ASTR-3415-001: Astrophysics
Solutions to Problem Set 2
Spring 2003

1. (20 pts) Calculate the rate at which the Earth’s orbital size changes as a result of the
combined mass-loss from the solar wind and thermonuclear reactions. (Hint: Le =
3.83 x 10% erg/s.)

Solution: The luminosity of a star is the measure of how much energy a star is
emitting per unit time At¢. Hence, we can write

erg E  mc?
Ly =383x10® == =—
© s At At
where m is the mass being converted to energy. The mass loss due to thermonuclear
burning via sunlight can then be expressed as

m Lot Lo  3.83x10% erg/s

M = — = =20 _
o(muc) At 2At 2 (3.00 x 101° cm/s)?

1M,

= 4.26 x 10*2 ©

6 107 em/s X 3502 70% gm
16 x 107

214 x 10 M, s x o0 x 108

1yr

= 6.75 x 107" My /yr

In the notes, we are given that the mass-loss rate of the Sun by the solar wind is
Mg(wind) = 107 My /yr (although not an exact value, it’s good enough for this
problem). Combining these two mass-loss rates gives

M = Mg(nuc) + Mg (wind) = 7.75 x 10~ M /yr.

Now use the conservation of mechanical energy for the Earth’s orbit:

KE, + PE, = KE, + PE,
1 G Mg My, 1 GMgM
M 2 [CRIEIO) - M 2 DV Oa
where the ‘b’-subscript represents a before time, the ‘a’-subscript represents an after
time, Mg, is the mass of the Earth (which remains constant here), and rg is the distance

that the Earth is from the Sun.

Now if we assume that Earth’s orbit is circular, then we can set the gravitational force
equal to the centripetal (i.e., center-seeking) force:

F, cent — F, grav

M@Ué _ GMg Mg
Te - 3,
GM
2 ®
vy = o



Using this expression for the orbital velocity in the conservation of energy equation,
we get

1GMgMoy,  GMgMegy 1GMeMos  GMgMo,

2 T Teb 2 Tea T®a
1GMg, 1 G My
5 T®a - 5 Tob
M@a _ Taea
Moy o ob

If we divide both sides of this equation by At, we get

M@a/At o T@G/At
My Tob '

Now let ‘b’ represent the current epoch of the Earth-Sun system and assume that the
mass-loss rate remains constant in time, then the above equation can be written as

M, 1AU’

M, r

or
. 175 x 107" M [yr

’ 1M,
Since 1 AU = 1.5 x 10" cm,

AU =7.75x 107" AU/yr .

7 =1.2 cm/yr.

. (20 pts) We observe the Ca II K line of a chromospherically active star and see that
the K, features are separated by 2.1 A. If the star has a bolometric correction of —1.0
and a effective temperature of 3800 K, what is the luminosity of this star and what is
its complete MK classification? If this star has a magnitude V' = 2.6, how far away is
it?

Solution: We are given the following parameters: AX = 2.1 A, BC = —1.0, T =
3800 K, V' = 2.6, and we are asked to find L, the spectral-luminosity class, and d. We
first need to change the separation of the K; features from wavelength to velocity. To
do this, we will use the Doppler effect:

A/\_v w

Ao c ¢’

where w is the velocity parameter used in the Wilson-Bappu effect. For Ca II K, the
line-center wavelength is A, = 3933.66 A, as such

LB 2.1 A
X \3933.66 A

) 3.00 x 10° km/s = 160 km/s .
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Plugging this into the Wilson-Bappu relation we get
My = —14.9 logw + 27.6 = —14.9 log 160 + 27.6 = —5.25 .

In order to figure out luminosity, we need the absolute bolometric magnitude. This is
found with the absolute visual magnitude and the bolometric correction:

My = My + BC = —5.25—1.0 = —6.25 .

The absolute bolometric magnitude is related to the luminosity by

L
Mbol = 472 — 2.5 log <L—> .
®

Solving this equation for the luminosity gives

L
2.5 log (L—> = 4.72 — Mpy = 4.72 — (—6.25) = 10.97
®

L
log (—) = 4.388

— = 10*% =244 x 10* ,

or

L =244 x 10*Lg, .

Such a large luminosity for such a cool star implies that this is a supergiant. Using
Appendix E in the textbook, a supergiant star at T, = 3800 K gives a spectral class
of approximately K5 (I will also accept K7, MO, or M1). Appendix E shows that
supergiant stars of spectral type K5 have luminosities around 38,000 L. and that K5
giants are 220 times brighter than the Sun. If we use Table II-2 from the notes, we
can compare My with those tabulated and we see that this star is likely of luminosity
class Ib. As such, the complete Morgan-Keenan spectral-luminosity class for this star
is

K51Ib.

To determine the distance, we will ignore interstellar absorption and use the standard
distance modulus formula:

m-M=V-M, = 510g<i>
pc

d
5 log <$> = V—My=26-(—525)="17.85

10
d
1 = 1.57
08 <10 pc)
d
= 37.2,
10 pc



or

d=372pc.

. (10 pts) Problems 8.1 and 8.2, Page 251 in the Carroll and Ostlie textbook.

Solution (a) — Problem 8.1: Room temperature is typically taken to be 300 K =
27°C = 81°F. Using this value gives

kg7 = 1.38x 107 erg/K x 300 K =4.14 x 107! erg
1eV
1.60 x 10712 erg

= 414 x 107" erg x =259 x 1072 eV

=ﬁe\/% 4—06\/

To determine the temperature from the ‘e€V’ energies, set up the following ratio:

keT E  A0E
ksTioom ~ 1/40eV eV
40F 40F

= —Twom = —-300 K =12, 000E (K/eV) .

eV eV (K/eV)

Now converting the two energies into temperatures gives

T, = 12,000(1.00 eV)K/eV =| 12,000 K .

T, = 12,000(13.6 eV)K/eV =| 1.63 x 10° K .

Solution (b) — Problem 8.2: Here, we just need to convert erg into eV in Boltz-
mann’s constant. Using the values listed in Appendix A we get

1eV
= 1 107" erg/K -
ke 380658 > 10 erg/ (1.60217733 x 1012 erg>

= | 8.6174x 10 °eV/K .




4. (20 pts) Problem 8.5, Page 251 in the Carroll and Ostlie textbook.

Solution: This is just a Boltzmann equation problem:
nj _ 9 e Eji/kT ’
g Gi
where the j and ¢ subscripts correspond to the upper and lower levels, respectively, n

is the number density and g is the statistical weight of the levels, and Ej; is the energy
difference between the two levels. Solving Boltzmann’s equation for 7' gives

o~ Bii/kgT _ 9%
gini
eEji/kBT — M
ginj
Eji In (gjni>
kBT gin;
E;; 1

ke In(gjni/ging)

For this problem, j = 2 and 7 = 1, and the energy difference between these two states
is Foy = 13.6 eV —3.40 eV = 10.2 eV from the data of Table 8.2 on page 231 of the
textbook. Since this is hydrogen, the statistical weights are

gn = 2n®

g = 2-22=38
g = 2-12=2

where we use n instead of 7, j in hydrogen and the ratio of these two weights is go/g; =
8/2 = 4. Using these values in the temperature equation above, we get

o 10.2 eV 1
~ 8.6174 x 105 eV/K In(4n; /ny)
= 1.18x10° K ! _ 85400k
1.386 In(nq/ny) In(ny/no)

For the first ratio, no/n; = 0.01, so n1/ny = 100, and for the second ratio, ny/n; = 0.1,
so ny/ng = 10. Plugging these values into the equation above, we get

85,400 K
T, = 22— =] 19,800 K
! In(100) ’
85,400 K
T, = = — =] 32,100K
2 In(10) 52,100




5. (20 pts) Problem 8.7, Page 251 in the Carroll and Ostlie textbook.

Solution: The equation for the partition function (following the notation of the text-
book) is given by Eq. 8.5 on page 233 of the textbook:

o
Z =0 + Zgj ef(EJ'*El)/kBT .
j=2

—13.6 eV
n2
gen instead of j. Keeping only the first 3 terms in the partition function summation,

we get

For hydrogen, g, = 2n? and E,, = , where n is used for the level ID in hydro-

For T = 10,000 K, kg7 = (8.6174 x 107° eV/K)(10* K) = 0.86132 eV. The statistical
weights are
g=2-1"=2 ¢=2-22=8 ¢g3=2-3>=18,

and the level energies are

By =38 = _136eV, E=-33V=-340eV, FE3=-Y=_15]eV,

E2 — E1 =10.2 eV, E3 — E1 =12.1eV.
Using these values in the 3-term partition function summation, we get

7 = 24+ 86710.2 eV/0.86132 eV + 186712.1 eV/0.86132 eV

= 24576 x107°+1.44 x 1075
= 2.000072~2=g¢g, +/

6. (30 pts) Problem 8.10, Page 252 in the Carroll and Ostlie textbook.
Solution (a): Whereas Problem #4 dealt with the Boltzmann equation, this problem
deals with the Saha equation. For He, we are given
X1 = X1 = 24.6 eV, X111 = X2 = 54.4 eV,
Z1:Z1:1, ZH:ZQZQ, ZIII:Z?):L

where Y is the ionization energy and Z is the partition function. The electron pressure
is given as P, = 200 dyne/cm?. We now use Eq. 8.7 to find Ny;/N; and Ny /Ny for
the temperatures of 5000 K, 15,000 K, and 25,000 K:

Niyw  2k8TZ;i (27TmekBT>3/2 o= Xi/kpT
N,  P.Z h? ’
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where ¢ is the stage of ionization. We start by evaluating this equation keeping 7" and
Z as free parameters:

2kg  2-1.38 x 1070 erg/K
P, 200 dyne/cm”

=138 x 107*® em®/K ,

2rmeks  2m(9.11 x 107°° gm)(1.38 x 107'% erg/K)
h2 (6.63 x 10-27 erg s)?

2rmeky
h2

Using the ionization energies for our two ratios, we get

=180 x10° em 2 K™,

3/2
) - (1-80 x 10 cm ™2 K‘1)3/2 =241 x 10" em™3 K™3/2 |

_ _ 5 _ _ 5
o X1/kgT _ ,~2.85x10 K/T’ o X2/kBT _ ,—6.31x10° K/T

Combining all of these parameters together, we can write the Saha equation as

Ni+1 ~3 1-—5 Zi+1 s
= 3.33 x 103 K~5/2 221 5/2 o —xi/kpT
N, % 7 ¢

Now for the number density ratio of the first ionization stage to the neutral stage we
get:

N _ & — 3.33x 1073 K~%/2 éTs/z 672.85x105 K/T

NN 2
= 3.33x 1073 K™%/ 2T5/2 e~ 2:85x10° K/T
' 1

— 6.66 x 1073 K~5/2 T5/2 o—2:85x10° K/T

We now tabulate this ratio for our 3 temperatures:

T NII/NI
5000 K | 2.07 x 10~ ®
15,000 K 1.03
25,000 K 7370

Now for the number density ratio of the second ionization stage to the first ionization
stage we get:

N N3 _3 o _5/2 43 _ 5
2% — 333x%x10 K /2 &3 T5/2 e 6.32x10° K/T
N N Zy

= 3.33x 103 K %2 1T5/2 o 6:32x10° K/T
' 2
— 1.67 x 1073 K~5/2 T5/2 o—632x10° K/T



We now tabulate this ratio for our 3 temperatures:

T Ni/N;
5000 K | 3.76 x 10~ ®
15,000 K | 2.32 x 101
25,000 K | 1.73 x 1073

Solution (b): Let’s start by working with the reciprocal of what we are trying to
prove:

Niot NI+NH+NHI:&+&+@
N N No Nn  DNro
N " 1

Nu  (Nu/M) -

1+

Now taking the reciprocal of this equation, we get

Nit Ny 1 -
=1+ +
Niot N (NII/NI)

Solution (c): For this portion of the problem, I have written an IDL procedure that
makes use of the equations of Part (a) and Part (b) of this problem to produce a
graph similar to that shown in Fig. 8.6 on page 235 in the textbook. A hardcopy
of the IDL procedure (i.e., hw3415ion.pro) is attached to this solution set (if you are
retrieving these solutions from the web, click on the link for this file on the course web
page). The plot is shown on the next page. The ratio Ni/Nyo = 0.5 at approximately
15,000 K as shown in the plot.
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7. (20 pts) Problem 9.4, Page 307 in the Carroll and Ostlie textbook.

Solution: Using the Planck function from Eq. (I-15) in the notes, the radiation pres-

sure can be evaluated:
4 /00 2hc? /NP
0

Praa = 3¢ ehe/MpT _ |

di .

Let

hc Y he
I = =
/\kBT iEkBT

()
hc kBT
= oan=-—x2Bly
kT he 0

dr =



then we can rewrite the numerator of the integrand as

2hc? 2he>  2a°k3TP

X (he/zkgT)>  hicd

Now substituting this expression into the integral and replacing the d\ differential, and
replacing all additional A terms with its = equivalents, we get (realizing that as A goes
from 0 to oo, x goes from oo to 0)

0 55
Poa = 47T/ 2kp T 2 (kBT> N dz

" 3¢ Joo RACP et —1 \ he
2
_ +4_7r . 2k3T ' kgT /00 xd he i
3c  hc? he Jo e*—1 \zkpT
8t K§T® h2c? /00 z3 J
—_ —_ . - x
3 Rh5 KAT? Jo e —1
8 4 4 0o 3
= . Pl / Y dr.
3 h3c3 Jo er—1

As we have seen on numerous occasions in this course, integrals of this form can be

solved from ) . . )
o xn_
de =T S T H
/0 e — 1 (n)<1n+2n+3n+ )

where the Gamma function can be determined from

[(n)=(n—-1)!

if n is an integer. For our problem here, n = 4 and I'(4) = 3! = 6. Also, the series we
get from this integer takes the form

(1 n 1 n 1 n )_ m

14 24 0 34 - 90

as found in many mathematical handbooks. As such, the solution to our integral is
3

© gz 1 1 1 at at
[ oyt =t (gt gr+gt) =6 g55= 13-

Using this in the radiation pressure integral equation, we get

_ 8wt kTt 2mdky  4AT*
ad T 3T 15 h3e3  15R3¢2 3¢

Now, the Stefan-Boltzmann constant is defined by

B 21k

R EYEII
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so the radiation pressure becomes

4 oT*
Pog=-—.
ad 3 ¢

There also is another constant called the radiation constant ‘@’ which is related to the

Stefan-Boltzmann constant by
4o
a=—".
c

As such, we also can write the radiation pressure equation for a blackbody as

1
Py = gaT‘l .

Finally, the internal energy has already been derived in the textbook (see Egs. 3.25
and 9.5) as u = aT*, hence we can also write the blackbody radiation pressure as

1
Prad:§u.

. (20 pts) Problem 9.11, Page 308 in the Carroll and Ostlie textbook.

Solution (a): We are given that p.(®) = 162 gm/cm? and that kress = 1.16 cm?/gm.
Carroll and Ostlie call this the Rosseland opacity, but in fact it is the Rosseland mass
absorption coefficient. The opacity x [cm™!] is related to the mass absorption coefficient
by k = kp, hence the Rosseland mean opacity at the center of the Sun is

KRoss = KRoss Pe(®) = (1.16 cm?/gm)(162 gm/cm®) = 188 cm ™ .

The mean-free-path ¢ of a photon traveling through a gas (i.e., the distance it travels
before interacting with a gas particle) is just the reciprocal of the opacity:

1 1

e = — =
RRoss 188 cm™!

=5.32x107% cm = 53.2 um |

where pm is a micrometer (= micron).

Solution (b): The first thing we need to do is figure out how much time it takes for
a photon to travel from one collision to another. We can simply use a 1-dimensional
equation of motion to approximate this time per collision rate (see the equation on
page 297 in the textbook):

¢ ¢ 532x107%cm

N N - o —13 ..
At ~ 5= o= 3.00 x 1010 /s 1.77 x 10~ sec/collision ,
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since photons are traveling at the speed of light in between collisions.

Every time a photon scatters off of a gas particle during a collision, it can be re-emitted
in any direction = the photon takes a random walk through the gas. The statistics
for such a path shows that a particle will travel a distance d following Eq. 9.23 on page
277 in the textbook:

d=(VN,

where / is the mean-free-path, N is the number of collisions suffered, and d will be
the total traveled distance. Since we are trying to get from the center of the Sun to
the surface (i.e., photosphere), d = Ry = 6.96 x 10'° ¢cm. Hence, the total number of
collisions that a photon makes on its trek from the center of the Sun to the surface is

R\ 2 6.96 x 1010 2
N = (—®> _ < % Cm) — 1.71 x 10% collisions .

/ 5.32 x 10-3 cm

Finally, the total time it will take to travel a distance d = R will just be the number
of collisions times the average time for each collision to take place, hence

tis = NAt = (1.71 x 10 collisions)(1.77 x 10™'* sec/collision) = 3.03 x 10" s

3.03 x 101 s
- =| 9.60 x 10°
3.16 x 107 s/yr SiRs

— nearly a million years! In this solution, we have assumed that the amount of time
for a collision to take place is negligible with respect to At (i.e., the time in between
the collisions). This assumption is correct and if this were a graduate-level course in
radiative transfer, I would have had you proved it!

. (20 pts) Problem 11.14, Page 432 in the Carroll and Ostlie textbook.

Solution: This was a typo. In fact, I wanted the student to tackle Problem 11.4 in
the textbook, which requires that you do Problem 11.3 first. As such, this problem
will be considered extra-credit and you have the option of doing either 11.3/11.4 or
the above posted 11.14. All solutions are shown here.

Solution (11.3): As we did in Problem #6, we need to solve the Saha equation. We
are given that T = T.g = 5770 K for the Sun and that P, = 15 dyne/cm?. The comment
about the Pauli Exclusion Principle was made to give us a clue to the partition function
value for H™. Since only one H™ state can exist in hydrogen due to PEP, the partition
function must be equal to 1 (the extra electron can only have the opposite spin of the
lower energy bound electron). Neutral hydrogen, with its single electron, can exist in
either a spin “up” or “down” (with respect to the proton’s spin) state, hence it has
a partition function of 2. The extra electron in H~ can be knocked off (i.e., ionized)

12



with a 0.75 eV photon (see page 398 of the textbook). In the Saha equation, the lower
ionization state will correspond to H™ and the upper ion state will correspond to H 1.
As such, here are our givens:

H : X1 = 0.75 eV Z1 =1
HI: X2:136€V Z2:2
gas: T =5770 K P, =15 dyne/cm’

With these, we can calculate the various terms in the Saha equation:

2kgTZ, 2-1.38x107"% erg/K - 5770 K -2
P.Zy 15 dyne/cm” - 1

=212x 1071 cm?,

2rmeksT  2m(9.11 x 10728 gm)(1.38 x 10716 erg/K) (5770 K)
h? B (6.63 x 10727 erg s)?

Using the ionization energy of H™, we get

=1.04 x 10" em™?

_ _ -5 .
e—X1/kBT _ ,—0.75 eV/8.62x1075 eV/K 5770 K _ (99

Using these in the Saha equation, the ion number density ratio is

NHI _ NQ . 2]€BTZ2 27Tme]€BT 3/2 —x1/kgT
Nee N P.Z h? ¢
= (2.12 x 1071 em?®) (1.04 x 10* cm=2)%/2 (0.22)

= | 49x107,

For every one H™ ion, there are 49 million neutral hydrogen atoms in the solar at-
mosphere! Then why does H™ dominate all continuous opacity sources in the solar
atmosphere? Because its absorption cross-section is truly enormous in comparison to
the other opacity sources in the Sun’s atmosphere. This is why H™ is also important in
the internal structure of stars. In cool stars, where temperatures in the outer envelope
are relatively cool (in comparison to hot stars), H™ is very efficient in blocking the flow
of photons which sets up convective instability — a convection zone forms in these
regions.

Solution (11.4): In the solution for Problem 11.3 in the textbook, we used the Saha
equation to get the number density ratio of H I to H™, we now will use the Boltzmann
equation to figure out ratios of various levels within neutral hydrogen. Boltzmann’s
equation is

" _ 95 ,~Eji/kgT 7

n; G
where j represents the higher energy state and ¢ the lower state. Let’s calculate the
ratios of the first three excited states (j = 2,3,4) with respect to the ground state
(¢ =1) in hydrogen in the Sun’s atmosphere (with 7' = Teg = 5770 K). The statistical
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weights are found with g; = 252 and Ej; = E; — E;. The table below shows the
values of these input parameters and the results from the Boltzmann equation (with
kg = 8.6174 x 107 eV /K, and hence kg7 = 0.4972 eV):

Level (j) | g; | 9i/91 | Ej (eV) | E; — E1 (eV) | nj/m
1 2 1 -13.60 0.00 1.00
2 8 4 -3.40 10.20 493 x 1079
3 18 9 -1.51 12.09 2.48 x 10710
4 32| 16 -0.850 12.75 1.10 x 10~

As can be seen from the table,
o
Nu1=)Y_n;~n,
i=1

most of the neutral hydrogen is in the ground state on the order of 5 billion to one in
comparison to the excited states. As such, set Ngy1 = n; and compare this with the
ratio found in Problem 11.3 in the textbook:
Ny- NH—_NHI:NH—.E:(NHI.@>1
ns Nu1  n3 Nu1 ns Ny- m
-1
= [(4.97x 107)(248 x 1071%)] = (1.23 x 1077

= | 81.1.

There are 81 H™ ions for every hydrogen atom in the n = 3 state, hence (assuming their
absorption cross-sections are similar, which they are not, oy- > 03.), H™ continua
(both bound-free and free-free) will dominate the hydrogen Paschen continuum.

Solution (11.14): This question deals with magnetic pressure and asks us to derive

B2

P, =—
81

from the following relations

BQ

U = —
81’

and W= [ Pndv

where P, is the magnetic pressure, u,, is the magnetic energy density, W is the work
done by the magnetic field, and B is the magnetic field strength (note that these
relations are only valid in the cgs unit system — there would be additional constants
in the SI version).
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10.

This is actually very straight forward to prove. The energy density is defined as
" = d(PE) ,
av
where PE is the potential energy of the magnetic field. A magnetic force field is con-
servative which means that the work W done on a particle by the field is independent
of the path taken. For such force fields, dWW = d(PE). We can rewrite the work-integral
equation as a differential equation:

dw
—=P,.
av
Using this with our definition of energy density we get
_dW _d(PE) B?

W T Ay T e Y

(20 pts) Problem 11.9, Page 434 in the Carroll and Ostlie textbook.

Solution (a): From the data in Example 11.2 in the textbook, P = 5 x 10* dyne/cm?,
p=2.5x10"" gm/cm?, and the acceleration due to gravity is g = 2.8 x 10* cm/s? at
the base of the solar photosphere. The pressure scale height is given by Egs. (IV-28)
and (IV-30) in the notes (Egs. 10.62 and 10.63 on page 352 in the textbook):

Hp ~ Pdr P hg

for gas in hydrostatic equilibrium. Using our above mentioned photospheric values, we
get

10t d 2
Hp = 5 x 10 3yne/cm ~ =7.1x10% ¢m
(2.5 x 10~7 gm/cm”) (2.8 x 10* gm/s”)

= | 71 km,

about 15% the thickness of the photosphere.

Solution (b): We are given the ratio of the mixing length to the pressure scale height
is a = 2.2. Based upon our solution from Part (a), the mixing length is

{=aHp=22-71 km =160 km.

The average upward velocity measured for granules (i.e., the convective velocity) is
T, ~ 0.4 km/s. Using a simple 1-dimensional equation of motion, the time it would
take for a blob of gas to move one mixing length is

e ¢ 160 km
7, 0.4km/s
The characteristic lifetime of a granule ranges between 5 and 10 minutes which is
consistent with this travel time.

=400s = ~ 7 min .
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