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XI. Gravitation, Cosmology, and the Big Bang

A. Olber’s Paradox — Why does it get dark at night?

1. During the 19th and beginnings of the 20th centuries, the sci-
entific viewpoint was that the Universe is unchanging (static),
has no spatial boundaries (infinite ), and had no beginning (eter-
nal). If the Universe is static, infinite, and eternal, we should
light in every direction we look.

a) This observation is referred to as Olber’s Paradox.

b) Actually, Halley (of the comet fame), was the first to
pose this question, Olber was the first to formally publish
it in 1826.

c) The inverse-square law of light cannot be used as a so-
lution to Olber’s Paradox for the following reasons:

i) The luminosity at the surface of a star is given
by L = 4rR%*F, where R is the radius of the star
(as given on page I-3 of the notes).

ii) The flux of a star falls off as r~2 (see Eq. I-11),
where 7 is the distance to the star: f = (R/r)?F.

iii) For a uniform distribution of stars, each succes-
sive shell radially away from the Earth will contain
4r? N stars, where N is the areal density [cm?] of
stars on a shell at surface area 4mr?.

iv) The total flux that should arrive at Earth from
all of the stars in the Universe is a convolution of
these two quantity giving fopeeen = (4772N)(f) =
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(47r*N)(R/r)?F = LN = the sky should be
ablaze with light for an infinitely large eternal Uni-

verse!

v) Even for a non-uniform distribution of stars, the
inverse-square law will fail to account for the dark
night sky for an infinite, eternal Universe.

d) Though not known when Olber’s Paradox was published,
interstellar absorption also cannot be used to explain the
dark night sky.

i) Absorption from gas and dust in the ISM and
IGM would heat the gas and dust.

ii) Over an infinite amount of time, this dust and
gas would reach an equilibrium temperature that
is equal to the effective temperature of the inte-
grated light from the stars.

iii) Hence, the ISM and IGM would shine as bright
as the surface of the stars contained in the Uni-

verse.

2. The solution to Olber’s Paradox is that the Universe is expand-
ing (hence not static) and is not eternal = Big Bang Theory
— it had a beginning!

a) Light gets redshifted out of the visible band for stars and

galaxies at large distances.

b) As we look out, we look back in time. We cannot look
infinitely far out since, sooner or later, we will see the
Big Bang.
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3.

How long ago did this happen? We will treat this question in
a very simplified way initially: Calculate when all the galaxies

were at the same position from Hubble’s Law.

a)

b)

Since there is still some uncertainty to the value of Hub-
ble’s constant, we will use the following scale factor for-
malization:

H, = 100h km/s/Mpc =3.24 x 107 hs™*
= 1.02x1079h yrt | (XI-1)

where h (the Hubble constant scale factor) = 1.0 if H,
= 100 km/s/Mpc and h = 0.5 if H, = 50 km/s/Mpc.

From Newtonian mechanics, the distance to a galaxy is
d = v, t, where v, is the galaxy’s radial velocity (assumed
constant here), and ¢ is the time since the galaxy started
at the origin. But from Hubble’s Law, v, = H, d, so

L_d_d 1
" w, H.d H,
or
ty =9.78 x 10° ™ yr . (XI-2)

The Universe actually younger than that due to gravity

slowing down the expansion over time. Hence the time

given in Eq. (XI-2) corresponds to the maximum age of

the Universe which is referred to as the Hubble Time.

i) Ifh=1.0(H, =100km/s/Mpc), then ¢, = 9.78
billion years.

ii) If h=0.5(H, = 50 km/s/Mpc), then ¢ty = 19.6
billion years.

iii) The best value for Hubble’s constant (as deter-
mined by HST and WMAP, see Egs. X-14 and
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d)

X-15)is h = 0.71 (H, = 71 km/s/Mpc), and ¢, =
13.8 billion years.

If a galaxy is farther than d,, = cty (= 9.78, 13.8, or
19.6 billion light years, depending upon the value of H,)
away, we will never see it since light would not have
had enough time to reach us = d,,, is the size of the
observable universe.

B. Gravitation.

1. For Hubble’s Law to be true, galaxies in the Universe have to

be distributed homogeneously and isotropically (see below for

definitions of these terms) on a large scale.

a)

b)

Hubble’s Law is referred to as the observed kinematic
world model of the Universe.

One question we will come back to later is: How large is
large?

2. E.A. Milne and W.H McCrea (1934) extended this, at first
purely kinematic model, so as to make it a Newtonian cos-

mology.

a)

b)

They investigated the motions (i.e., trajectory) of a medium
of gas particles, where the gas particles represent galaz-
ies in the Universe (i.e., the galaxies are treated as point
particles).

These trajectories can be determine in accordance with
Newtonian mechanics if one demands throughout that
the distribution of gas particles are:

i) Homogeneous: The volume number density [cm ™3]
of galaxies is constant throughout the Universe.
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d)

ii) Isotropic: The areal number density [cm™2] of
galaxies on the sky from any point in the Universe
is constant (note that isotropy results automati-
cally for a homogeneous distribution).

iii) Irrotational: The Universe as a whole is not

rotating about some axis.

Consider at time ¢ a galaxy at distance R(t), then ac-
cording to Newton’s law of gravitation, this galaxy is
attracted by the mass within a sphere of radius R by

4
M == R p(t), (XI-3)

where p(t) is the mass-density at the instant of time con-
sidered.

Thus, the equation of motion of this galaxy (of mass m)
is determined by setting the force of motion equal to the

gravitational force:

F = F,
d2_R B _GMm
e T R?
o 2R GM
il Wl § X1-4
dt? + R? ’ ( )

where the mass M is constant.

Multiplying each term in Eq, (XI-4) by R = dR/dt, it is
then possible to easily integrate Eq. (XI-4) and obtain
the energy equation:

1 (dR\> GM

- (eB)y _EE XI1-5
2(&) R " (X1-5)

XI-5
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f)

h)

j)

where k is the integration constant, or

R? 8n kc?
— Go(t)+ = =0 XI-6
in which we have written kK = —kc?/2 in anticipation of

later comparison with relativistic calculations.

We can define the current Hubble constant as
H, = R./R., (XI-7)

where we denote present time ¢t = £, by a subscript o.

For a complete characterization of a model universe, we
need, besides H,, a second variable that describes the
deceleration of the Universe due to its mass M. This is
the so-called deceleration parameter:

qu_<Ro) /<Ro>2: Re _4nGpo iy

R.) " \R, " R,H?2  3H?2
using Egs. (XI-3), (XI-4), and (XI-7).

This formula relates the acceleration R, to a uniform
acceleration which would lead to the observed velocity
R.H, at distance R, in the Hubble time t,; = t, = H !,
starting from zero velocity.

The solution of the above equations leads to world mod-
els which, from a starting point (singularity) of infinitely
great density, either expands monotonically (total energy
Mk > 0) or oscillates periodically between R = 0 and
an R, (if K < 0). Static models are not possible within
the framework of Eq. (XI-4).

Newton actually realized this which is why he wanted
the Universe to be infinite in size.

XI-6
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3. Relativistic cosmologies are based on the general theory of
relativity instead of Newtonian mechanics. Here we use a
spacetime description of the Universe in cosmology = we lay
a coordinate grid across the spacetime manifold.

a) An event is defined as a point in spacetime, specified by
4 coordinates z‘:

: t — time coordinate

. 7 — spatial position coordinate

8 8 8 8

0
1
2
3

b) A world line is the locus of successive events in a par-
ticle’s history.

i) Spatial distance in spacetime: ds.
ii) Separation in spacetime: dr.

4. In spacetime, the separation or line element is defined by the
tensor equation:

3 .
dr* = Y gijda'da? | (XI-9)
i,j=0
meanwhile, the spatial distance is given by
3
ds* = Y g da*dz” (XI-10)
pr=1
where %, 7, u, and v are summation labels and not exponents.

The various metrics or configuration coefficients are given be-
low.

a) Minkowski metric/spacetime (i.e., special relativity):

1 0 0 0
0o —L 0 o0

9ii ="Mi= |9 ¢ 1 (XI-11)
o 0 0 -1
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in a local inertial coordinate system

dr* = g;;dz' da’ (XI-12)
1
= dt’ — S(dz” + dy’ + d2*)  (XI-13)
c
dr?

i) dr is invariant = another inertial observer O

measuring d7 gets the same answer.

ii) Note that since dr = v dt, we can write

v? dt?

dr* = dt* — —— |

- (XI-15)

or

d
dt = —— (XI-16)

J1—v2/c’
where d7 is the proper time interval. One recog-
nizes this equation immediately as the time dila-

tion equation (Eq. VIII-25) from special relativity.

iii) Principle of Equivalence: At every space-
time point in an arbitrary gravitational field, it
is possible to choose a locally inertial coordinate
system, such that the laws of nature take the same
form as in a non-accelerating coordinate system in
the absence of gravity.

Frame f:
md =mg + F,, , (XT-17)

and in f’, a frame with acceleration g:

—

m(@—g§) =F, = md=F,,, (X-18)

where F,,, is a non-gravitational force. Hence, lo-
cally we can say that g;; = n;;.
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b) A line element in spacetime with spherical symmetry has

a metric tensor of

e(r,t) 0 0 0
0o L& g 0
gi; = ¢ 2 XI-19
iJ 0 0 -% 0 (X1-19)
0 0 0 _ r’sin’6

or

1

dr? = e(r,t) dt*—— [f(r,t) dr* + r*d6” 4+ r? sin® 0 d¢| ,
¢

(XI-20)

where e(r,t) and f(r,t) are functions to be determined

from the boundary conditions of the problem in question.

i) For a static line element in spherically symmetric
spacetime (Schwarzschild metric),

2GM
e(r) = 1— 2,
Ts
= 1—--= XI-21
;| (x1-21)

where ry = 2GM/c? is the Schwarzschild radius
(see Eq. VIII-41). Also

1

f(r) = 1= (X1-22)

in this metric.

ii) The line element in spacetime then becomes

dr? = (1 - T—) dt? — (XI-23)
T

1 2
— (L + r2d#* + r? sin? 9 dqz52> ,

2 \1—ry/r

which is our spacetime equation that we developed
for a black hole (see Egs. VIII-44 ans VIII-45).
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c) The Robertson-Walker metric concerns a spherical-
symmetric, homogeneous spacetime. Its metric tensor

18

1 0 0 0
RX(t) 1
gij = 0 1 R2(()t) 9 ’
0 0 —=3°T 0
0 0 @ r? sin% 6
(XI-24)
or
2 2 R*(t) dr? 2 192 2 2 2
dr* = dt* — 2 (1—kr2+r df° + r* sin“8do° | ,

(XI-25)
where r is the coordinate distance, R(¢)r is the metric
distance, and R(t) is known as the scale factor of the

metric.

d) This Robertson-Walker metric spans a 3-space of con-
stant curvature K:

k

K=K(t) = XI1-26
0= 7 (X1.26)
+1 : positive curvature
k= 0 : flat positive space (zero curvature)
—1 : negative curvature.

5. On a curved surface, the shortest and longest paths (i.e., the ez-
trema) between two points in spacetime are called Geodesics.

a) On a spherical (i.e., positive curvature) surface one can
ave both a minimum and a maximum geodesic between
h both d d bet

two points A and B.

b) On a flat (i.e., zero curvature) or hyperbolic (i.e., nega-
tive curvature), one can only have a minimum geodesic.

XI-10
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6. The interval between two events in spacetime, 7 = 7,5z, is
defined by

B
T = Tag = /A dr (X1-27)

where dr = v/d7? (from Eqs. XI-9, 12, 23, and 25) is the space-
time line element (i.e., separation). Making use of Eq. (XI-9)
we can calculate the spacetime interval from the definition of a
geodesic:

" B
T = extremum / vV dr?

(X1-28)

= extremum / Z (9i; da’ da”) /] (XI-29)
L 4,5=0

. (XI-30)

1/2
B J
= extremum /A lg” il::' dd:[;] dr

where we have not included the summation sign in the last in-
tegral, but its inclusion is implied. The technique for finding
the extremum is very complicated and beyond the scope of this
class (it involves taking the derivative of the Lagrangian equa-
tion of the metric and setting this equal to zero). From any of
the definitions written in Eqs. (XI-28, 29, or 30), we can define
one of three outcomes for a given geodesic:

a) 7 is real — events have time-like separations or time-
like geodesics. Events can lie on a world line of a material
particle, since material particles have time-like geodesics.
In that case, d7 is the proper time between events.

b) 7 is imaginary — space-like separations. The events
cannot lie on a world line of a material particle. cv/—dr?
is the proper separation if we were at a particular event.
This would be the regime one would be in if one could
travel faster than light.



Donald G. Luttermoser, ETSU

time Communication
possible within
this con

Time-like
Geodesics
(v<c)

P (now)

>
/ - space
Space-like S~ \
Geodesics
(v > c) NULL
Geodesics
(v=c)

Figure XI-1: Light-cone diagram of event P occurring in spacetime.

c) 7 = 0 — light-like separation or null geodesics =
this is the way light propagates. World lines of photons
are null geodesics.

7. These various separations can be seen in Figure XI-1. Here we
define the light-cone, which are double (hyper-) cones joining
an event P to past and future events. Time-like geodesics all
lie in the cone. Events and geodesics outside the cones (i.e.,
space-like) can never communicate to events inside the cones

(i.e., our Universe).

8. In the general theory of relativity, Einstein used the concept of
geodesics to derive the Field Equations of the Universe:

1 8t G
Rij =595 R=——73"

5 T . (XI-31)

a) Ri; are the components of the Riemann curvature
tensor, which are related to the scale factor of the Uni-

XI-12
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b)

9. The tensor field equations as shown in Eq. (XI-31) produce non-
static metrics as was shown by de Sitter and others. Einstein
didn’t like this and added an additional constant term to keep

verse. Note that R = g¥ R;;.

T;; are the components of the energy-momentum ten-
sor.

Essentially, the field equations are nothing more than the
conservation of energy and momentum in a 4-D space-

time.

the Universe static:

a)

b)

8Tt G

1
Rij— 59 R+ Agij = Tz

2

A has been coined the cosmological constant.

This constant term, c? A gij, effectively represents a neg-
atiwe gravity, in order to keep the Universe static. We
will have more to say about this later in this section.

After Einstein heard of Hubble’s results that the Uni-
verse is expanding, he claimed that adding this constant
to his equations was the biggest blunder of his life!

But is A really zero? We will keep this constant in mind
while developing the formalism of these equations.

At this point, we will go no further with the tensor form
of the field equations since it’s too advanced for this
course. However, we can still develop a differential equa-
tion for the change in scale factor of the Universe from
an algebraic definition of curvature. We will introduce
this in the Structure of the Universe subsection.

T . (XI-32)

XI-13
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C. The Big Bang Theory.

1.

2.

The Universe started in a hot, high density state, which began

to expand and cool a Hubble Time ago —> the Big Bang

Theory.

a)

b)

The Big Bang occurred everywhere in space, not just at
one location = we are in the Big Bang!

Galaxies were not thrown apart = the fabric of space
itself is expanding and the galaxies move apart as a result
as they ride along on the fabric of spacetime.

We shall be developing equations that describes the evolution

of the Universe with time. In these equations, we will start with

two postulates called the Cosmological Principle.

a)

b)

Homogeneity — matter is uniformly distributed in space

on a very large scale (d > 100 Mpc).

Isotropy — the Universe looks the same in every direc-
tion.

In addition, two additional assumptions are typically included

when describing the Big Bang:

a)

b)

Universality — physical laws and constants are the
same everywhere in the Universe.

Cosmological Redshifts — redshifts are caused by the
expansion of the Universe through the Doppler Effect.

4. We see the Big Bang fireball in every direction as microwave
blackbody radiation:

3 K Cosmic Microwave Background (CMB) radiation

XI-14
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a) When this light was emitted some 300,000 years after
the Big Bang when the Universe was around 3000 K.

b) As the Universe expanded, this light was redshifted un-
til today it is microwave light (z = 1100!, the farthest
quasar is at z = 4.9).

c) Penzias and Wilson discovered this background radiation
in the early 1960’s, confirming the theoretical predictions
of the Big Bang Theory made by Dicke and Peebles.
Penzias and Wilson later won a Nobel Prize for their
discovery.

d) The COBE spacecraft was launch in the early 1990’s to
investigate this background radiation.

i) Found that the Universe radiates as a perfect
blackbody (after the Earth’s, Sun’s, Milky Way’s,
amd Local Group’s motions are subtracted) at a
temp of 2.726 K.

ii) Small variations in the thermal distribution of
this radiation on the sky on the order of 1 part in
100,000 (i.e., the intrinsic anisotropy) show that
by the time this radiation was emitted, inhomo-
geneities in the mass-energy of the Universe had
begun which would later form the galaxies.

D. The Structure of the Universe.

1. We will now develop the equations that describe how the Uni-
verse has evolved in time. We will assume the cosmological
principle as postulates to the global structure of the Universe
which allows us to use the Robertson-Walker metric (see Eq.
XI-24 and XI-25) to describe the geometry of spacetime.
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2.

Since the Universe is assumed homogeneous, isotropic, and irro-
tational, the § and ¢ coordinates are constant and we can ignore
them in our description of spacetime. The separation in events
then becomes

dr?

2 _ 12 p2
dr* = d* = R(t) ooy

(XI-33)

As described in Eq. (XI-26), the constant k£ is a measure of

the global curvature K of spacetime. The curvature K can be

expressed as a function of ¢t and r with the Gaussian curvature

formula for an orthogonal coordinate system:

K 1 {_ %911 _ 9%g22 n 1 lagn 0922 n (8911>2}
2011722 0(z2)?2  0(z')?  2g11 | Oz! Ox! 012

1 |[0g110g2 (3922>2
— XI-34
+2922 [8332 0z? + ozl (X1-34)

a) Note that for plane-polar coordinates, K = 0 = space

is flat.

b) For a spherical surface, K = 1/R2.

c) For space-only curvature, ! and z? are spatial coordi-

nates, where ' 1 z? in Eq. (XI-33).

d) However, for spacetime curvature, ! = ¢t and 2 = r in

this equation. Hence, K = K(t) is a function of time.

Using the Robertson-Walker metric in this curvature formula
gives )
R(t)

K=~ (XI-35)

a) Matter in the Universe is described by its mass den-

sity p(t), and is the cause of the curvature of spacetime
(though A can give curvature without matter). With

XI-16
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b)

d)

f)

g)

this in mind, we can use a dimensional analysis type
of argument to describe K (¢) in terms of a linear pro-
portionality to this mass density p(t). We guess at an
equation:

K(t) = ap(t) G ™ + constant, (XI-36)

where the constant is inserted to allow for the possibility
that empty spacetime (p = 0) might be curved.

It follows from Eq. (XI-35) that K (¢) must have dimen-
sions of (time)~2. If « is dimensionless, this implies that
the powers of £ and m to which GG and ¢ are raised are 1
and 0 respectively.

When taking the Newtonian limit (see below), o = 47/3.

A curved empty universe requires that the cosmological
constant introduced in Eq. (XI-32) be nonzero. As such,
we choose the constant in Eq. (XI-36) to be equal to
—A/3 for consistency with the field equations. Therefore,
the cosmological constant A has the same dimensions as
K(t), or (time)™2

The curvature K (t) now becomes

_Amp(t) G A

K(t) 3 3

(X1-37)
Equating this with Eq. (XI-35) gives the equation of mo-
tion for R(t) as

Amp(t) G A

R(t) = 5 B+ 3 R) - (XI-38)

Precisely this same formula follows from Einstein’s gen-
eral field equations.

XI-17
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h)

If A > 0, A acts like a negative density p. Since self-
gravitation of matter acts to slow down the expansion
of the Universe, a positive A must act to accelerate it.
For this reason, AR/3 is sometimes called the cosmic
repulsion term.

If A =0, Eq. (XI-38) follows exactly from Newtonian

mechanics.

i) To see this, consider the galaxies lying inside the
comoving sphere with radial coordinate 7.

ii) A galaxy on the surface of the sphere will ac-
celerate inwards under the attraction of the mass
within the sphere.

iii) If the galaxy has a mass m, Newton’s second

law gives

ma = mrR(t) = F,
GmM
RO
_ Gm(an/3)p(t) [rR()P
[rR(1)]* ’

where F,, is the gravitational force on the galaxy

and M is the mass that lies inside sphere.

iv) Thus,
- 4 4
R(t) = —3 Gp(t) R(t) = —3 GpR, (XI-39)

hence our choice of o in Eq. (XI-36). Note that
whenever cosmological parameters are listed with-
out a subscript ID, the parameter is to be taken
as a variable function of time.

XI-18
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j) Even though Newtonian mechanics seems to work quite
well in describing the evolution of the Universe, general
relativity still must be used since expansion velocities
quickly exceed the speed of light if one looks out far
enough under the assumptions of classical mechanics.

5. Since we don’t know p(t) throughout the entire history of the
Universe, we need to eliminate this term from Eq. (XI-38). We
will use the conservation of mass-energy here: Within a co-
moving sphere the mass remains constant, where the volume is
proportional to R3(t) [i.e., p(t) R3(t) = po R2 = constant], thus

p(to) RP(t)  po RS
p(t) = B RQ)

where p, is the current mass density of the Universe (i.e., a

(XI-40)

measurable quantity) and R, is the current scale factor of the

Universe.

6. Eq. (XI-38) now becomes
4mpo GRS AR(t)

R(t) = - SREY) | 3

(XI-41)

7.  Multiplying this equation by R(t) = R and integrating, we ob-

tain
Bi _47rgo}gR§R ARR
-G R? A
piy 0 g ‘fff+ ;@
RdR = —%GR%R—MMAMR
[RdR = M/R dR + —/RdR
o o A GR () AR,
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8mp. GRS A _,
——— 2 4+ — R°(¢ t.
SR +3 (¢) + cons

A
= 8% G p(t) R*(t) + 3 R?*(t) + const., (XI-42)

R (t) =

where we have made use of mass-energy conservation [i.e., p, RS =
p(t) R*(t)] in the last step of this derivation. The constant
must be proportional to c¢?, since it is the only combination
of the quantities ¢, G, and A which have the required dimen-
sions of (velocity)? The field equations of general relativity give
its exact value as —kc?, where k is the curvature index of the
Robertson-Walker metric given in Eq. (XI-26). Thus we have

52 2 R*(t)
R*(t) = —kc” + [87G p(t) + A B (X1-43)
a) By setting A = 0, we can rewrite Eq. (XI-43) as
1dR\? 8n )
ikl I = —kc? X1-44
[(R dt) 3 GF ] R “ (XI-44)

which is known as the Friedmann equation.

b) With the cosmological constant, Friedmann’s equation

becomes
1dR\? 8r 1
MY 206G, — Al R?2 = k2 XI-4
[(R dt) 50P 3 ] B =k, (XI45)

which I shall refer to as the modified Friedmann equa-
tion. Note that this is slightly different than the text-
book’s Eq. (27.66) since the textbook defines A in units
of (length) 2 whereas I have defined it in units of (time) 2

; _ 2
(Z.e., Anotes - Atextbook C )

c) We will developing solutions to both forms of these Fried-
mann equations in the subsection titled Big Bang Models.
The solutions will be described by various parameters as
described below.

XI-20
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i) Hubble’s constant is the proportionality con-
stant between the rate of change of the scale fac-
tor (i.e., the expansion velocity) to the scale factor
R(t) at the current time ¢, (see Eq. XI-7):

R(t.)) R,
H, = = . XI-46
R(to) Ro ( )
iil) The deceleration parameter was defined by
Eq. (XI-8):
R(t,) R(t Rt
o RORE) R

R(t.) R(t,) H?
Note that for a universe with A = 0, we can use
Eq. (XI-39) in Eq. (XI-47) to give the deceleration
parameter as
4G po
©="3

(XI-48)

iii) The cosmological constant can be determined
from p,, H,, and ¢, by using Eq. (XI-47) in Eq.
(X1-38) which gives

A = 47mp.G — 3¢ H? . (XI-49)

iv) The curvature index also can be expressed in
terms of po, H,, and ¢, by using Eq. (XI-46) in
Eq. (XI-43) which gives

k="2[4rGpo — HZ(go + 1)] . (X1-50)

v) The quantities p, (current mass density), go (cur-
rent deceleration parameter), and H, are measur-
able, so that both A and k& can be determined from
these observable quantities.

XI-21
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vi) If the cosmological constant is zero, the density
parameter is defined as

Q=" (XI-51)

Pe

where p, is called the critical density (see §XI.E.b
on the next page) of the current Universe (note
that the textbook labels this as p.,) = a uni-
verse with Q, = 1 has kK = 0 = Euclidean (flat)
space.

vii) For A # 0, the current density parameter has
two components

Qo= QU + Q| (XI-52)

where €),, is the density parameter due to matter
(sometimes this is listed as €, for baryon density)
given by Eq. (XI-51) and €2, (sometimes given as
Q,ac, the vacuum energy density) is given by

A

Q= —
A 3H§,

(XI-53)

when A is expressed in units of (time)~? [when A

is expressed in units of (length)™2, Q, = ?TCZ}

E. Observational Constraints in Modeling the Universe.

1. Current Mass Density:

a) What is the current mass density of the Universe? Are
there enough galaxies (i.e., mass) to stop the expansion?
The mass density of the Universe indicates its geometry.
Here, we will assume (for the time being) that A = 0.

i) If the Universe’s mass density, p., is less than a
critical density, p < p. (0 < 2, < 1,0 < ¢o < 1/2),
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b)

gravity will not halt the expansion = the Uni-
verse will continue to expand forever, a so-called

Open Universe.

ii) If po > p. (2 > 1,9, > 1/2), gravity will halt
the expansion and cause a contraction down to a
Big Crunch! — a Closed Universe.

iii) The Universe may be able to rebound (Big Bang)
and start over again in such a universe =—> an Os-
cillating Universe.

iv) If po = p. (2 = 1,9, = 1/2), gravity will halt
the expansion after an infinite amount of time —>
a Flat Universe.

v) If there were no matter in the Universe, then
p=po=20,Q =0, and g0 = 0 — also an open
universe (see Table XI-1).

The current critical density is given by the expression
3H?

Pe = 811G
which ranges from 4.70 x 107%° gm/cm?® for H, = 50

= 1.88 x 107 A2 gm/cm® (XI-54)

km/s/Mpc to 1.88x 1072 gm/cm? for H, = 100 km/s/Mpc.

For the WMAP value for H,, the current value of the
critical density is 9.48 x 107 gm/cm3.

We can now ask, what is p, (or €2,) of the Universe? (Re-

fer to Table 27.1 on page 1278 for additional information

of this topic.)

i) Galaxy counting = amount of luminous matter:
Qiumega = 0.01 = 100 times too small in order to

XI-23
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Table XI-1: Structure of the Universe

Density Deceleration
Type Geometry Curvature Parameter Parameter Age
Closed Spherical Positive Qo >1 ¢ > to < 2(1/Ho)
Flat Flat Zero Qo =1 Go = % to = %(I/Ho)
Open Hyperbolic Negative 0< Q<1 0<go< 3 %(1/Ho) <to <1/Ho
No Matter =~ Hyperbolic Negative Q=0 g =0 to =1/Ho

close Universe.

ii) Galaxy dynamics = amount of matter in galaxy
clusters out to 30 Mpc (includes both bright and
dark matter): Q. = 0.25+ 0.10 = 25 Qg =
4 times too small for closure.

iii) Deuterium (?H) abundance (baryons): Q, =
0.07 £ 0.04 = 7Quuga = 0.3Q,, = only 30%
of dark matter is composed of baryons. We will
discuss the reason for the current deuterium den-
sity giving the baryon density in the History of the
Universe subsection below.

iv) Light (photons): p.. = aT4
2.73 K,
Prad = 6.5 %1073 gm/cm?®
Qua = 7x107°
prad << Pb
— today we line in a matter dominated universe!

Radiation dominated at earlier times (see History
of the Universe subsection).

v) What is the identity of the non-baryonic matter
that causes 2, = 0.257
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Neutrinos outnumber photons in the Universe
by a factor of 10°. Neutrinos were originally
thought to be massless (like photons). However,
one outcome of the theory of quantum chro-
modynamics suggest that neutrinos have mass
and that they oscillate in state (e.g., electron-

neutrinos to muon-neutrinos to tau-neutrinos).

In the 1990s, Los Alamos have detected muon-
neutrinos transmuting into electron-neutrinos.

The amount of oscillations place a mass range
of 0.5-5.0 eV for the neutrino.

— Supernova 1987A that exploded in the LMC

sent a 10-second burst of 19 electron anti-neu-
trinos that was detected by the various solar
neutrino detectors around the world. The neu-
trino event preceded the first sightings of the
supernova’s light by 3 hours. Confirms super-
nova theory that it should take about 3 hours
for the core-collapse shock to propagate to the
stellar surface. The fact that the neutrinos ar-
rived nearly as quick as the photons (allowing
for the shock time delay) indicates that the
mass of the neutrinos must be less than 3 eV.

— Assuming a mass of 1 eV (1.8 x 10733 gm)

for a neutrino, gives a universal mass density
that is over 10 times the critical density of the

Universe!

Other hypothetical non-baryonic matter has been
speculated on, including weakly interactive par-
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ticles (WIMPS) and massive magnetic monopoles.
These strange particles have never been detected
however.

vi) From all of the matter measurements (along

with the best estimates of the non-baryonic mass),
Q,~1/4—-1/3.

2. Cosmological Constant:

a)

b)

Prior to the launch of the Hubble Space Telescope, the
best estimate for the size of the cosmological constant,
based upon the measured density (see below), H,, and go,
gave A = (—0.91£0.93) x 1072 yrs~2. The negative value
for A indicates a cosmic attraction on top of gravity!
However, recently the value of A has been scrutinized in
a much more detailed way.

Modern field theory now associates this term with the
energy density of the vacuum (hence the (2,,. mentioned
above). If the cosmological constant today comprises
most of the energy density of the Universe, then the ex-
trapolated age of the Universe is much larger than the
current maximum age given by Hubble’s Law.

Adding a cosmological constant term to the inflation-
ary model, an extension of the Big Bang Theory (see
below), leads to a model that appears to be consistent
with the observed large-scale distribution of galaxies and
clusters, with COBE’s measurements of the cosmic mi-
crowave background fluctuations, and with the observed
properties of X-ray clusters.

XI-26
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d)

A few groups of astronomers has ascertained (with large
uncertainties) from the brightness of Type la supernovae
at high redshift that the Universe is currently expanding
faster today than it was 5 to 7 billion years ago.

i) This acceleration, called a de Sitter universe (see
next section), is predicted from general relativity
(and Newtonian cosmology) for A > 0.

ii) The supernova data implies that Qj ~ 2/3—3/4,
giving €2, ~ 1 = a flat universe!

iii) This supernova data given an age for the Uni-
verse at 14.2+1.7 Gyr which is consistent with the
WMAP value.

The Compton Gamma Ray Observatory (CGRO)
carried an instrument called the Burst and Transient
Source Ezperiment (BATSE) which monitored gamma
ray bursters during its 8 year lifetime. BATSE ascer-
tained that these gamma ray bursts are cosmological,
and in 1994, also showed evidence that the Universe is
expanding faster at present times than in the past.

3. Hubble’s Constant:

a)

b)

As discussed at the beginning of this section, the HST
Key Project reports this parameter to be 7248 km/s/Mpc

(see Freeman et al. 2001, Astrophysical Journal, 553,
A7).

The WMAP mission determined H, = 71+4 km/s/Mpc

from the cosmic microwave background radiation.
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4.

Deceleration Parameter:

a)

b)

This is perhaps the most difficult parameter of cosmology
to measure — though it can be determined from the
other parameters previously mentioned in Eq. (XI-49).

Figure 27.18 shows the difficulty with such a measure-
ment from a plot of redshift versus visual magnitude.

One of the most accurate techniques in the determina-
tion of ¢, from an angular size of extragalactic radio
sources as a function of redshift. These measurements
give a value of 0.1 for the deceleration parameter.

F. Big Bang Modeling.

1.

The solution to the field equations indicate the geometry of the
Universe. By knowing the value of €2,, we will know the overall
shape (i.e., curvature) of the Universe in 4 dimensions and
know the final fate of the Universe as shown in Figure XI-2.

a)

b)

A positive curvature is a spherical space. As an analogy,
assume a 2-D surface being bent into a third dimension
in the shape of a sphere’s surface. The Universe is said to
be closed, if spacetime has a curvature where £ = +1.

A negative curvature is a hyperbolic space. With our
above analogy, assume a 2-D surface being bent into a
third dimension in the shape of a saddle. The Universe

is said to be open, if spacetime has a curvature where
k=—1.

A flat curvature is a Euclidean space. The 2-D analogy
is simply a flat, plane surface that is not curved into
a third dimension. The Universe is said to be flat, if
spacetime has a curvature where k = 0.

XI-28
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Figure XI-2: The three possible geometries that spacetime can have.



Donald G. Luttermoser, ETSU

2. Solution to the Friedmann Equation (A = 0).

a) The Integral Equation Solution.
i) The easiest way to solve the Friedmann equation
(see Eq. XI-44) is to isolate the dt differential on

one side of the equation and integrate the dt side
and the dR side.

ii) All of the Friedmann universes has a ‘big bang’
origin: R =0 at t = 0. As such, Eq. (XI-44) can
be written as the following integral:

/0 \/smpo (XI-55)
iii) If we define
_ 87Gpors B 2q.c
Fim = 32 H,lgo— 132 (k7 0)
RJH;
= (k=0), (XI-56)
we can simplify Eq. (XI—55) to
= XI-57
o= " T /R (XI-57)

iv) This equation has the following solutions for the
three different values of &:

>3/2 (k= 0)

el (1 )] s () = -
(XI-58)

, RTmsin‘IN%—\/[% (1—%)]} (k = +1)

XI-30
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Figure XI-3: Histories of Friedmann model universes (A = 0). Note that the present size of the
Universe (hence, present time) is indicated by R = 1.

v) One can now easily see why the k = —1 case is
called a hyperbolic universe.

vi) Figure XI-3 shows the histories of these three
types of universes.

b) Closed universes (k = +1,Q, > 1).

i) From the first equation in Eq. (XI-56), the scale
factor would reach a maximum size R,, (assuming
¢o ~ 1) for our Universe (assuming our Universe

is closed) at
2c

Using the WMAP value for Hubble’s constant,
this maximum would be R,, = 2.6 x 10® cm =
2.8 x 10" ly = 8.5 x 10% pc (8.5 Gpc).

R, ~

(XI-59)
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ii) By setting R = 0 in the Friedmann equation,
this maximum size would be reached in time ¢,

given by
TR,

2c '’
or 4.4 x 101% yr (44 Gyr) after the Big Bang. Since
the Universe is currently about 14 Gyr old, we

(XI-60)

tym =

would still have another 30 Gyr before the collapse
would begin.

iii) At this point (i.e., t,,), such a universe starts to
collapse back down to a ‘big crunch’ at t = 2¢,,.
The Big Crunch for our Universe would occur 88
Gyr after the Big Bang or 74 Gyr into the future
— we have nothing to worry about!

iv) We also can calculate the current age of the
Universe ¢, by setting R = R, in Eq. (XI-58) for
k=+1:

24, . 2q, — 1 1
to = Hal2qo — 172 sin ™! N o o 2, — 1
(XI-61)
Once again, using ¢, = 1 with the WMAP value
for H, gives t, = 2.8 x 101% yr (28 Gyr) which is
a factor of 2 bigger than the best estimate for the

current age of the Universe (14 Gyr) — obviously
if the Universe is closed, ¢, < 1 to give a more
reasonable value for ¢,.

v) Since the solution for ¥ = +1 presented in Eq.
(XI-58) is fairly complicated, one can introduce a
link parameter (call it z) between R and ¢ and
write this one equation into two parametric equa-
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tions (here we will give two separate equations for
each parametric equation [R(z) and ¢(x)] by mak-
ing use of the density parameter):

A Gpo
R = ;T]is (1 —cosz) (X1-62)

1 Q
= S -1 (1 —cosz) (XI-63)

and
4G po ,

t = 13723 (z —sinx) (XI-64)

1 Qs

2, (o — 1) (z —sinz), (XI-65)

where > 0 has no specific meaning associated
with it other than linking R to ¢.
c) Flat universe (k = 0,Q, =1).
i) With such a universe, the expansion velocity would

just reach zero after an infinite amount of time has
passed.

ii) We can easily invert Eq. (XI-58) for £ = 0 to
derive R(t) (after realizing that p, = p. for such a

universe):

R = (67Gp.)/? %3 (XI-66)
3 2/3 t 2/3
= (= —) . XI-
G @) - e

iii) Taking the time derivative of this equation gives
. 2
k=2 (67Gp,) 3713 . (XI-68)

As can be seen from this equation, when t — oo,
R — 0 as previously stated.
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iv) Once again we can calculate the current age of
the Universe t, by setting R = R, in Eq. (XI-58)
for £k = 0:

2R, [ R,\%/? ) 2
to = m = == —t . XI—69
3c (Rm) 3H, 3" ( )

For the WMAP value of H,, the current age of
the Universe is 9.2 x 10° yr (9.2 Gyr). Since the
oldest globular star clusters are on the order of 12-

13 Gyr old, our Universe cannot have both k£ = 0
and A = 0.

d) Open universes (k = —1,0 < 2, < 1).

i) With such a universe, the expansion velocity re-
mains greater than zero after an infinite amount

of time has passed.

ii) For such an open universe, the current age of the
Universe t, is found by setting R = R, in Eq. (XI-
58) for k = —1. This gives the following solution:

L 24 [\/I2qo—1|

2 o~ 1
sinh™! M] (XI-70)
24,
1

Using the WMAP value for H, givest, = 1.4x 10"
yr (14 Gyr) which is consistent with the age of the
oldest stars seen in the Milky Way.
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iii) Since the solution for ¥ = —1 presented in Eq.
(XI-58) is fairly complicated (like the case for the
closed universe), one can introduce a link param-
eter (call it ) between R and ¢t and write this one
equation into two parametric equations (here we
will give two separate equations for each paramet-
ric equation [R(z) and ¢(z)] by making use of the
density parameter):

47TGPO

R = e (coshz — 1) (XI-71)
— % - ?OQO (coshz — 1) (XI-72)
and
— % (sinhz — z) (XI-73)
1 Qs

= 7 TEONEE (sinhz — z) (XI-74)

where = has no specific meaning associated with
it other than linking R to t.

iv) Since coshz = (e* +€7%)/2 > 1 and sinhz =

(e" —e™™)/2 > z, Egs. (XI-71) through (XI-74)
show that R increases monotonically with ¢.

3. Solution to the Modified Friedmann Equation (A # 0

— for

simplicity, we will only investigate flat universes with k£ = 0).

a) The Integral Equation Solution.

i) The modified Friedmann equation given in Eq.
(XI-45) can be analytically solved in the general
case in terms of elliptic functions, but the result is
not easy to understand. As such, we will limit our
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discussion to those A # 0 universes where &k = 0
(Q, = 1) = flat universes.

iil) Anexamination of the modified Friedmann equa-
tion shows that such universes start from con-
densed (R = 0) states.

iii) For such cases, Eq. (XI-45) can be solved by
isolating the time differential on one side of the
equation and the scale factor terms on the other
side. We then have (setting iy = 0 when R = 0)

(XI-75)

/o \/stpo 2 L AR2 '

iv) This equation has three sets of solutions based
upon the value of A:

st (2 ) Sﬁgpo] (A >0)
t =4 (R%)P’/Q (67ero) (A =0)
2
L sin” <R—o)3/ S <o),
(XI-76)

v) Unlike the three cases where A = 0, these three
equations can be easily inverted to give

R, (£9:)"% sinh (1 V3R 25) (A > 0)
R(t) = { Ro (67Gp,)"* /3 (A=0)

I
=

Ro (2262)"" [sin (2 3TATH] (A <0).

(XI-

\]

7)

vi) Figure XI-4 shows the histories of these three
types of universes.
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XI-37

Figure XI-4: Histories of flat (k¥ = 0) modified Friedmann model universes. Note that the present

size of the Universe (hence, present time) is indicated by R = 1.

b) Closed universes (A < 0).

i) If the cosmological constant is less than zero, then
this constant acts to assist gravity in slowing down
the expansion of the Big Bang. As such, such
a universe will expand to a maximum size then
recollapse due to the sine term in Eq. (XI-77) for
A <O.

ii) The maximum size will be reached when dR/dt =
0 when A < 0 in Eq. (XI-77) giving

1/3 1
dR 1 R (87ero> Ve cos (31/3|Alt)

dt 3 IN

(XI-78)

which will occur when

1
oS (5 3|A|t> =0. (XI-79)

(s 7
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Since we are looking for the first maximum here,

the above equation gives

1 T
- At —
5 V3IAl 9
b=t = (XI-80)

VBIAL
Using |Q4] = 2/3, Eq. (XI-53) gives |[A| = 1.0 x
1072 yr=2 and t,, = 1.8 x 10'% yr (18 Gyr) =
only 4 billion years until the Universe starts to
recollapse if our Universe has A = —1.0 x 10=%°

yr=2 and k = 0!

iii) The size of such a universe at t,, is given by

1/3 1/3
R:Rm:(LGPo) RO:(Q_m) R

Al |24
(XI-81)
For this example, we have assumed that ), =
—2/3, a flat universe implies that €2, = 5/3 to
give ), = 1. As such, the maximum size that
such a universe would reach after time t,, is R,,, =
2.5 R,, or two and a half times the current size of

the Universe.

iv) The current age of such a universe is obtained
from setting R = R, in Eq. (XI-76) which gives

2 L[
te = sin XI-82
3|A] \ 87Gp, ( )

2 |4l
= sin — . XI-83
J3IA| \ (X1-83)

For our values of A, 24, and £, above, this gives
an age of the Universe as 7.9 x 10 yr (7.9 Gyr),
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d)

which is not old enough to account for the oldest
stars in the Milky Way.

Flat universe (A = 0,k = 0).

i) The solution to the modified Friedmann equation
in this case is identical to the solution of the nor-
mal Friedmann equation.

ii) As such, Egs. (XI-66) and (XI-67) describes the
history of this type of universe, R(t).

iii) The current age of such a universe given by Eq.
(XI-69). For the parameters found for our current
Universe, this age is 9.2 Gyr, once again, insuffi-
cient to account for the oldest stars in the Galaxy.

Open (de Sitter type) universes (A > 0).

i) If the cosmological constant is greater than zero,
then the universe is curved even if empty and
this curvature imparts a negative pressure that
opposes gravity. In such a universe, the universe
can at first decelerate, then go through a saddle
phase (see Fig. XI-4), then start to accelerate.

ii) Since our Universe seems to be accelerating and
is thought to have a flat curvature, this type of

universe may best describe ours.

iii) The time and size that such a universe crosses
over from deceleration to acceleration will occur
when d?R/dt? goes from negative values to posi-
tive values, hence, when d?R/dt?> = 0. Using Eq.

XI-39
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(XI-41), we see that this saddle point occurs at
4mp,GRS AR
—+ f—

k= 3
AR 4mp,GR3
3  3R?
A1 p,G
3 3
R = =R
1/3
R=R, = (4”?;(;) R, (XI-84)
Qm 1/3
_ (Q_> R. . (XI-85)
A

For our Universe, we have determined that {2, =~
2/3 and Q,, ~ 1/3, which gives the size of the Uni-
verse when it went from a deceleration phase to
an acceleration phase (the saddle point) of Ry =
0.79 R, — when the Universe was 80% of its cur-

rent size.

iv)  We also can determine the time this cross-over
took place by plugging this value for R into the
first equation of Eq. (XI-76):

r 3/2
ts = 2 sinh ™! (R> A ]

R, 871G po

_ 2 sinh™! AnGpe
 V3A \l JSwGpo

2 ..
= 7 sinh \J;) : (X1-86)

A table of hyperbolic trigonometric identities shows
that

sinh ™'z = In (:c + V2 + 1) .

Using this for our inverse hyperbolic sine above,

XI-40
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we get

1 1 1
inh™![=| = In|= ~ 41
Sin ( 2) n 5 + 5 + )

= In ;%—;)-h(%)

—ln i.@)
a V2 V2
= Inv2.

Finally, plugging this into Eq. (XI-86), we get the
saddle cross-over time of

o 21n+/2

OVBA
Using A = 1.0 x 1072 yr=2 (which results from
Qp = 2/3 and H, = 71 km/s/Mpc), we see that

this deceleration to acceleration cross-over time

(XI-87)

occurred at t; = 4.0 x 10° yr after the Big Bang,
or about 10 billion years ago!

v) The current age of the Universe can be obtained
by setting R = R, in the first equation of Eq.
(XI-76). Doing this we get

2 A

to = N smh—l\&r Go (X1-88)
2 Q

= = sinh™! \ Q—A . (X1-89)

o If we use Q4 = 2/3 (A = 1.0 x 1072 yr2)
and €, = 1/3, that gives the current age of
the Universe as t, = 1.3 x 10" yr (13 Gyr) =
consistent with the oldest stars in the Galaxy.
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o If we use Qy = 3/4 (A = 1.1 x 1072 yr?)
and Q,, = 1/4, that gives the current age of
the Universe as t, = 1.4 x 10!Y yr (14 Gyr) =
once again, consistent with the oldest stars in
the Galaxy.

vi) As can be seen, such a de Sitter-type universe
is consistent with the current observational con-
straints for the Universe, which means the Uni-
verse will continue to accelerate to a cold and dark
death when the stellar furnaces finally burn them-
selves out.

G. History of the Universe.

1.

Singularity, the Big Bang Itself!

a)

b)

d)

t:07 DZO) p:prad_>oo7 T:ﬂad_)OO-

If the Universe is closed, then a finite amount of mass-
energy is located in a zero volume (like a black hole sin-
gularity).

If the Universe is open or flat, then the Universe has
an infinite total amount of mass-energy located in an
infinite volume at this stage.

We currently have no physics that can describe the his-
tory and events occurring in the Universe at this point.
Perhaps if quantum mechanics and general relativity are
ever combined (i.e., quantum gravity), we will have a
physical theory that can describe the Universe here and
explain why the Big Bang ever occurred.

In the header lists for each of these eras, ¢ represents
time since the Big Bang, D the diameter of the Universe

XI-42
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at time ¢, p is the mass-energy density, 71" is the tem-
perature, and later, z corresponds to the redshift. Each
of these values are listed at the beginning and ending of
each era.

2. Quantum Era.

0<t<10® sec = tp = Planck Time,
0<D<10¥ ecm = £ = Planck Length,
P = Pra > 10 gm/cm®, T=T.,>102K.

a) The earliest time that can be addressed by current phys-
ical theory is the Planck time:

hG
tr =5 =539 X 1074 s, (XI-90)

where £ is the angular Planck’s constant (A = h/27).

b) In a Planck time, the speed of light crosses a distance
called the Planck length:

bp=1tpc= 71—? =1.62x 107% cm . (XI-91)

c) The uncertainty principle from quantum mechanics tells

us that the uncertainty in a particle’s momentum times

the uncertainty in position must be greater that h. If we

use the Schwarzschild radius of the early Universe as the

position uncertainty, we can use conservation of energy

(see page 1308 in the textbook) to describe the Planck
mass:

h
me = EC =218x 107 g.. (X1-92)
The Planck mass can be interpreted as the minimum
mass that any primordial black holes can have if created
in the Big Bang.
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d)

Physics will not be understood in this Quantum Era until
quantum effects are successfully included in gravity as

described previously.

During this time, it is speculated that all forces, includ-
ing gravity, act as one force = the Theory of Every-
thing.

3. GUT (Grand Unified Theory) Era.

b)

d)

1078 sec <t <1073 sec
107 em < D <107 cm
10% gm/cm3 < Pra < 107
10K < T <107 K.

gm/cm®

At the beginning of this era, gravity breaks from the
unified force, following the equations of general relativity,
and gets progressively weaker (see Fig. 28.7 on page 1310
in the textbook). This symmetry breaking acts like a
phase transition of the Universe.

During this time, the strong, weak, and electromagnetic
forces act as one as described by the Grand Unified
Theory.

Temperature is so high that only field particles exist:
gravitons, weakons (i.e., intermediate vector bosons),
photons, and gluons (see Fig. IV-1 on page IV-27 in these
notes).

At the end of this era, the strong force decouples from
the electroweak force = the Universe goes through
another phase transition.
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4. Inflationary Era.

107 sec < ¢t < 107% sec

1002 ecm < D <330 cm

037

107 gm/cm3 < Paa <1 gm/cm3

10"K < T <10%K.

a) The electroweak-decoupling phase transition causes the
Universe to expand exponentially from 10724 ¢cm to 330 cm
(10%® ¢cm today).

b) During this time, all baryonic matter is created from the
primeval soup of field particles = individual quarks
and antiquarks are made = matter (and antimatter)

arise from the field energy particles via E = mc?.

i) Field particles all have integer spins = they are
bosons.

ii) The GUT predicts that baryon number conser-
vation and charge & partity (CP) conservation can
be violated occasionally.

iii) These CP violations can cause slight asymme-
tries in decay rates of a given boson decaying to
more stable particles:

e The kaon K can decay to a pion m via either
K — 1 4+e +vr,

K — nt+e +7,.

e The first of these two reactions occurs slightly
(but measurably) more frequently than the sec-
ond.

XI-45



Donald G. Luttermoser, ETSU

e As such, it is possible to get slight asymme-
tries between matter and antimatter over time
as these particles are made out of the field par-

ticle soup.

¢) During this time, the temperatures are two high for the
strong force to connect the quarks together to make
baryons and anti-baryons.

d) Due to CP violation, for every 30 million antiquarks,
there are 30 million + 1 quarks by the end of this era.

e) The Universe resumes a linear expansion at the end of
this era.

5. Quark Era.

107 sec < t < 107%sec
330cm < D < 10° cm = 4D,
1037 gm/cm3 < Pra < 107 gm/cm3
108K < T <10”K.

a) Forces between quarks act strangely: The farther away
they get from each other, the stronger the force exerted
(opposite of the direction of gravity). At the beginning
of this era, the temperature is so high that quark motions
can overcome this force and hence are not bound with
each other.

b) Att = 10" sec, T = 10 K, p = 10*! gm/cm?, the
electromagnetic and weak forces decouple = when this
occurs, leptons start to form.

c) This era ends when the temperature is cool enough for
quarks to form bound states (7' = 10" K, p = 107
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gm/cm?) and become hadrons.

6. Hadronic Era.

10°%sec < ¢t < 1sec
10°cm < D <10%em =15 AU
107 gm/cm3 < Pra < 10 gm/cm3
108K < T <10"K.

a) During this time, proton-antiproton pairs constantly an-
nihilate and refrom = hadrons are said to be in thermal
equilibrium with photons (i.e., the radiation field).

b) At the end of this era, ' = 10 K, p = 10° gm/cm3, the
energy density is too low to produce proton-antiproton
pairs. These particles annihilate one last time — except
there is a slight asymmetry between protons and antipro-
tons, for every 10° antiprotons there are 10° + 1 protons
(once again, due to CP violation). The remaining pro-
tons have nothing to annihilate with and remain.

7. Lepton Era.

lsec < ¢t < 1min
10" em < D <10® cm =150 AU
10° gm/cm3 < Pra < 104 gm/cm3
10K < T <6x10°K.

a) Electron-positron pairs are still in equilibrium.

b) At the end of this era, T = 6 x 10° K, p = 10* gm/cm3,
the energy density becomes too low to make new electron-
positron pairs = an excess of electrons is left over due
to asymmetries in the intermediate vector boson decays.
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8.

Nucleosynthesis Era.

b)

d)

lmin < ¢t < 3 min
10°cm < D <10 cm =101y
10? gm/cm3 < Pra <1078 gm/cm3
6x10°K < T <10"K.

Temperatures and densities exist such that H fuses into
?H (deuterium).

"H4'H — 2H4et 4+ v
n+'H — *H+~.

Temperatures are too high to fuse 2H = it photodisso-
ciates as fast as it forms. He (helium) cannot be created
— even though the temperature is high enough = the
deuterium bottleneck.

When T < 10° K (¢ &~ 100 sec, 1.5 min), 2H no longer
dissociates and fuses immediately into He = however,
the Universe is now too cool to fuse He — C (carbon)

and O (oxygen) via the triple-a process.

At t = 3 min, T < 10" K, p < 1078 gm/cm?, and He
production ceases. Since the last stages of the p-p chain
are not as efficient as the first stage, an excess number
of 2H (deuterium) is left over (and some "Li [lithium-
7] from the branch reactions of the full p-p chain) =
the amount left over depends critically on the density of
the Universe at that time (see Fig. 28.1 on page 1293
in your textbook). Since deuterium and lithium-7 are
easily destroyed in the interior of stars, all of the 2H and
"Li we currently see in the Universe arose during this
Nucleosynthesis Era.
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e)

The future of the Universe is now set = all within the

first 3 minutes!

9. Radiation Era.

d)

dmin < ¢t <1000 yr
10° < z < 2200
10%cm < D <10 cm = 10001y = 300 pc
1078 gm/cm3 < p <107B gm/cm3
10K < T <10°K.

In this era, pra > Pmatter-

The temperature is still greater than 10° K which keeps
hydrogen ionized.

Since H is ionized, there are an abundance of free elec-
trons which effectively blocks the flow of radiation (i.e.,
photons) = Compton scattering and Thompson scat-
tering.

The Universe is completely opaque during this time.

At the end of this era, pn, = Poayon = PB = Praa (here
we are assuming that all of the Universe’s mass is in the
form of baryons). With this information, we can now
determine the total number of baryon particles in the
Universe and the total mass of the baryons at this point.
Both the total number and total mass remains constant
from this point forward as the Universe expands.

i) The total mass of all the baryons present at the
end of this era is equal to

4
Mp =V pp = % D3 py . (X1-93)
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ii) The baryon mass density can now be obtained
with -
a
PB = Prad = 2 (XI-94)
Using the values for T listed above (a = 7.566 X
1071% erg/cm3/K*), we get pp = 8.4x 10718 gm /cm?.

iii) Using the diameter of the Universe at the end of
this era listed above, we get the total mass of the
baryons as Mp = 3.5 x 10*® grams = 2 x 105 M,.

iv) At this point in the Universe, 90% of all the par-
ticles are hydrogen nuclei (protons) and 10% are
helium nuclei (2 protons + 2 neutrons). With this
information, we can determine the total number

of baryons that were created from the Big Bang:

M M 09 0.1
ng = 0.90 —2 4+0.10 -2 = <—+ ) Mg
my mye

my Mye
= 1.9 x 10™ baryons.

f) We know that the COBE and WMAP microwave maps
of the sky show temperature (hence density) variations
(i.e., fluctuations) on the cosmic microwave background.
We now ask the question that if these density fluctua-
tions existed during the radiation era, will they become

unstable and collapse under their own weight?

i) To answer this, we just need to calculate the
Jeans’ mass of the Universe during this era.

ii) Kolb and Turner, in their The Early Universe
textbook, give the Jeans’ mass of baryons for an
expanding universe during the radiation era as

Mp_; =54x10%Qph*T* My,  (XI-95)
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where T, is the temperature of the radiation field
expressed in units of eV (1 eV = 1.1605 x 10* K).

iii) If we use the temperature calculated for the
cross-over time and use a temperature slightly high-
er than this (say 1.50 x 10° K = 12.9 eV) for the
temperature of the radiation field just prior to the
radiation-dominated to matter-dominated cross-
over, setting Q25 = €2, gives a Jeans’ mass of

5.4 x 108 M,

My, =
B=J (12.9)3

= 2.5 x 10 M, .
(X1-96)

iv) As can be seen, Mp < Mp_;, so no gravita-
tional instabilities will grow and any density fluc-
tuations that exist will not result in a collapse.

10. Matter Era.

1000 yr < t < present = 15 Gyr

2200< z <0

D <10® cm =15 Gly = 4.6 Gpc

1071 gm/cm3 < p <3x107% gm/cm3
T

100K < <2.7K.

10! cm <

a) Here we are assuming that present is at t = 15 x 10° (15
billion) years.

b) Matter begins to dominate radiation in this era: pyape >

prad'

c) H (hydrogen) becomes completely neutral when 7' <
3000 K (¢ = 300,000 years, z = 1100) = the Universe
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becomes transparent to light since the opacity from elec-
tron scattering drops to zero!

i) We see this epoch today as the 2.7 K background
radiation = visible light when emitted at z =
1100, redshifted today (z = 0) to microwave radi-

ation.

ii) This time is called the recombination time of

the Universe.

iii) This is what we are seeing when we observe the
2.7 K background.

d) Inhomogeneities in the matter and radiation fields be-
gin to grow due to gravitational instabilities just after

recombination.

i) Kolb and Turner, in their The Early Universe
textbook, also give the Jeans’ mass of baryons for
an expanding universe during the time just after

recombination as

m ) 2\—1/2 z
ME_; =13 x10° (Qph*) (1100) M .
(XI-97)

ii) Since z < 1100 past the recombination time,
MP ; < 1.3 x 10° M, for the remainder of the
matter era. As such, Mp > Mg ; — the mass
of baryons will become gravitationally unstable
which will cause density fluctuations to grow and
collapse to occur. Note that due to this large in-

equality, the collapse occurs very rapidly.
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¢)

f)

g)

h)

j)

k)

D)

Galaxies begin to “light-up” as the density inhomogeneities

collapse to a high enough value that star formation be-
gins.
i) It is at this time that the Population III stars

(i.e., no metalicity) begin to form in earnest from
the IGM and ISM.

ii) This occurs at approximately z = 20,t = 1 X
108 years after the Big Bang.

Galaxies begin to cluster at z ~ 10,t = 3 x 10® years.

The first Population IT (low metalicity) stars form in our
Galaxy out of material expelled from the Population III
stars at z ~ 4.5, = 8 x 10® years after the Big Bang.

Quasars become active and Population II stellar forma-
tion rates begin to drop in the Milky Way at 2z ~ 3,t =
1 x 10? years.

Population I stars begin to form in Milky Way at z =
1,t =4 x 10° years.

The Sun and solar system form when z = 0.02 and t =
10 x 10° years after the Big Bang.

Life begins on Earth around ¢ = 11 x 10° years after the
Big Bang, and the first primates arise at ¢ = 14.96 X
10° years after the Big Bang.

Presently the Universe is at of age of 15x 10% (15 billion)
years (i.e., z =0).
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