomic physics. The opacity of the gas is a function of atomic transition rates, which are related to transition cross sections.
- 3. There are 2 basic types of opacity in gas: (1) continuous opacity and (2) line opacity.
- 4. There are 4 basic continuum processes involving the interaction of radiation and matter.
 - a) Bound-free (ionization or b-f) transitions $\implies e^-$ liberated from atom, ion, or molecule. The inverse process (free-bound) is called recombination.
 - i) $Photoionizations \Longrightarrow$ photon absorption liberates e^- . The reverse process is called radiative recombination.
 - ii) $Collisional ionizations \Longrightarrow atom, ion, or molecule collides with an electron (typically) or some other particle (i.e., H I, H₂, He I, etc.). The reverse process is called <math>collisional \ recombination$.
 - b) Free-free (f-f) transitions.
 - i) f-f $absorption \equiv$ free e^- absorbs photon in vicinity of an ion \Longrightarrow KE of e^- is altered.

- ii) Bremsstrahlung \equiv free e^- altered by E-field of an ion giving up a photon (inverse f-f).
- c) 3-body ionizations and recombinations \Longrightarrow photoexcitation (i.e., e^- jumps from a lower to upper bound state through photon absorption) followed immediately by a collisional ionization (3 particles = atom, photon, colliding particle) and the inverse process is called 3-body recombination.
- d) Scattering ⇒ photon redirected in its flight path and not absorbed by the gas.
 - i) Thomson or electron scattering results from a free e^- (or ion) oscillating in an EM field \rightarrow important in hot stars.
 - ii) Compton scattering results from an actual collision between a photon and electron (or some type of charged particle) \rightarrow generally not important in stellar atmospheres (requires high energy [i.e., X-ray] photons).
 - iii) Rayleigh scattering results when the oscillating EM field of a photon perturbs, in an oscillating manner, the bound e^- in the atom or molecule as the photon passes. This in turn affects the EM field of the photon \rightarrow important in cool stars, causes the Earth's sky to be blue.
 - iv) Mie scattering results from photons scattering off of dust particles.

Figure I-3: Schematic of the b-f and b-b absorption coefficients of hydrogen.

- 5. H^- opacity (H I+ e^-) is a special type of b-f opacity and dominates all continuous opacities at visual λ s in many stars (including the Sun) \Longrightarrow only 1 bound state. The extra e^- is bound to the H atom with an energy of 0.754 eV. There is also f-f opacity from $H^- \Longrightarrow$ important at IR wavelengths.
- 6. H b-f opacities are a very strong continuous opacity source in all stars shortward of 912 Å and in B, A, and F stars at UV and visual wavelengths.
 - a) Figure I-3 shows the functional form of the hydrogen absorption coefficients. The b-f opacity $(\kappa_{\nu} = n_{i\equiv n}\alpha_{\nu})$ of H (and H-like ions) varies as ν^{-3} for $\nu > \nu_{threshold}$:

$$\alpha_n(\nu) = \frac{64 \pi^4 m e^{10} Z^4}{3 \sqrt{3} c h^6 n^5 \nu^3} g_n^{bf}(\nu)$$

$$= 2.8154 \times 10^{29} \frac{Z^4}{n^5 \nu^3} g_n^{bf}(\nu) \quad \text{cm}^2, \text{ (I-25)}$$

where e = the electrostatic constant, Z = nuclear charge (i.e., Z=1 for H), n = the principal quantum number,

Figure I-4: The 5 processes involving bound-bound transitions. For each subframe, the left side represents "before" the interaction, and the right side, "after" the interaction.

and $g_n^{bf}(\nu)$ is the Gaunt factor (quantum correction to the classical physics formula) of order unity (see Karsas, W.J. and Latter, R. 1961, *Astrophys. Journ. Suppl.*, **6**, 167).

b) The location of the b-f edges for H-like ions (called *jumps* in flux spectra) can be found by

$$\lambda_n = \frac{c h^3}{2 \pi m e^4} \frac{n^2}{Z^2} = \frac{n^2}{Z^2} 911.75358 \,\text{Å}.$$
 (I-26)

- 7. There are 5 distinct physical processes involving **bound-bound** (b-b) transitions or line opacity (see Figure I-4):
 - a) Radiative excitation: e^- jumps from a lower state "i" to an upper state "j" with an energy difference ΔE_{ij} via a

photon absorption of energy $h\nu_{ij}$ such that $\Delta E_{ij} = h\nu_{ij}$.

- b) Spontaneous de-excitation (or emission): a bound e^- in an upper state has a finite lifetime in such state and can spontaneously (i.e., without external stimuli) decay to a lower state. This decay leads to a lower energy state of the e^- , which must be conserved by the emission of a photon again $\Delta E_{ij} = h\nu_{ij}$.
- c) Stimulated de-excitation (or emission): a bound e^- in an upper state can decay to a lower state if the atom/ion is bombarded by radiation of frequency $h\nu_{ij} \Longrightarrow nh\nu_{ij} + E_j = E_i + (n+1)h\nu_{ij}$.
- d) Collision excitation: e^- jumps from a lower to upper state via a free e^- collision $E_e + E_i = E_j + E'_e$ ($E'_e = E_e \Delta E_{ij}$).
- e) Collisional de-excitation: free e^- collision induces an excited bound e^- to decay to a lower state, which adds to the free e^- energy $\Longrightarrow E_e + E_j = E_i + E'_e$ ($E'_e = E_e + \Delta E_{ij}$).
- 8. A transition will typically occur if certain selection rules are satisfied (see next section).
- **9.** The **line opacity** has the following functional form (neglecting stimulated emission):

$$\kappa_{\nu} = n_i \, \alpha_{\nu} = n_i \, \frac{\pi e^2}{mc} f_{ij} \phi_{\nu}, \qquad (\text{I-27})$$

or in wavelength units (note that $\phi(\nu) d\nu = -\phi(\lambda) d\lambda$)

$$\kappa_{\lambda} = n_i \, \alpha_{\lambda} = n_i \, \frac{\pi e^2 \lambda_o^2}{mc^2} f_{ij} \phi_{\lambda}, \tag{I-28}$$

where n_i is the number density in the lower state, α = the cross section of the transition, $\pi e^2/mc$ = the classical oscillator cross section, f_{ij} = the oscillator strength, a quantum correction to the classical cross section, and ϕ = the line profile.

- a) Eqs. I-27 & I-28 result from a semi-classical treatment of the matter-radiation interaction (classical EM \longrightarrow harmonic oscillator & quantum mechanics of matter $\longleftarrow f_{ij}$).
- **b)** $\frac{\pi e^2}{mc} = 0.02654 \text{ cm}^2$.
- c) The functional form of ϕ_{ν} will depend upon the characteristic of the broadening involved (i.e., natural, pressure, Doppler, etc.) more to come in §II. It is always normalized such that $\int_0^\infty \phi_{\nu} d\nu = 1$.
- d) f_{ij} , the absorption oscillator strength, is inversely proportional to the probable amount of time an e^- will reside in the jth level. Allowed transitions: $f_{ij} > 10^{-2}$ (strongest: $f_{ij} \sim 1$). Forbidden transitions: $f_{ij} < 10^{-8}$ (with semi-forbidden transitions in between the two).

E. Atomic Structure and Spectroscopic Notation

- 1. As can be seen, in order to determine the opacity of a gas at a given wavelength, one must know the number of electrons in a given state. In this course, we will only worry about gas that it is thermal equilibrium and in a *steady state*.
 - a) In this case, statistical mechanics shows us that the *number density* ($n \equiv$ number per unit volume) in state j is related to number density in state i (j > i) by **Boltzmann's equation**:

$$\frac{n_j}{n_i} = \frac{g_j}{g_i} \exp[(E_i - E_j)/k_B T]. \tag{I-29}$$

- i) g is the multiplicity (or statistical weight) of the level (see Table I-2).
- ii) E is the energy of the level and exp is the longhand notation of the base e = 2.71828.
- iii) k_B is Boltzmann's constant $(1.3806 \times 10^{-16} \text{ erg/K})$ and T the temperature of the gas.
- Also in such a gas, ionization equilibrium is achieved
 (i.e., ionization rate = recombination rate) and Saha's
 equation applies:

$$\frac{N_{k+1}}{N_k} n_e = 2 \frac{u_{k+1}}{u_k} \frac{(2\pi m k_B T)^{3/2}}{h^3} e^{-\chi_k/k_B T}.$$
 (I-30)

- i) N is the total number of atoms in ionization stages k and the next higher ion stage k + 1.
- ii) n_e is the electron number density.
- iii) $u = \sum g_i e^{-E_i/k_BT}$ is called the **partition function** for ions k and k + 1.
- iv) h is Planck's constant $(6.6262 \times 10^{-27} \text{ erg s})$ and χ_k is the ionization potential of ion k.
- v) The lowest ion stage are neutral atoms with k = 0.
- c) In astrophysics, ionic stages are labeled with Roman numerals: neutral with "I" (e.g., H I, He I, Fe I), singly ionized atoms with "II" (H II, He II, Fe II), doubly ionized with "III" (He III, C III, Fe III), etc.

- 2. Each element/ion has an *electronic configuration* associated with it, which is based on the periodic table. Each e^- in that configuration has a characteristic set of quantum numbers.
 - a) $n \equiv principal \ quantum \ number \Longrightarrow$ shell ID

$$n=1$$
 2 3 4 5 6 ... shell : K L M N O P ...

Each shell can contain a maximum of $2n^2 e^{-s}$.

b) $\ell \equiv orbital \ angular \ momentum \ quantum \ number \Longrightarrow$ subshell ID.

- i) Each subshell can contain a max of $2(2\ell+1)$ e^-s .
- ii) The orbital angular momentum vector can have $2\ell + 1$ orientations in a magnetic field from $-\ell$ to $+\ell$:

$$-\ell \le m_\ell \le \ell$$

c) $s \equiv spin \ angular \ momentum \ quantum \ number \implies spin$ direction (i.e., up or down).

$$s = \frac{1}{2}$$

The spin angular momentum vector can have 2s+1 (=2) orientations in a B-field.

$$m_s = \pm \frac{1}{2}$$

d) $j \equiv total \ angular \ momentum \ quantum \ number.$

$$j=\ell\pm s$$

The total angular momentum vector can have 2j + 1 orientations $(-j \le m_j \le j)$ in a B-field.

- e) Examples:
 - i) An e^- with n=2, $\ell=1$, and j=3/2 is denoted by $2p_{3/2}$.
 - ii) The lowest energy state of neutral sodium, Na I, has an e^- configuration of $1s^2 2s^2 2p^6 3s$. (NOTE: the exponents indicate the number of e^- s in that subshell, no number $\equiv 1$.) The K- and L-shells are completely filled the 3s e^- is called a valence e^- .
- **3.** For one e^- atoms (i.e., H I, He II, C VI, Fe XXVI, etc.), the principal (n) levels have energies of

$$E_n = -\frac{2\pi^2 m e^4 Z^2}{n^2 h^2},\tag{I-31}$$

where Z = charge of the nucleus.

- a) Negative energies \Longrightarrow bound states Positive energies \Longrightarrow free states Ionization limit $(n \to \infty)$ in Eq. I-31 has E = 0.
- b) In astronomical spectroscopy, we set $E_1 = 0$ and represent atoms in terms of *energy level diagrams* (see Figure I-5), where the energy levels are determined by

$$E_n = 13.6 \ Z^2 \ \left(1 - \frac{1}{n^2}\right) \ \text{eV}.$$
 (I-32)

 $n \to \infty$ defines the **ionization potential** (IP) of the atom (or ion), so that for H: IP = 13.6 eV, for He II: IP = 54.4 eV, etc.

Figure I-5: A partial Grotrian diagram of neutral hydrogen. The lowest 7 levels are shown with various transitions labeled.

- c) NOTE: $1 \text{ eV} = 1.602 \text{ x } 10^{-12} \text{ erg} = 8066 \text{ cm}^{-1} = 12{,}398 \text{ Å}$ = 11,605 K.
- d) The lowest energy state (E = 0) is called the **ground** state. States above the ground are said to be excited.
- 4. For atoms or ions with several e^-s , the angular momentum vectors are normally coupled as follows (Russell-Saunders or LS coupling):
 - a) Orbital angular momenta $\vec{\ell}$ are added vectorally: $L = \sum \vec{\ell}$.
 - b) Ditto for spin: $S = \sum \vec{s}$.

- c) L and S combine vectorally to give the total angular momentum J: $|L S| \le J \le L + S$.
- d) A particular pair of values for S and L constitutes a term.
 - i) A level or state is designated by its **spectro**scopic notation: ${}^{(2S+1)}L_J$

$$L = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \dots$$

state : S P D F G H ...

- ii) $2S + 1 \equiv$ multiplicity of the state \Longrightarrow number of *J*-levels if $L \geq S$. If L < S, $2L + 1 \Longrightarrow$ number of *J*-levels in the state.
- iii) $S = 0 \Longrightarrow 2S + 1 = 1 \Longrightarrow \text{ singlet state}$ $S = 1/2 \Longrightarrow 2S + 1 = 2 \Longrightarrow \text{ doublet}$ $S = 1 \Longrightarrow 2S + 1 = 3 \Longrightarrow \text{ triplet, etc.}$
- iv) A level can have odd or even parity depending upon whether the arithmetic sum of the ℓ -values of the participating e^- s is odd or even (i.e., ¹P is an even parity state while ¹P° is an old parity state.
- **5. Hund's Rules** (see Figure I-6): For any given electron configuration,
 - a) Higher $S \Longrightarrow$ lower energy.
 - **b)** Higher L (for this S value) \Longrightarrow lower energy.
 - c) Higher $J \Longrightarrow$ higher energy if subshell is less than half-filled, lower energy if more than half-filled.

Figure I-6: Hund's rules demonstration: Example of energy splitting in the LS coupling scheme.

- 6. Various terminology is used to describe transitions in spectroscopy. Table I-2 defines and relates some of these terms (from Allen 1976, Astrophys. Quant., 3rd Ed., p.53).
- 7. LS or Russell-Saunders coupling: For lighter atoms with several e^- s outside closed shells, a spin-orbit interaction exists between the e^- s which is small compared to the nuclear Coulomb (i.e., electrostatic) interaction. The LS coupling technique (i.e., the spin-orbit interaction is treated as a perturbation) is used in these cases to describe the electronic states and transition probabilities. The following are LS selection rules governing dipole radiative transitions:
 - a) Only one e^- jumps.
 - b) $\Delta \ell = \pm 1$ (parity rule).

Atomic	Specification	Statistical	Transition
Division		$\mathbf{Weight} g$	
State	Specified by L, S, J, M ,	1	Component of
	or L, S, M_L, M_S		$_{ m line}$
Level	Specified by $L, S, J, e.g., {}^{3}\mathrm{P}_{1/2}$	2J + 1	Spectrum line
Term	Group of levels specified by	(2S+1)(2L+1)	Multiplet
	L,S		
Polyad	Group of terms from one parent		Super-
	term with same multiplicity or S		$\operatorname{multiplet}$
Configuration	Specified by n and ℓ of all		Transition
	electrons		array

Table I–2: Atomic Terminology

- c) For terms:
 - i) $\Delta S = 0$.
 - ii) $\Delta L = 0, \pm 1.$
 - iii) $\Delta J = 0, \pm 1 \text{ (but } J = 0 \not\rightarrow J = 0).$
- 8. A transition is **allowed** if none of the selection rules are violated. Allowed transitions from the E=0 state are called **resonance** lines (i.e., the Ca II K line is a resonance line from the $4s^2S_{1/2}$ state to the $4p^2P_{3/2}^{\circ}$ state, note that the LS dipole selection rules are not violated). Allowed transitions, for example, are labeled as "Ca II K" or "Ca II 3934 Å" or "Ca II λ 3934."
- 9. A transition is said to be **semi-forbidden** if the ΔS rule (spin forbidden) or the ΔL rule (orbit forbidden) are violated. Semi-forbidden transitions are labeled with one right-side square bracket \Longrightarrow "C II] $\lambda 2325$."
- 10. A transition is said to be **forbidden** (or completely forbidden) if both the ΔS and ΔL rules are violated and/or the transition

involves <u>no</u> change in parity and/or $J=0 \rightarrow J=0$. Forbidden transitions are labeled with <u>both</u> square brackets \Longrightarrow "[O III] $\lambda 5006$."

- 11. Radiative transitions can occur if one or more of the selection rules are violated via a magnetic dipole interaction or electric quadrapole interaction.
- 12. Transitions between spectroscopic terms in the same subshell are called **intersystem** (or **intercombination**) lines and are always semi-forbidden or completely forbidden (note that the transitions among the ${}^{3}P$, ${}^{1}S$, and ${}^{1}D$ terms in the $2p^{2}$ subshell of N II and O III in Figure I-7 are intersystem lines the 5006 Å line between $2p^{2} {}^{3}P$ and $2p^{2} {}^{1}D$ is the famed nebular line, which give nebulae that greenish tint to the naked eye).
- 13. Transitions within the ground state multiplet are called fine-structure lines and are always forbidden ($\Delta \ell = 0, \Delta J = 1$). They are almost always in the IR or far-IR (e.g., C II 158 μ m, $^2P_{3/2} \rightarrow ^2P_{1/2}$). These lines are responsible for cooling low-temperature (30-300 K) gas in space.
- 14. **Hyperfine lines** are transitions resulting from an electron spin flip in the ground state (e.g., H I 21 cm line).
- 15. When an excited state is not directly coupled via dipole transitions to the ground state, it is called a **metastable state** since it behaves as an e^- reservoir like the ground state (*i.e.*, the lower level of the He I 10,830 Å line).

Figure I–7: A partial Grotrian diagram of N II and O III. Note that the ³P term is considered the ground state of these ions since it lies at the lowest energy. The ¹S and ¹D states are said to be metastable.

16. When elements and ions have the same total number of electrons, they are said to be **isoelectronic sequences** of each other. For instance, Figure I-7 displays a **Grotrian diagram** of the N II and O III ions, which have the same e^- configurations as C I. Hence C I, N II, and O III are all isoelectronic sequences of each other.