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Abstract
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IV. Stellar Interiors

A. The Laws of Stellar Structure

1. Hydrostatic Equilibrium (HSE).

a) Modeling the interiors of stars involves splitting the star
up into thin layers (like an onion) = we have a series
of concentric shells in such a model. In this section, we
will print variables that are calculated for for a specific
shell as unsubscripted (e.g., p,T, P,N). For those vari-
ables whose values are set based on integrations from the
center of the star to the specific shell, we will print with
an “r” subscript (e.g., M,, L,).

b) We can define the mass density, p ([p] = gm/cm?) of gas
in a given shell as the total mass in that shell, m, divided
by the volume of the shell, V = 4nr?dr.

i) From this definition, the mass in a given layer is
found from

m = /: pamrridr (IV-1)

where ry is the inner boundary radius of the shell
(with respect to the center of the star) and ry is
the outer boundary radius of the shell.

ii) The mass of this thin shell essentially represents
the differential of the entire mass of the star inte-
rior to that shell: m — dM,.

c) From this integral equation, we can set up a differential
equation that describes how the mass of the star changes
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d)

with radial distance within the star:

dM,
dr

=4rrip, (IV-2)

which is referred to as the mass equation of stellar
structure.

If we wish to find all of the mass interior to position r in-
side a star, we just need to integrate Eq. (IV-2) outward

from the center, or
M, = /Or dmr? pdr . (IV-3)

From Newton’s 2nd Law of Motion, we can derive an
equation of motion of a gas element:

ma:F:ZE:ﬁg+ﬁP+ﬁric7 (IV_4)

where N is the total number of individual force terms
Fi- giving rise to the total force F on the shell — note
that here F is a force not a flur as was the case in Eq.
(ITI-20, 21). There are three primary forces that play a
role in the interiors of stars:

i) The gravitational force is given by Newton’s The-
ory of Gravitation:

Fy=—-mV®, (IV-5)

where m is the mass of an element of gas in a shell
located at r, ®, is the gravitational potential

given by
M,
P, = _Gr | (TV-6)

G = 6.673 x 1078 dyne cm?/gm? is the Universal
Gravitational Constant, M, is the amount of mass

V-2
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that lies interior to the shell, and the “del” or
gradient operator is given by

V=—é+—g+—2  (IV-7)

in Cartesian coordinates and

- o . 120 - 1 0 -
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in spherical coordinates. The gravitational force

(IV-8)

is negative since this vector is pointing inward op-
posite to the r coordinate.

e Since ®, is only a function of r,
o — 0 (_GMT) o d (_GMT> . GM,
or dr

r T

(IV-9)

e Note that the acceleration due to gravity is cal-

culated with

GM, .

G=Vd= P (IV-10)

r2

e Finally, the potential energy is related to the
potential by the relation
GM,m

r

PE =m®, = —

(IV-11)

ii) F, represents the force due to the internal pres-
sure inside the shell (see below). This pressure
and force results from particles (both matter and
energy) colliding with the gas particles.

iii) F}rie is the force due to various friction forces
that exist in the gas. This friction is called wis-
cosity stress, where viscosity is the name given to
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internal friction in a fluid. This viscosity is typi-
cally separated into 2 components:

e Kinematic viscosity which is friction on a micro-
scopic level = individual gas particles rubbing
against each other.

e Bulk viscosity which is friction on a macroscopic
level => “blobs” gas rubbing against each other.

f) The force due to the gas pressure can be deduced as
follows. Assume we slice up the shell of gas into segments
show in the figure below.

i) The internal pressure (P = Fp/A, where A =
surface area) will try to expand this segment of
the shell. Since the lateral forces, F; are all in
opposition to each other, they completely cancel
out when integrated over the entire shell.

ii) The force due to this pressure at the bottom
of the shell segment, Fp;, will be pointing in the
opposite direction as that at the top of the shell
segment, Fp;, and both of these forces are in the
radial direction.
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iii) Hence the total force due to this pressure will

just be
FP — FP,b - FP,t )

where Fp7b > FP,t'

iv) Since both F,, and F, are in the radial direc-
tion, they will only have an 7 unit vector associ-
ated with them.

v) If we let the thickness of the shell approach zero,
this total force due to this pressure becomes a dif-
ferential in force, Fp, — —dF%, or in terms of pres-
sure, —dF, = —A dP #. Here we have introduced
a negative sign since radial derivatives are typ-
ically integrated from the inner radius (i.e., the
initial position) to the outer radius (i.e., the final
position), opposite of our definition of Fj.

If we set Z*:’}ric = md; = mdvy/dt and the total force
equal to F = mdi /dt, we can rewrite the equation of
motion (Eq. IV-4) of gas in the shell as

dv B GM,m

m— =
dt r2

i) If we divide each term by the volume of the shell

7 —AdPr+mduy/dt . (IV-12)

V', we can then write an equation of force per unit

volume:
m dv GM,m A m dvy
wev S § > Y-St |
v dt R VI VB v
dv GM,p 4rr? dvy
Yo A dP 7 “rf
p dt r2 r 4mr? dr re dt
dv _GMrp  dP d_v‘}

p% - r2 _drr+pdt ’
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h)

which results in a force per unit volume equation
of motion. Such an equation is nothing more that
the conservation of linear momentum.

ii) Shortly, we will be assuming that the gas is ideal
— such gas has no internal friction, hence dv}/dt =
0.

iii) Since all of the remaining terms are in the radial
direction, we can drop the vector notation giving

dv  GM,p dP
Pt~ r2 dr ~

(IV-13)

If there are no accelerations in the gas (a = dv/dt = 0),
Eq. (IV-13) reduces to

dP __GMrp

—=-=5F, (IV-14)

which is called the hydrostatic equilibrium (HSE)
equation. Here P is the total pressure of the gas. When

HSE is valid for stellar interiors, P = P, (i.e., the gas
pressure) except for very hot stars when P = P, + P4,
where the radiation pressure is given by Eq. (III-17):
1
Paa =3 aT?, (TV-15)

since the radiation field will be in local thermal equilib-
rium with the gas due to the high density of the gas.
In this equation, 7" is the temperature of the gas and
a = 7.56591 x 1071° erg/s3/K* is the radiation constant.

With this HSE equation, we can immediately get an
estimate of the central pressure in the Sun. Letting
p = Po (i.e., the average mass density of the Sun =

IV-6
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M@/gwR‘é) = 1.4 gm/cm3, P, < P.(®) (i.e., the pho-
tospheric pressure is negligible with respect to the cen-
tral pressure), and using M, = My = 1.99 x 103 gm and
Ro =6.96 x 10 cm, we get

ap GM,p
dr r2
AP GMups
Ar R%
Pphoto - Pc(@) _GM@%
Ry -0 R%
_Pc(®) ~ _GMQ%
R R%
G Mopo
P. N —
© ~ Z5

P.(®) ~ 2.7x 10% dyne/cm’
~ 2.7x10% atm ,
where 1 atm is the Earth’s atmospheric pressure which
is equal to P, = 1.013 x 10° Pa (Pascals = N/m?) =
1.013 x 10 dyne/cm?. Using more accurate modeling
techniques gives the actual value of 50 times this amount.

2. Equation of State (EOS).

a)

To solve the HSE equation, we need an accurate den-
sity profile p(r). For exotic matter that exists in white
dwarfs and neutron stars, this profile can be fairly com-
plicated and will require quantum mechanics to describe
it. However, for normal gas, we can assume the gas is
perfectly ideal and use the ideal gas law to describe the

equation of state:
P, =N kgT, (IV-16)

where P, (dyne/cm?) is the gas pressure at depth r, N
is the particle number density (particles/cm?) at this
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b)

depth, T the temperature, and kg = 1.3806 x 1016
erg/K is Boltzmann’s constant.

As shown in the stellar atmospheres section of the notes
(§8II1), the free particle number density can be related to
the gas density by

P

N = ,
KMy

(IV-17)

where my = 1.673x 10724 gm is the mass of the hydrogen
nucleus and p is the mean molecular weight of the gas.

There are a variety of techniques for determining the
value of the particle (i.e., number) density. Before de-
scribing these, we need to define a few terms.

i) Let’s start by introducing mass fractions:

e X = my/my, is the mass fraction of hydro-
gen atomic nuclei = the fraction of matter,
by weight, that consists of hydrogen.

e Y = my./my, is the mass fraction of helium
atomic nuclei = the fraction of matter, by
weight, that consists of helium.

® 7 = Myeais/ Moy 1S the remaining fraction con-
sisting of everything heavier than helium, the
so-called metals.

e Note that since my, = my + Mye + Myerais, the

following relation occurs:

X4+Y+Z=1. (IV-18)
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ii) The atomic weight of an atom is the mass of

the atomic nucleus measured in atomic mass units
(amu). Unfortunately, there are two definitions
for the amu:

All elements have various isotopes associated
with them = they have the same number of
protons but different numbers of neutrons.

Some define the amu such that the mass of 60
(the most abundant isotope of oxygen, 8 pro-
tons + 8 neutrons = 16 nucleons) is exactly
16.000000 amu.

More often it is defined such that the mass of
12C (the most abundant isotope of carbon, 6

protons + 6 neutrons = 12 nucleons) is exactly
12.000000 amu.

Look carefully when viewing a data table of el-
ements or a periodic table for their definition of
atomic weight.

In this class, we will use the 2C definition of
the amu such that

lamu = 1.660540 x 1072 gm
= 931.49432/c* MeV.

Note that when energy units (such MeV = mil-
lion electron volts) are used (via E = mc?), the
c? is usually not mentioned (but it is there none

the less).

IV-9
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d)

e Atomic weights are non-integer numbers because
various isotopes of the same element can natu-
rally occur. When viewing these weights on a
periodic table, these weights (e.g., H is 1.0079,
He is 4.0026) include the cosmic abundance frac-
tion of all isotopes that naturally occur in the
total weight.

iii) Another value that is used to describe nuclear
mass is the nucleon number, A, which is equal to
the total number of nucleons (i.e., protons plus
neutrons) in an atomic nucleus. Note that some
authors call this the atomic weight by mistake.
Whenever you see integers listed for the atomic
weight (except for 2C or perhaps 1°0), it is the
nucleon number that is being presented.

iv) Another number of interest is the atomic num-
ber, Z, which is equal to the number of protons
in the nucleus, which is just the charge of the nu-
cleus. Z defines the element (e.g., Z = 1 for hy-
drogen, 2 for helium, etc.). Since metalicity also
uses Z, we will use Z, from this point forward to
indicate the atomic number to avoid confusion.

The mean molecular weight is related to the mean mass
of the particles that make up the gas by

m=pmyg =) mgNg/) Ng, (TV-19)
5 5

where 3 is an counter of all of the atomic and molecular
species that make up the gas, mg is the mass of that
species, and Ny is the number density of that species.

IV-10
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i) Note that the total number density is N = ¥3 N,
so we can calculate the mean molecular weight
with

= zﬂ:mﬂ Ng/ (mg N) . (IV-20)

ii) We can simplify the calculation of y by making
use of mass fractions as described earlier. Recall
that in terms of mass fractions (X = hydrogen,
Y = helium, and Z = metals). In terms of mass
fractions, the number densities can be expressed
as (using hydrogen for example)

L_ L me e Loy Xp

Vi myg my, V My My

Ny

Hence the number densities for hydrogen, helium,
and the metals are

X
NH - —p
my
Y Y
NHe = p = p
Mye dmy
Z Z
Nmetals = p = = p I

Mmetals A my

where M. 18 the average mass of all of the met-
als and A is the average nucleon number of the
metals.

iii) Since the interior of stars have high enough tem-
peratures to completely ionize H and He, and com-
pletely ionize most of the more common metals,
hydrogen will supply an additional electron to the
total number density for each atom ionized and
helium will supply two. Since the most stable iso-
topes of the metals have A = 27,, the metals will
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supply %A electrons. Hence, we can tabulate the

total number of particles supplied to the gas as

Element: Hydrogen | Helium | Metals
X Y YA

No. of atoms: 2P P l_ p ]
X Y 1 Z

No. of electrons: AP 2 p — A — p

Note that for the last column, that the average

nucleon number for the most common metals seen
in stars is at least 16 (hence, A > 16). Since A
cancels in the total electron number from metals,

we see that the total number of electrons from

metals will far exceed the total number of metal

nuclei (i.e., atoms). As such, the total number of

particles from each species type is

Element: Hydrogen | Helium | Metals

No. of particles: 2 i—g 3 43::}1 221,

or in equation format,
N:<2X+ZY+%Z>miH. (IV-21)

iv) By making use of Eq. (IV-17), we can now ex-

press the mean molecular weight in terms of mass

IV-12
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f)

fractions as
3

1
p=02X+>Y+_2)".

4 2

(IV-22)

One should keep in mind that these equations for
N and p (Egs. IV-21, 22) are only valid when
temperatures are high enough to completely ion-

ized hydrogen and helium and most of the metals,

hence deeper in the star. Near the surface (i.e.,

photosphere), the Saha equation must be used to

get an accurate electron number density from the

ionization of the atomic species.

v) For younger, high-metalicity stars, the so-called
Population I stars, X = 0.70, Y = 0.28, and Z =
0.02. Plugging these values into Eq. (IV-22) gives

p=0.62.

Using the definitions above, we use the standard form of

the ideal gas law for our EOS:

kT
p=PrB2
KMy

(IV-23)

where here p is the mean molecular weight in the shell

at distance r from the center of the star.

From the EOS, we can get an estimate of the Sun’s cen-

tral temperature. Using P.(®) and ps from above and

the fact that pu ~ 0.6 for the Sun (see above), we get

Pc(®) UMy

Te(®) = kB po

—12%x10"K .

(IV-24)

IV-13
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3. Modes of Energy Transport.

a) To determine T', we must discover how energy is trans-

b)

ported from the hot central regions to the cooler pho-
tosphere (5800 K) as it must according to the 2nd law
of thermodynamics. There are 3 modes of heat energy

transport that occur in nature.

Conduction occurs when energetic (i.e., hot) atoms

communicate their agitation to nearby cooler atoms via

collisions.

i) The conductive flux was given by Eq. (III-22),
which we will express here as a scalar equation in

the radial direction as

dTl’
Fcond = —Ko T5/2 % ) (IV—25)

where ko ~ 8 x 1077 erg/cm/s/K7/? is the conduc-
tivity constant.

ii) Note that the conductive flux F,, 4 will be a pos-
itive number inside of a star since the temperature
gradient d7'/dr will be negative since temperature
drops as one moves away from the center of the
star.

iii) This mode is only efficient in solids, degenerate
matter, and stellar coronae. As such, it is typically
ignored in stellar interior modeling.

Convection is the transport of heat by mass motions in

fluids.

i) If dT'/dr is great enough, fluid can become unsta-
ble and boil. Hot fluid masses (i.e., bubbles) rise

IV-14
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up from hotter regions to cooler regions and give
up their energy to the surrounding environment.

ii) Unfortunately, no completely adequate theory of
stellar convection yet exists (although a few physi-
cists are working on it), and we must take approx-
imate measures to determine the convective flux.

iii) Pages 356 through 365 of your textbook by Car-
roll and Ostlie describe the details of the mixing-
length theory which is the most widely used ap-
proximate theory for convection. The resulting
equation from the mixing-length theory for the

convective flux is

2 3/2 3/2
me:pcp("’B) (Z) g2 [5(‘”)] o,

pmy/ \g dr
(IV-26)
where
T T T
5<d—> dr =0T = (d— _ar ) dr ,
r dr l,q A7 |
(IV-27)
ar| . : : :
and I is the adiabatic temperature gradient
T lad
(essentially the gradient in the “bubble” of gas)
ar| . :
and I is the actual temperature gradient of
act

the surrounding gas that the bubble is rising through.

iv) The rest of the parameters in Eq. (IV-26) are
the standard parameters we have been using in
this section of the notes. In addition to these, Cp
is the specific heat of the gas at constant pressure
given by Eq. (I11-28), and g is the acceleration due
to gravity.
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v) Two free (i.e., guessed) parameters are also in
Eq. (IV-26). a = ¢/Hp is the ratio of the mix-
ing length ¢ (which is the “guessed” parameter)
to the pressure scale height. From comparisons of
numerical stellar models with observations, values
of 0.5 < a < 3 are typical. The mixing length is
that distance that the bubble travels before giv-
ing its heat energy up to the surrounding gas. The
second free parameter is 3, which is a kinetic en-
ergy scale factor that has arangeof 0 < 8 < 1. Tt
essentially gives the amount of the kinetic energy
of the bubble that gets converted to heat.

vi) The pressure scale height Hp used in the
calculation of « is defined as the distance that the
pressure drops by a value of e~! with height. It is

defined by
— = (IV-28)

If Hp doesn’t vary much in a shell of gas, we can
integrate the equation above to show that

P =P (IV-29)

Finally, if we make use of the HSE equation (Eq.
IV-14) in Eq. (IV-28), one can show that

Hp=". (IV-30)
Pg

vii) After all of this, we still haven’t described an
equation for the temperature gradient when con-
vection is important in moving the energy from
the center of the star to the outer regions. Once
again I refer you to pages 350 through 361 of your
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d)

textbook (Carroll and Ostlie). Here we will give
the equation for the description of the tempera-
ture gradient when convection is important as the
adiabatic temperature gradient:

1\ T dP
=(1——| —— 1V-31
o ( fy) P dr’ ( )

T _dT
dr  dr

where « is the ratio of specific heats given by Eq.
(IT1-26).

Radiation Transport is the 3rd mode and is usually
the most important means of energy flow in a star (see §I
of the notes on radiative transfer). Energy is transported
from photon flow. The ease at which the photons flow
depends upon the opacity of the gas.
i) We start by differentiating Eq. (IV-15) with re-
spect to r which gives
dPoq 4 , 5dT

—a

dr 3 dr

(IV-32)

ii) Though we didn’t show this in the radiative trans-
fer portion of the notes, the equation of radiative
transfer can be manipulated to show that

dP k
rad —_ _ _p Frad .
dr c

(IV-33)

iii) Equating these two equations for the radiation

pressure derivative gives

dlI'  —3kp 7
dr ~ 4dacT3 ™

iv) Now since
L,

Fraa = A2

(IV-34)

IV-17
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the temperature gradient for radiation transport

becomes

dr =3kp
dr  16macr2T3 "

(IV-35)

v) As was the case for stellar atmospheres, getting
the opacity correct is one of the most fundamental

needs in interior modeling.

4. Energy Generation.

a) We next need to describe how the luminosity changes
with depth. Actually for layers of the interior under
radiative and convective equilibrium, the luminosity re-
mains constant with depth. However, if an energy source
is present, RE will not be valid and we need to calculate
the change in luminosity with depth.

b) If the rate of energy production per unit mass of stel-
lar material (erg/s/gm) is denoted by e, the additional
luminosity supplied to a shell from this production is

dL,

= 4w’ pe . IV-
= Trope (IV-36)

c) This equation expresses a balance between the net energy
loss from the shell, dL,, and that generate within the
shell => the conservation of energy equation (also
called the thermal equilibrium equation).

d) But what is this energy source? In 1861, Helmholtz and
Kelvin suggested that gravitational contraction of the
Sun might be the source of its luminosity.
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i) The kinetic energy of a mass m in orbit around
a larger mass M is

KE =mv?/2. (IV-37)

ii) Its gravitational potential energy is

PE = -G Mm/r. (IV-38)

iii) Any object in a curved trajectory experiences
centripetal acceleration F, = mv?/r. In a gravi-
tational field, F. = Fy =G M m/r?, the force due
to gravity. From this equality, we immediately see
that

1
KE =mv*/2=GMm /2r = 5 PE; (IV-39)

this equation is called the virial theorem.

iv) If that body moves inward to a smaller, stable
orbit at r — dr, the increase in KE is equal to only
1 PE. To conserve total energy (KE + PE), the
other half of PE must be transmitted to the agent
which alters the satellite orbit — in the case of a
star, this is the energy that is radiated away.

v) Kelvin and Helmholtz applied this theorem to
the Sun, where

Ema = G My /2Ro = 9.54 x 10™ erg/gm (IV-40)

is the amount of PE available to be radiated away
for each gram of solar material.

vi) The amount of time that this contraction will
take place to give a constant luminosity is called

IV-19
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the Kelvin-Helmholtz time:
tKH — grad M*/L*. (IV—41)

In the case of the Sun, txy = 1.57 x 107 yrs =
a much shorter time than the age of the Earth.
Some other energy source must be at work to pro-
duce the Sun’s energy.

B. Particle Physics

1.

Before investigating the thermonuclear reactions that produce
the energy in the Sun and stars, we need to describe the physics

of subatomic particles.

An important parameter of particles from quantum mechanics
that will describe how particles interact with each is spin. In

classical mechanics, a rigid body admits two kinds of angular

momentum:

a)

b)

d)

Orbital: L = 7x (i.e., distance from an axis times the
linear momentum), associated with the motion of the
center of mass. Such motion is referred to as a revolu-
tion about the center of mass.

Spin: S=13 (i.e., moment of inertia times an angular
velocity), associated with the motion about the center of

mass. Such motion is referred to as a rotation about an
axis.

One then talks about the total angular momentum:

orbital (L) + spin (S) angular momenta.

Here, we will define “classical” fundamental particles
(i.e., the atoms) as those whose movement is described
by classical themodynamics = their velocities follow a

IV-20
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3.

4.

By analogy, we have the same description on the microscopic

Maxwell-Boltzmann distribution (see Eq. ITI-5) whose
characteristics have already been described in §III.F.3.c
of the course notes.

level for quantum mechanics:

a)

b)

It is the “spin” of a particle that primarily dictates how particles

Orbital: The motion of an electron about the nucleus
of an atom as described by spherical harmonics (take
PHYS-4617 Quantum Physics to learn about these) with
the orbital angular momentum quantum number ¢ and
the magnetic (or azimuthal) quantum number m. This

is sometimes referred to as the extrinsic angular momen-
tum (L).

Spin: Unlike the classical case, this isn’t the spin of
the electron about an axis, since the electron is a point
particle (even though we describe electron spin about
an axis in elementary physics). Here “spin” is nothing
more than the intrinsic angular momentum (g) of the
electron. Since this is intrinsic, spin angular momentum

is independent of spatial coordinates (7,0, ¢).

interact.

a)

b)

It so happens that every elementary particle has a spe-
cific and tmmutable value of s which we call the spin of
that particular species.

Particles with half-integer spins are called fermions since
they follow Fermi-Dirac statistics instead of the clas-
sical Maxwell-Boltzmann statistics. Fermions are said
to have antisymmetrical wave functions = a wave

IV-21
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d)

5. Particle physics is directly related to the 4 known forces in
nature (.e., gravity, weak (nuclear), electromagnetic (E/M),
and strong (nuclear)) — particles are classified depending on

function helps to describe the probability distribution
functions for the position and energy of subatomic par-
ticles. Wave functions are determined from a solution of
the Schrodinger equation (as presented in PHYS-4617).

Particles with integer spins are called bosons since they
follow Bose-Einstein statistics (see page 327 of your
textbook for details). Bosons are said to have symmet-

rical wave functions.

Antisymmetrical wave functions go to zero as two iden-
tical particles approach each other. As a result, two
fermions in the same quantum state exhibit mutual re-
pulsion to avoid their combined wave functions going
to zero. This effect is known as the Pauli Exclusion
Principle. Bosons do not suffer from this problem.

whether they participate in any of the above forces.

a)

b)

Strong interactions: Force that binds nucleons to-
gether with a characteristic range of ~ 107!3 cm. Parti-

cles that participate in the strong force are called hadrons.

The smallest component particle of a hadron is called a
quark.

E/M interactions: Force between charged particles
which has an infinite range that falls off as 1/r?. This
force is 100 times weaker than the strong force, however
it is what holds atoms and molecules together.

IV-22
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c)

d)

Weak interactions: These are responsible for 5-decay
of nuclei (i.e., radioactivity). They are about 10713 times
as strong as the strong interactions with a range <
1071 cm.

Gravitational interactions: These are by far the weak-
est of the interactions on the microscopic scale, typically
about 107% times as strong as the strong interactions
on nuclear scales. Gravity is another infinite, 1/r? force,
except it is charge independent — as such, this force
dominates all others on a cosmic scale.

6. The particles that make up matter and energy can be classified

into 2 broad categories:

a)

Field particles: These particles mediate the 4 natural
forces and are sometimes referred to as the energy parti-
cles — all are bosons. Here they are listed in order from
strongest to weakest:

i) Gluons: Mediate the strong [nuclear| force. Strength
of this force is described by six different color
charges.

ii) Photons: Mediate the electromagnetic force.
Strength of this force is described by the two elec-
tric charges (i.e., ‘+’ and ‘).

iii) The weakons mediate the weak [nuclear] force.
Strength of this force is described by the weak
charges carried by the W and Z intermediate

vector bosons.
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iv) Gravitons: Mediate the force of gravity. Strength
of this force is described by a single charge called

the mass.

b) Elementary particles: These are particles that make
up matter. They are subdivided into 3 groups:

i) Leptons (which means little things) include the
electron (e, m, = 511 keV), muon (p, m, =
107 MeV), and tau particle (1, m, = 1784 MeV),
each with a negative charge; their respective neu-
trinos: electron neutrino (ve, m,_. < 30 eV),
muon neutrino (v,, m,—, < 0.5 MeV), and tau
neutrino (v, m,_, < 250 MeV), each with no
charge; and the antiparticles of each: e™ (called
a positron), [, T, Ve, V,, and T;. These particles
do not participate in the strong interactions. All
leptons have spin of 1/2 hence are fermions.

iil) Mesons (middle things) are particles of inter-
mediate mass that are made of quark-antiquark
pairs and include pions, kaons, and n-particles.
All are unstable and decay via weak or E/M in-
teractions. All mesons have either 0 or integer

spin hence are bosons.

iii) Baryons (big things) include the nucleons n
(neutrons — neutral particles) and p (protons —
positive charged) and the more massive hyperons
(i.e., A, 3, =, and ). Baryons are composed of a
triplet of quarks and has a spin of either 1/2 or
3/2, and as such, are fermions. Each baryon has
an antibaryon associated with it.



Donald G. Luttermoser, ETSU

7.

8.

From the above list of elementary particles, there seems to be
only 2 types of basic particles: leptons which do not obey the
strong force and quarks which do obey the strong force. There
are 6 flavors of leptons (as describe above). As such, it was
theorized and later observed, that 6 flavors or colors of quarks

(and an additional 6 antiquarks) must exist:

a)

b)

c)

d)

Note that a proton is composed of 2 u and a d quark and a

Up (u) quark has a rest energy of 360 MeV and a charge
of —I—% e.

Down (d) quark has a rest energy of 360 MeV and a
charge of —% e.

Charmed (c) quark has a rest energy of 1500 MeV and
a charge of —l—% e.

Strange (s) quark has a rest energy of 540 MeV and a
charge of —% e.

Top (t) quark has a rest energy of 170 GeV and a charge
of —I—% €.

Bottom (b) quark has a rest energy of 5 GeV and a
charge of —% e.

neutron composed of an u and 2 d quarks.

The theory on how quarks interact with each other is called
quantum chromodynamics.

theory is that quarks cannot exist in isolation, they must always

travel in groups of 2 to 3 quarks.

One interesting result of this
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10. As described above, the four forces in relativistic quantum me-

chanics are mediated by the exchange of integer-spin particles

(bosons).

a)

b)

Of the four forces, only gravity gives rise to attractive
forces between like particles (same type of color charge,
electric charge, weak charge, or mass).

This difference arises because the graviton is spin 2,
whereas the gluon, photon, and weakon are spin 1 as
shown in the following table.

Spin quantum numbers for a sample of
elementary and field particles.

Common Particle | Spin Spin
Name |Symbolf| Type (s) Family
Pion Tt meson 0 | boson
70 meson 0 | boson
Electron e~ lepton % fermion
Muon uo lepton % fermion
Neutrino Ve lepton % fermion
Proton P baryon % fermion
Neutron n baryon % fermion
Gluon G field 1 | boson
Photon v field 1 | boson
Weakon %4 field 1 | boson
Delta AT baryon 2 | fermion
Graviton g field 2 | boson

T — The superscipt in the symbol corresponds to the

charge of the particle: ‘4’ = positive, - =

negative, ‘0’ = neutral. Symbols with no super-

script are neutral, except for the proton which
is positively charged, and the weakons which

can have a +, —, or no electric charge.
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MATTER & ENERGY

FORCES CONSTITUENTS
Strong Gluons Quarks
ujc|t

EM H Photons d|s|b
Weak — W & Z Bosons L eptons
e u|r

Gravity | Gravitons Ve [V, | V.

The Standard Model of Particle Physics

Figure IV-1: The Standard Model is the current best description of the subatomic world.

11. Figure IV-2 summarizes the interconnections between matter
represented by the fundamental particles of quarks and leptons
and energy represented by the force-field particles of gluons,

photons, weakons, and gravitons.

12. Conservation Laws.

a) If we assign a baryon number B of +1 to each baryon
(nucleon or hyperon) and -1 to an antinucleon or anti-
hyperon, then in a closed system

> B = constant. (IV-42)

b) Similarly, if we assign a lepton number L of +1 to each
lepton (i.e., e, u, v, etc.) and of —1 to antileptons (i.e.,
et, ., v, etc.), then in a closed system

> L = constant. (IV-43)
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c)

d)

e)

f)

A similar conservation law does not exist for bosons —
the mesons and field particles (i.e., photons).

Charge must be conserved in a nuclear reaction.

2

Mass-energy, via F2 = mc”, must be conserved in a nu-

clear reaction.

Momentum must be conserved. Hence a matter-antimatter
reaction must create two photons to conserve momentum
(e.g., e~ +eT — 27).

C. Thermonuclear Reactions.

1. In 1938, it became clear that the long-term energy source for

stars must be thermonuclear fusion reactions. In these reac-

tions, lighter elements burn to form heavier elements =— nu-

cleosynthesis.

2. Two nuclei will fuse to form one nuclei if they come within

1013 cm of each other — but they must be moving fast enough

to overcome the Coulomb repulsion that exists between like

charged particles.

a)

b)

c)

Particles must be at a high temperature to be moving
fast.

This high temp completely ionizes all of the nuclei.

Temps must build even more to get the kinetic energy
to overcome the Coulomb barrier.

3. In main sequence stars, H is fused into He. Since H is composed

of 1 baryon and He, 4 baryons (2p + 2n), 4 H nuclei must be

used to construct one He nuclei.
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b)

d)

4xmyg = 4x1.0078 amu = 4.0312 amu
—Me = 4.0026 amu
Am = 0.0286 amu

This mass deficit, Am, is converted into energy:

E=Amc* = (0.0286) x (1.66 x 1072 gm)
x(9.00 x 10% cm?/s?)
= 4.3x107° erg

From this calculation, we see that the energy release ef-
ficiency, n, of this H—He reaction is 0.0286/4.0312 =
0.0071 = only 0.71% of the original mass of H is con-
verted to energy!

With this in mind, we can rewrite Einstein’s famous

equation as

E=nmdc, (IV-44)

where 7 is the efficiency of the reaction and m is the

initial mass in the reaction.

We can calculate the total energy the Sun will release
during its main sequence lifetime. Since the reactions
are only being carried out in the core of the Sun and
this core contains about 10% of the Sun’s mass, the total

energy release will be

E, = 0.1M,nc?
= 1.28 x 10°! ergs.

The present luminosity of the Sun is 3.90 x 1033 erg/s. If
the Sun’s luminosity remains somewhat constant while
on the main sequence, we can determine its main se-
quence lifetime:

tus(®) = Ey/Le = 3.28 X 10'7 sec = 1.04 x 10% yrs,
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4. As previously mentioned, high temperatures are needed to over-
come the Coulomb repulsion of the charged nuclei. But how

the Sun’s main sequence lifetime is about 10 billion years.

Since the Sun is currently 5 billion years old, it is at mid-
life.

high a temperature?

a)

b)

From classical physics, we can set the average kinetic en-
ergy of the particles involved equal to the thermal energy

of the particles and solve for the temperature (see page
334 of Carroll and Ostlie). This gives

2Z1 Z2€2
j—1c assical — o7 IV-45
: : 3]{337' ( )

where Zye is the charge on particle 1, Zse is the charge on
particle 2, and r is the distance where a nuclear reaction
will occur (about the size of a nucleus, 1071% cm).

For 2 protons coming together (7; = Zy = 1), this gives
a temperature of 10'° K, whereas the Sun’s central tem-
perature is only 1.58 x 107 K.

We could also investigate this in terms of energy. For
the Sun’s central temperature, each proton will have a
thermal energy of 1 keV, whereas the Coulomb potential
barrier is 1000 keV (1 MeV)! Not all the particles have
this energy, some are moving at much quicker velocities,
hence have higher thermal energies and temperatures fol-
lowing the Maxwell-Boltzmann distribution of velocities.
Unfortunately, the number of particles in the tail of this
Maxwellian is insufficient to account for the Sun’s lumi-
nosity.

IV-30



Donald G. Luttermoser, ETSU

d)

We can now turn to quantum mechanics to solve the
problem. As discussed in the subsection on particle spin,
in reality elementary particles are not little billiard balls
colliding with each other as a result of following trajec-
tories. Instead, they follow probability distributions de-
scribed by their wave functions. In quantum mechanics,
there is a small probability that wave functions can pen-
etrate energy barriers that are higher than the energy
of the wave function. This effect is known as quantum
tunneling.

Using quantum mechanics, we can describe a tempera-
ture needed to produce a sufficient number of tunneling
events to sustain a nuclear reaction (see page 335 of the
textbook) as

- A ZiZ5e!

antum — = 57 19 IV'46
e 3kph? (1V-46)

where p,, is the reduced mass of the colliding “particles”
and h is Planck’s constant.

In this equation, two protons can come together (i.e.,
fuse) at a temperature of 107 K, which is consistent with
the central temperature deduced for the Sun.

A more detailed calculation from statistical mechanics
shows that the bulk of the energy is being liberated by
reactions involving particles in the high energy tail of the
Maxwellian distribution as shown in Figure 10.6 on page
339 in your textbook.

i) What is shown in this figure is that particles with
energies at the Gamow Peak will be the ones
that supply most of the energy through thermonu-
clear reactions.
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ii) The Gamow Peak corresponds to a local maxi-

mum in the two probability functions: the e~ Z/#5T

Maxwell-Boltzmann distribution term and the e %"/
quantum tunneling penetration term, where,
23/27T2,[L,17{2Z1 Z2€2

b
h

iii) The Gamow Peak for a given temperature will
occur at the energy of

T 2/3
E, = (bk%> , (IV-47)

for the Sun, the Gamow Peak is at 6 keV.

5. By making use of statistical mechanics in conjunction with quan-
tum mechanics, stellar interior modelers set up power laws that
describe the energy production rate per unit mass of the form

£ = e X; X, pT" | (IV-48)

where the X’s are the mass fractions of the fusing particles,
and €., . and 8 are constants that depend upon the reactions

involved (more to come on this).
D. Various Reaction Chains

1. Two different fusion processes convert H into He, the first is
important for stars with 7, < 1.8 x 107 K (M = 1.3M,, ~F5V
star) and is called the proton-proton chain.

a) The first of this reaction chain is called the PP I chain:

Energy  Reaction

Reaction Released Time
(MeV)
H+™H — 2H+et + 1, 1.442 1.4 x 10° yr
H+2H — 3He+ v 5.493 6 sec

SHe + 3He — ‘He + 'H+'H  12.859 108 yr
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i) 'H = hydrogen atom (1 proton).

ii) 2H = heavy hydrogen (1 proton + 1 neutron) =
deuterium.

iii) 3He = light helium (2 protons + 1 neutron).

iv) “*He = helium (2 protons + 2 neutron) = alpha
particle.

v) ~ = Gamma ray photon.

vi) e" = positron (positive charge) = anti-electron
(antimatter). This positron interacts with the free
electrons in the core virtually immediately which
produces 2 additional gamma ray photons.

vii) v, = electron neutrino (neutral particle). The
neutrino’s absorption cross section is negligible
and leaves the stellar core (and star) immediately
without further interaction. The energy loss from
the neutrino is 0.263 MeV which has not been in-
cluded in the Energy Released column.

viii) In this PP I change, please note that the fol-
lowing reaction can take place 1.4% of the time
that the first reaction takes place

'H+e +'H— ?H + v,
the so-called “pep” (proton-electron-proton) reac-

tion which releases 1.4 MeV and loses an addi-
tional 1.4 MeV in energy loss from the neutrino.
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b)

ix) Note that the Energy Released column is a com-
bination of the energy of any gamma rays created,
the kinetic energy = thermal energy picked up by
the resulting nuclei as a result of this reaction, and
the energy gained by the positron annihilation.

x) The times listed for the Reaction Time column
is that for the Sun’s central temperature.

xi) Note that the first two reaction steps must occur
twice before the last one can take place.

xii) The last step of this reaction chain is occurs
69% of the time in comparison to the other two
PP chains in the production of He in the Sun.

xiii) This PP I chain dominates the other PP chains
in stars with central temperatures of 7' < 1.6 X
107 K.

xiv) Note the long average time it takes for the first
and third reaction steps to take place for a single
particle. However when normalized by the total
number of particles in the Sun’s (or star’s) core,
about 9.0 x 1037 of these reactions take place per
second!

A second chain, called PP II, also can occur (31% of the
time in the Sun) in the production of *He once the first

two steps of the PP I chain occur.
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Energy Reaction

Reaction Released Time
(MeV)
SHe + *He — "Be + v 1.586 1.0 x 10° yr
Be+e — Li+ v, 0.861 0.4 yr
Ti+'H — “He +*He 17.347 10* yr

i) "Be = beryllium-7 atom (4 protons + 3 neu-
trons).

ii) Li = lithium-7 atom (3 protons + 4 neutrons).

iii) The neutrino energy loss in this PP chain is
0.80 MeV.

iv) This PP II chain dominates the other PP chains
in stars with central temperatures of 1.6x107 < T <
2.5 x 107 K.

v) The Energy Released and the Reaction Time have
the same meaning as they did for the PP I chain.

c) A third and final PP chain, called PP III, occurs only
0.3% of the time in the Sun in the production of “He
once the first two steps of the PP I chain occurs and the
first step of the PP II chain occurs.

Energy Reaction

Reaction Released Time

(MeV)
MBe+'H — 3B +4+xy 0.135 70 yr
8B — ®Be+4 et 4+ 1, 17.98 1 sec

8Be —— “He + *He 0.095 1 sec
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i) ®B = boron-8 atom (5 protons + 3 neutrons).
ii) ®Be = beryllium atom (4 protons + 4 neutrons).

iii) The neutrino energy loss in this PP chain is
7.2 MeV. The Davis solar neutrino experiment,
which detected only 1/3-rd of the predicted so-
lar neutrinos was most sensitive to these B beta
decay neutrinos. Recently, neutrinos have been
found to oscillate between the 3 known neutrino
states which accounts for the low detection rate of
the Davis experiment.

iv) This PP III chain dominates the other PP chains

in stars with central temperatures of T 2 2.5 X
10" K in the production of helium.

v) The Energy Released and the Reaction Time have
the same meaning as they did for the PP I chain.

2. For more massive stars (T 2 1.8 x 107 K, M 2 1.3M,,

~F5 V star), the CNO cycle is the dominant reaction chain.

a) This reaction chain uses carbon as a catalyst:

Energy Reaction

Reaction Released Time
(MeV)
BCC+'H — BN 44 1.95 1.3 x 107 yr
BN — BC+ef + 1, 2.22 7 min
BC+H — YN 44 754  2.7x 108 yr
UN4+1H — B0 4+ 7.35 3.2 x 108 yr
B — BN +et + 1, 2.71 82 sec
BN 4+ H — 2C 4+ “He 4.96 1.1 x 10° yr
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b)

i) !2C = carbon-12 (6 protons + 6 neutrons).
ii) 13C = carbon-13 (6 protons + 7 neutrons).

iii) '8N = nitrogen-13 (7 protons + 6 neutrons) [ra-
dioactive].

iv) !N = nitrogen-14 (7 protons + 7 neutrons).
v) N = nitrogen-15 (7 protons + 8 neutrons).

vi) 150 = oxygen-15 (8 protons + 7 neutrons) [ra-
dioactive].

vii) '°0 = oxygen-16 (8 protons + 8 neutrons).

viii) The neutrino energy loss in the 3N beta de-
cay is 0.710 MeV and the neutrino energy loss is
1.000 MeV for the second %0 beta decay.

ix) The Energy Released and the Reaction Time
have the same meaning as they did for the PP I

chain.

Note that this reaction sequence does not make any new
elements other than He!

For the last step in the CNO cycle, an additional set of
reactions can take place:
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Energy  Reaction

Reaction Released Time
(MeV)
BN+ H — %0 + ~ 12.126 1.0 x 107 yr
60 +'H — F + 4 0.601 3.0 x 10" yr
g 5 1"O4+ef+v 2762 3 min
"0 +'H — UN 4+ “He 1.193 2.0 x 10 yr

i) 'F = fluorine-17 (9 protons + 8 neutrons).
ii) 180 = oxygen-16 (8 protons + 10 neutrons).

iii) The neutrino energy loss in the !’F beta decay
is 0.94 MeV.

iv) The resulting 1*N isotope can then be used back
in the
UN +1H — 0 + 4

reaction in the primary CNO cycle.

3. The thermonuclear reaction rate, € (in erg/gm/s), is very sen-
sitive to temperature. For the two hydrogen to helium reaction
chains (i.e., the proton-proton chain and CNO cycle), we can
write Eq. (IV-48) as two separate equations:

2 T g
6pp = &5 pX <1—06> (IV—49)
T \?
Eece — Eo ,OXXCN (1—06> , (IV-50)

where X is the mass fraction of hydrogen (as defined on page IV-
8 of the course notes), Xcx is the weighted average of the com-
bined mass fraction of carbon and nitrogen (since these species
are the two lead-off species of the two CNO cycles), note that
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typically .
XCN = g Z ; (IV—51)

with the Z being the metalicity mass fraction. Finally, €, and
«a are temperature dependent constants given in the following
table (from Bosmas-Crespin, Fowler, Humblet 1954, Bull. Soc.
Royale Sciences Liege, No. 9-10, 327).

Epp Eecc
T/10% |loge, | o | T/10° |loge, |
4-6 |-684] 6 |12 -16| 22220
6-10 | 6.04| 5 |16 - 24| -19.8 |18
9-13 | 556 45|21 -31|-17.1 |16
11 -17|-5.02] 4 |24 -36|-15.6 |15
16 —24|-4.4013.5| 36 -50|—-12.5| 13

In this table, for overlapping temperatures, a weighted average
is used to get the final rate.

4. Figure IV-3 shows the rate of nuclear reactions as a function of
temperature for the 3 processes described above. Note that the
Sun is right on the borderline of having the CNO cycle being an
important component to its energy output. Also note the much
steeper temperature dependence that the CNO cycle has with
respect to the PP chain.

5. We will see shortly, that when a main sequence uses up all of its
H fuel in its core, the now He-rich core will contract and heat
up. When temperatures exceed 10® K, helium fusion can begin.
Helium fuses via the triple-a process. The ash of this reaction

is carbon.
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Figure IV-2: Temperature dependence of the rate of nuclear energy release for three reaction
processes. From Martin Schwarzschild, Structure and Ewvolution of the Stars (Princeton, NJ;
Princeton Univ. Press) 1958.

a) The reaction is as follows:

Energy
Reaction Released
(MeV)
‘He + *He <— ®Be+ vy -0.0921
8Be + *He — 12C + 4 7.37

i) Since this reaction chain is not occurring in the
Sun, we have not reported on any reaction times

here since they are very temperature dependent.

ii) Ascan be seen, three a-particles (i.e., He nuclei)
fuse to become one carbon nuclei.

iii) ®Be is unstable and quickly decays, so there is
not much berylium around for the 2nd chain to
take place. For every 1 berylium nuclei, there are
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b)

d)

e)

6. Finally, if somewhat higher temperatures are ever encountered
inside a star, which happens during stellar evolution of massive
stars, even heavier elements can be created from the fusion of

1019 a-particles, however this ratio is more than
enough to release enough energy to power a red
giant star. Note that this reaction actually drains
energy away from the gas = it is an endother-
mic reaction. All reactions we have mentioned up
to now have been exothermic = they release

energy.

The 3a process has an even greater sensitivity to tem-
perature than the CNO cycle:
7 130

€30 & 1078 Y (1—06> erg/gm/s, (IV-52)

where Y is the fractional abundance of helium per unit

mass.

This is the way the Universe makes carbon. As such,
the C atoms that make up our DNA were created in an
ancient red giant star that no longer exists. To quote
Carl Sagan, we are star stuff!

Should the core of a red giant obtain temperatures that
exceed a few hundred million Kelvins, another reaction
can take place via an alpha («) capture:

2C + *He — 90 + v
which releases 7.161 MeV of energy.

Most of the 'O in the Universe is made in this fashion.

additional a-particles and a-particle by-products:
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Energy Minimum
Reaction Released Temperature
(MeV) Required (10° K)
0 + 1He — PNe + v 4.730 700
2Ne + ‘He — Mg+ v 9.317 1500
Mg + "He — 2Si+4 vy 9.981 1800
28Gi 4+ He — 32S 4 4 6.948 2500
28 + ‘He — BAr+ 1~ 6.645 3500
2C 4+ 2C — HMg 4y 13.930 800
160 + 0 — 328 4 ~ 16.539 2000

a) Various silicon burning reactions can occur at tempera-
tures exceeding 3 x 10° K. Silicon burning produces the
iron (Fe) group elements.

b) Once Fe is formed, reactions that produce heavier ele-
ments are all endothemic and have a tough time forming
via the standard thermonuclear burning. Such elements,
and the elements not built upon a-particles, are created
via the r- (for rapid neutron capture) and s- (for slow
neutron capture) processes. These processes will be
discussed in the supernovae section of the course notes

(i.e., §VII).

c) The reaction times of this heavy element nucleosynthesis
will be discussed in the stellar evolution sections of the

notes.
E. Modeling the Interiors of Stars

1. During epochs when stellar evolution is not changing the struc-
ture of the star rapidly over time, we can model the interior
of stars with the equations of stellar structure. Consider
a single, nonmagnetic, nonrotating (hence, spherically symmet-
ric) star. We can describe P, T, L,, and M, as functions of r
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by four differential equations that describe:

a) Hydrostatic Equilibrium (Eq. IV-14):

dP GpM,
— = — : IV-53
dr r2 ( )
b) Mass Conservation (Eq. IV-2):
dM,
o= 4rpr? . (TV-54)
c) Energy Conservation (Eq. IV-36):
dL,
— = 4mper? . (IV-55)
d) Energy Transport:
dT dT
i) Radiative for @l <l . (Eq. IV-35):
drT 3kp L,
dr — 4acT® 4mr? (TV-36)
dT dTl’
ii) Convective for @l > . (Eq. IV-31):
T _dr (1) TP
dr  drly ~v) P dr
1\ pmy GM,
= [1—--— IV-57
(1= ) E )

iii) Note that the convection criterion can also be
checked with

dln P < v
dinT ~~v—-1"

(IV-58)

where 7 is the ratio of specific heats given by Eq.
(ITI-26). If this relation is valid, convection will

carry the energy.
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2.

These 4 ordinary differential equations readily can be solved by

setting the following boundary conditions:

a)

At the stellar core:

M, = 0 -

L — 0 } when r =0 . (IV-59)
b) At the stellar surface:

P =0

T — 0 } when r = R, . (IV-60)

In order to solve these 4 ODEs, we need 3 sets of equations that

describe the gas characteristics:

a)

b)

Equation of state:
P = P(p, T, composition) . (IV-61)

Examples: ideal gas law (Eq. IV-23), radiation pres-
sure (Eq. IV-15), degenerate electron pressure (needed
for white dwarf stars).

Opacity (a mean opacity is calculated = Rosseland
mean opacity):

k = k(P,T, composition) . (IV-62)

Examples: electron scattering, free-free opacities, bound-
free opacities (all of these are combined to calculate the
mean opacity). Remember, ‘6’ is the mass-absorption
coefficient = k (opacity) / p (mass density).

Energy Sources and Sinks:
e = ¢(P, T, composition) . (IV-63)

Examples: nuclear energy sources (e.g., Egs. IV-49, 50,
52), neutrino losses.
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4.

Modeling the interiors of stars has lead to the following theorem:

The mass and composition of a star uniquelt determines
its radius, luminosity, and internal structure, as well as

its subsequent evolution.

This is referred to as the Vogt-Russell theorem.

The final ingredient in modeling the internal structure of stars
is that stars evolve “quasistatically” by slowly changing their
composition through nuclear burning.

Everything we understand about stars, their evolution, and the
chemical evolution of the Universe results from such modeling.



