ASTR-3415-001: Astrophysics
Solutions to Problem Set 3
Spring 2003

1. (10 pts) Problem 10.1, Page 375 in the Carroll and Ostlie textbook. Note that Carroll
and Ostlie’s & is the mean mass absorption coefficient (cm?/gm), which I gave as k in
the notes, and not opacity (cm~!) as the authors call it.

Solution: In the notation that I have introduced in the notes (which by the way is
the correct notation), we are trying to prove

dP

_9g
dr k’

where k is the mean mass-absorption coefficient (measured in cm?/gm) and is related
to the opacity (measured in cm™") by

k=

< |3

Note that we did not include the ‘v’ subscripts since these are mean values averaged
over all frequencies. If we use the definition of optical depth from the notes (see Eq.
1-18):

dr = —RKds ,

where once again we have dropped the ‘v’ subscripts since this ia a mean opacity.
Since we are working only in the radial direction with the HSE equation, the length
differential in the optical depth equation is just ds = dr. As such, we can rewrite the
optical depth equation as

dr = —kp dr
or p
dr = —=~
kp

The HSE equation is given by Eq. (10.7) in the textbook and Eq. (IV-14) in the course

notes as
ar_ GM,p
dr r2

Now plugging in the equations developed above into the HSE equation we get

_Ep dP B GM,p
dr N r2
d_P . GM,

dr — kr?2
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The acceleration due to gravity is

and plugging this into the HSE equation, we finally get

aP_
dr

SIS

. (20 pts) Problem 10.2, Page 375 in the Carroll and Ostlie textbook.

Solution: There are several ways to prove this statement. One way is to just write
Newton’s Universal Law of Gravitation:

- GM,m

Fy=— T p

72

where m is the mass of the test particle at distance r from the center of mass (which
will be at the center of M, since m < M, for a test mass point), and M, is the mass
of the body of total mass M that lies within point 7. Since there is no mass inside of
point r for the test mass inside a mass shell, M, = 0, hence F, =0. /

Though I won’t do the solution here (since you will have probably seen [or will see| this
in your mechanics course), we could have also proved this with a differential equation
approach where after showing that the gravitational potential ® within the sphere is
constant, the force ﬁg =-mV® =0 (see Eq. IV-5).

. (20 pts) Problem 10.3, Page 375 in the Carroll and Ostlie textbook.

Solution: The energy released per particle for chemical energy is E, = 10 eV /particle.
Therefore, the total energy released over the lifetime of the Sun is this energy times
the total number of particles NV in the Sun: Ei,; = NE,. Since we are told to assume
that the Sun is composed entirely of H, then M, = Nmyg, or

M, 1.99 x 10% gm

N = =
my  1.67 x 10~2* gm/particle

= 1.19 x 10°" particles,

so the total energy released through these chemical reactions over the lifetime of the
Sun is

Eit = NE, = (1.19 x 10° particles)(10 eV /particle -1.60 x 10~'* erg/eV)
1.9 x 10" erg.



The luminosity of any shining object is just the energy released per unit time interval.
Assuming a constant luminosity over the entire “chemical” lifetime of the star t, we
have Ls = Eyo/t, or solving for t we get

Eo 1.9 x 10% erg 12
Lg 3.83 x 1033 erg/s °
= 1.6 x 10° yr ,

or only 160,000 years. Since the oldest Earth rocks have been dated at ages over 3.5
billion years old, and the Moon rocks and meteorites are dated at 4.6 billion (4.6 x 10%)
years, and these rocks could not have existed before the Sun existed, chemical reactions
are overwhelmingly insufficient to explain the energy output of the Sun.

. (20 pts) Problem 10.11, Page 376 in the Carroll and Ostlie textbook. Calculate this
with the equations in the textbook, just don’t use the numbers I supplied to you in
the course notes.

Solution: Besides the mass values given to us, other useful information about masses
are given on page 332 in the textbook. Here are a list of the givens:

m(*H) = 1.00782u m(*H) = 2.0141u Me+ = me = 5.48617 x 1073y
m(*He) = 3.0160u  m(*He) = 4.002603u m, ~ 1 eV = 1.0706 x 10~%u

where u = 1 atomic mass unit (amu) = 1.660540 x 107* gm. The energy released
is given by Q = (M; — M¢)c?, where ‘i’ is the ‘initial’ stage of a given reaction and
‘f’ is the final stage after the reaction has occurred. We will not have to include the
mass of the neutrino in these calculations since its mass is negligible in comparison to
both the masses given and the differences of the baryon masses calculated (see below).
Also, we will not include the mass loss from the positron here (even though its mass
is not negligible to the baryon mass differences), since the energy of this mass loss is
immediately resupplied to the gas through an electron-positron annihilation. PP I has
three steps in it reaction chain, the third reaction happens once for every 2 times the
first two occur. The energy released for each stage is

Qe _ 1('H) + m(*H) - m(H) = 0.00154u

C

% = m(H) + m(*H) — m(*He) = 0.00592 u

% _ n(*He) - m(*He) — 2m(*H) = 0.013757 u
C

Qtot = 2 (Qa + Qb) + Qc
= [2(0.00154 u 4 0.00592 u) + 0.013757 u]c?
= 0.028677uc® = 0.028677 (1.660540 x 10~ 2* gm)(2.997925 x 10'° cm/s)?
= 4.2798 x 107° erg



or converting to MeV = 10° eV, where 1 eV = 1.60219 x 1072 erg, we get

Qtot = 26.712 MeV .

As a check to see if we have none this correctly, note that in the PP chain, 4 hydrogen
nuclei come together to make one helium nucleus, or

Qtot

c2

= 4m(*He) — m(*He)
4(1.00782u) — 4.002603 v = 0.028677 u

Qior = 0.028677uc? = 0.028677 (1.660540 x 10~ 2* gm)(2.997925 x 10'° cm/s)?
= 4.2798 x 107° erg = 26.712 MeV  /

5. (10 pts) Problem 10.13, Page 377 in the Carroll and Ostlie textbook.

Solution (a): To balance these reactions, we need to invoke the conservation of baryon
number, lepton number, and charge (and perhaps energy if needed).

781 — TAl +et 4 ?
For charge Z, baryon number B, and lepton number L conservation we have
Z: 14= 13+1+4¢

B: 27= (n+13)4+0+0
L: 0= 0+ (-1)+!
or ¢ = 0, hence the last particle has no charge; n = 14, hence the nucleon number for

aluminum is 27; and [ = 1, hence the third particle is a matter lepton and judging
from ¢ must be an electron neutrino (to balance the positron). So

7S — Al +et + v, .

Solution (b): Following the same technique as we had in (a):
‘Al + 'H — *Mg + %7

Before proceeding, the last unknown has to be helium since we are given its charge of 2
and its total nucleon number of 4. Continuing our conservation laws for the remaining
unknown:

Z: B+1= 12+2 /
B: (n+13)+1= 2444
L: 0+0= 0+0 /



hence n = 14 to give aluminum a nucleon number of 27 or

2TAl + 'H — *Mg + “He.

Solution (c): Once again, following the same technique as we had in (a):
BCl + 'H — %Ar + 7
Here we have

Z: 171T+1= 18+¢q
B: 3+1= 36+n
L: 0+0= 04!

or g =0,n=0, and [ = 0, hence, the extra particle must be a photon, or

BCl + "H — *°Ar 4.

. (20 pts) Problem 10.15, Page 377 in the Carroll and Ostlie textbook. Use the equations
in the textbook and not from your notes here.

Solution: There are two ways to answer this problem, an approximate solution, and an
accurate solution. I’ll accept either in this case. First note that for the low mass star,
log T, = 3.438 gives T, = 2742 K, and log L/Ls = —3.297 gives L = 5.047 x 10 *Lg,
and for the high mass star, log T, = 4.722 gives T, = 52,720 K, and log ./ Lo = 6.045
gives L = 1.109 x 10°L,.

The Approximate Solution: Just follow Example 10.4 on page 332 in the textbook:

t — f EHUC
nuc L* Y

where Ey, is the energy released via H fusion in the core over the main sequence (MS)
lifetime of the star and f is the fraction of the stellar mass that lies in the thermonuclear
zone at some point during the MS life:

Enuc = nM*CQ y

where 7 = 0.0071 is the mass difference fraction of 4 hydrogen nuclei to one helium
nuclei. So for our lower mass star where f = 1 due to the star being completely



convective, we have

. . . 10 2
bolo) — L0-0:007L-0.085M5 - (3.00 x 10% em/s) _ o oo Mo
5.047 x 10~Lg, Lo
1.99 x 10% gm

3.83 x 1033 erg/s

= 1.1 x10% =55x102s

= | 1.7x10% yr.

For the upper limit on the MS, f = 0.1 (actually 0.3 is a more accurate value, but we
will follow the book here):

0.1-0.0071 - 90M; - (3.00 x 10 2 M
fouc(hi) = o (300X 107 em/s)” _ -y o g1 Mo
1.109 x 105Lg Lo
1.99 x 10%% gm

3.83 x 1033 erg/s

= 5.1x10% =27%x108 s

= 8.4 x 10° yr .

The Accurate Solution: In the above solution, we assumed that all of the mass in
the core gets converted into helium, hence the core is pure hydrogen. If we had no
information about the luminosity of the stars, we would have to use Equation (10.50)
to get the energy production rate per unit mass for the proton-proton chain for the
low mass star and Equation (10.54) for the CNO energy production rate. These two
equations would require us to figure out the central temperature. We could do this,
following the central temperature calculation we did for the Sun using the ideal gas
law on page IV-13 in the notes and HSE (to get the central pressure) on page IV-7 in
the notes. But we don’t need to do this since luminosity is already given to us. As
such, we can get a more accurate main sequence lifetime by using Eq. (IV-1) [Note
that all T was looking for here was the approximate solution as listed above. I show
the more accurate solution here using the notes, even though I told you not to use this
equation. I'm showing you this just to be complete.]

Here we have an additional factor Xj,;; which is the initial mass fraction of hydrogen.
Note that Xj,;; = 0.70 (page IV-13 of the notes) for Population I stars. Then for the
low mass star

¢ _ f'r]Xinit M,
nuc L*
1.0 - 0.0071 - 0.70 - 0.085 M, - (3.00 x 10*° ¢cm/s)? 00 Mo
tnuc 1 = =7.42 1 —
(1o) 5.047 x 10~ Lg 742> 107
1.99 x 1033
= 7axip0 L0 X10TEM g0 0w

3.83 x 1033 erg/s

= | 1.2x108 yr.




and for the upper limit on the main sequence

. 0.1-0.0071 - 0.70 - 90My, - (3.00 x 10'° cm /s)2 s My

hi) = —3.58 x 101 2
fac(hi) 1.109 x 10°L, 308 > 1077
1.99 x 10% gm

3.83 x 1033 erg/s

= 3.6 x 10" =19x108s

= | 5.9x%x10°yr.

7. (10 pts) Problem 10.16, Page 377 in the Carroll and Ostlie textbook.

Solution: Here, we just need to use the blackbody relation given by Eq. (V-9) on page

V-19 in the notes: ) .
L _(EBYN (T
Lo \Re o)

where T, = 5770 K is the effective temperature of the Sun. Solving this for R for the

low mass star gives
R L (5770 K>2
Ry  \ Lo T

5770 K\ ?
— V5047 x 10-° 1—4( )
5.047 x 10 5712 K

= 9.95x 1072

or

R, = 0.0992 Ry, = 6.90 x 10° cm .

Now solving for the high mass star,

R £<5770K>2
Ry  \Lg T

5770 K \°
— V1109 x 106 (228522
09> 10 <52,720 K)

= 1.26 x 10"

or

Ry =12.6 R, = 8.78 x 10" cm .

The ratio of their radii is

R, 0.0992 R
Ry 126 R,

=787x 1073




8. (20 pts) Problem 12.4, Page 479 in the Carroll and Ostlie textbook.

Solution: We are given the following:

v = 0.5 T=100 K
Av =10 km/s ng = 10 cm ®
In Eq. (12.4),
Nu
=52x 10" ——
TH % TAv'’

where 7 is the optical depth (unitless), 7" is the ISM gas temperature (K), Av is
the full-width-at-half-maximum of the line measured in Doppler velocity units (km/s),
and Ny is the column density (cm™2). The numerical constant term in front includes
various natural constants and conversion scale factors to allow the parameters to be
measured in the units given. Here, we are to solve for the column density:

THTAU

5.2 x 10—19

5-100-1
= %%;%T£0m4=96xHWcm4.

This number represents the number of hydrogen atoms in a cylindrical column of unit
area. Note that for a cylinder, V = A - £, where / is the length of the cylinder or the
depth (i.e., thickness) that we see into the column. Since V = ny;' and A = Ni', we
can solve for the thickness ¢:

NH:

£ = — = = —
A Nﬁl ny
9.6 x 1020 ¢cm™2
= =96 x 10* )
10 om=3 9.6 x 10" c¢cm

Since there are 3.0856 x 10'® cm in one parsec, the thickness is

31 pc.

9. (20 pts) Problem 13.5, Page 537 in the Carroll and Ostlie textbook.

Solution (a): Eq. (13.23) is Reimer’s law of mass loss which states,
- L
M=—-4x10""yp—= My yr !,
gR

where R is measured in solar radii, L in solar radii, and g in surface gravities in units
of the Sun’s surface gravity of g, = 2.74 x 10* ¢cm/s?. Making use of this info, we can
write (using Eq. (IV-10) from the notes),

g GM/R>  M/M,

9o GMy/R,  (R/Ro)?’
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Note that we can rewrite this equation as

M
g:ﬁa

with the understanding that g, M, and R are being measured in solar units. Making
use of this fact in the above equation, we can write

. .. LR? .
M=-4x10 1377MRM® yrt
or
. L
M= —-4x 10_1377% Mg yrt.
Solution (b): Rewrite the mass loss as a derivative and set C = —4 x 10713 M /yr,
then dM . LR
M="=0n=->=
it~ M
or

M dM = CnLRdt .

Set the initial time to be 0 when M = M, (i.e., the initial mass), then set up the
following integral equation

M t t
MdM = /CnLRdtzanR/ dt
0 0

Mo

(M? - M?) = CnLRt,

DN | =

or finally,

M = /M2 —8x10-'*yLRt,

where t is measured in years and the M’s, L, and R are in solar units.

Solution (c): I have attached a copy of an IDL procedure that makes a plot of the
equation written above in part (b). I calculated a thousand different times from 0 to
600 thousand years in this plot as shown on the next page.



10.
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Solution (d): We just need to take the equation in part (b), set M, = 1.0, M = 0.6,
and solve for ¢. Note that the mass in this part (1M) is the same as that in part (b),
as such, take R = 310, n =1, and L = 7000 in this equation, then

M2 M2
8x10 ByLR "
1.0° — 0.62

8 x 10~ -1-7000-310 °
0.64

8 x 10-13-1-7000-310 "

or

t=3.7x10° yr,

which is consistent with the graph shown in part (c).

(10 pts) Problem 13.15, Page 539 in the Carroll and Ostlie textbook.
Solution: Using Eq. (V-11) from the notes (12.20b) in the textbook), the Eddington

limit is

M
— = 3. 10* — .
38><0M
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11.

Information about n Car is given on page 528 of the textbook: M = 150My, L =
6 X 105Lg, M = 3 x 107" Mg /yr, and vying = 450 km/s. Plugging this mass into the
Eddington limit equation gives

L 1500,
“Bd &~ 38 % 104 0

=5.7%x 10°,
L@ O]

or

Lga &25.7x10° Lg .

The luminosity of the star is
L=06x10°Lgy 21.05 Ly,

which exceeds the Eddington limit. This accounts for this star’s large mass loss and
high speed stellar wind.

(20 pts) Suppose an electron with a kinetic energy of 10° eV is moving through a
magnetic field in a supernova remnant. If most of its radiated light is emitted at
100 MHz, what is the strength of the magnetic field? At what velocity is this electron
moving? What is the mass of this electron?

Solution: We just use Eq. (VII-33) from the notes:

2

eH ( FE )
Vmax = )

4mmec \'m, c?

where v,y is the frequency where the radiation reaches its greatest intensity = 100 MHz
=108 Hz = 10® s, e = 4.80 x 10 ! esu, H is the magnetic field strength in gauss,
me = 9.11 x 10728 gm, ¢ = 3.00 x 10'® ¢cm/s (hence m.c? is the rest mass energy of the
electron), and F is the energy of the electron in ergs. Solving for H we get

0o AT € Viay (M €2\
N e FE

343 x107® gm cm/s’ 8.20 x 1077 erg 2
B 4.80 x 10710 esu 10% eV -1.60 x 1012 erg/eV

8.20 x 107 erg”
1.60 x 1073 erg

= 71.5 gauss (

= 1.88 x 107° gauss = 18.8 p-gauss .

As can be seen, the electron is relativistic since m.c? < E. As such, we can’t use
the Newtonian form of the kinetic energy equation (since this would give us a velocity

11



greater than the speed of light!). Instead, we need to make use of the total relativistic
energy equation given by Eq. (4.6) in the textbook and solve for v:

me C*

V1 —v%/c?
1_1}_2 [ mec? 2
2 E

2
v? . Me 02>

c? F
_ o (820x 1077 erg 2
1.60 x 1073 erg
1—2.63x 1077 = 0.999999738
0.999999869

ol

or

v = 0.999999869 c ,

which is very close to (but less than) the speed of light.

The mass of the electron can be determined from the relativistic momentum equation
(see Eq. 4.44) in the textbook:

p=mu = me v
V1 —v2/c?
m = e

/1 —v2/c? ’

where m, = m, = 9.11 x 1072 gm is the rest mass of the electron and m is the mass
of the electron traveling at velocity v. Using the results from above we get
Me
/1 — (0.999999869 c)?/c2
me _ me
V1 —10.999999738  1/2.62 x 107

m =

= 1950m, ,

or

m =178 x 107** gm

= nearly 4 million times the rest mass of the electron!
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12. (20 pts) Using the conservation of angular momentum (L = mwr), calculate how fast
the Sun would spin if it were to collapse down to a neutron star. (Note that P, = 25
days.)

Solution: CAM requires

Lbefore = Lafter
My Wp T = MyuWyTy -

During the collapse, we will assume that the Sun loses no mass, hence m, = m, =
Mg, and these variables cancel out. Here, we are trying to solve for w, with wp =1
rotation/25 days. Finally, r, = Ry = 6.96 x 10° km and r, = Rxs = 10 km (see page
598 of the textbook which gives the radius of a 1.4 M neutron star as 10 km — since
Ryns o< M~'/3 as shown by Eq. 15.22, the radius of a 1 My will be very similar to a 1.4
Mg NS). Solving for w, gives

R
Wy = —w
Rys
6.96 x 10° km 1 rot
Wy, = .
10 km 25 day

= 2800 rot/day .

Since the period is just the reciprocal of this angular speed, we get

Pys=| 3.6x10"*day =315s.
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