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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2010:
General Physics I taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 11th Edition (2018) textbook by Serway and Vuille.



VII. Linear Momentum and Collisions

A. Momentum and Impulse.

1. The linear momentum p of an object is equal to the product

of the mass m and velocity v:

~p ≡ m~v , (VII-1)

or in component form: ~p = px x̂ + py ŷ = mvx x̂ + mvy ŷ.

2. Note that Newton’s 2nd law can be written as

~F =
change in momentum

time interval
=

∆~p

∆t
. (VII-2)

The proof for this is

vf = vi + at = vi + a ∆t

a ∆t = vf − vi = ∆v

a =
∆v

∆t

∆p = m∆v so ∆v =
∆p

m

a =
∆v

∆t
=

∆p/m

∆t
=

∆p

m∆t

or
∆p

∆t
= ma = F !

3. Rewriting Eq. (VII-2), we get

~F ∆t = ∆~p = m~vf − m~vi = m(~vf − ~vi) . (VII-3)

a) ~F ∆t is called the impulse of the force, with ~F as the

average force during a collision.

VII–1
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b) Some use the variable ~I for impulse (as your textbook

does), though it is more common to use ~F∆t.

c) Eq. (VII-3) says: the impulse of the force acting on an

object equals the change in momentum of that object =⇒

Impulse-Momentum theorem.

i) The impulse is positive (+) if an object is being

propelled (i.e., velocity increasing) or if the velocity

changes from the −x direction to the +x direction.

ii) The impulse is negative (−) if an object is being

stopped (i.e., velocity decreasing) or if the velocity

changes from the +x direction to the −x direction.

Example VII–1. (a) Show that the kinetic energy of a particle

of mass m is related to the magnitude of the momentum p of that

particle by

KE =
p2

2m
.

[Note: This expression is invalid for relativistic particles (those trav-

eling at speeds near the speed of light).] (b) An object is moving

so that its KE = 150 J and the absolute value of its momentum is

30.0 kg m/s. What is the mass of the object and at what velocity

is it traveling?

Solution (a):

We have the defining equations for kinetic energy and momentum

as

KE =
1

2
mv2 , p = mv .

Solving these 2 equations for v and squaring the momentum equa-

tion gives

v2 =
2KE

m
, v2 =

p2

m2
.
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Setting these two equations equal to each other and solving for

KE gives

2KE

m
=

p2

m2

KE =
mp2

2m2
=

p2

2m
QED.

(Note that “QED” is used in mathematics when solving a proof.

Think of it as meaning ‘there, I have proved it! ’)

Solution (b):

We have the defining equations for kinetic energy and momentum

as

KE =
1

2
mv2 , p = mv .

Solving these 2 equations for m gives

m =
2KE

v2
, m =

p

v
.

Setting these two equations equal, we can solve for v:

p

v
=

2KE

v2

v2

v
= v =

2KE

p
=

2(150 J)

30.0 kg m/s

v =
300. kg m2/s2

30.0 kg m/s
= 10.0 m/s .

Plugging this value for v into the momentum ‘m’ equation above

gives

m =
p

v
=

30.0 kg m/s

10.0 m/s
= 3.00 kg .
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Example VII–2. A tennis player receives a shot with the ball

(0.0600 kg) traveling horizontally at 50.0 m/s and returns the shot

with the ball traveling horizontally at 40.0 m/s in the opposite direc-

tion. (a) What is the impulse delivered to the ball by the racquet?

(b) What work does the racquet do on the ball?

Solution (a):

Assume the ball is initially traveling in the −x direction away

from the net. Then vi = −50.0 m/s and vf = +40.0 m/s. Using

Eq. (VII-3), the impulse F ∆t is

F ∆t = ∆p = m (vf − vi)

= 0.0600 kg [40.0 m/s − (−50.0 m/s)] = 5.40 kg · m/s

= 5.40 N · s ,

where the positive value indicates that the ball is now traveling in

the +x direction and that the impulse is supplied by the racquet.

Solution (b):

The work is just the change of kinetic energy as given by Eq.

(VI-4) of the last section of the notes. As such,

W = ∆ KE =
1

2
m (v2

f − v2

i )

=
0.0600 kg

2
[(40.0 m/s)2

− (−50.0 m/s)2]

= −27.0 J ,

where the negative sign means that the racquet is supplying work

to the ball.
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B. Conservation of Linear Momentum.

1. During a collision, assume no external forces (e.g., gravity, fric-

tion, etc.) are present or that these external forces are small with

respect to the force of the collision.

2. The impulse of 2 colliding particles, m1 and m2, are:

a) ~F 1 ∆t = m1 ~v1f − m1 ~v1i (mass m1) . (VII-4)

b) ~F 2 ∆t = m2 ~v2f − m2 ~v2i (mass m2) . (VII-5)

Where in these two equations F is the average force supplied

during a collision.

3. Newton’s 3rd law states:

~F 1 = −
~F 2 , (VII-6)

or

~F 1 ∆t = −
~F 2 ∆t (VII-7)

m1 ~v1f − m1 ~v1i = −(m2 ~v2f − m2 ~v2i) , (VII-8)

and finally

m1 ~v1i + m2 ~v2i = m1 ~v1f + m2 ~v2f (VII-9)

=⇒ conservation of linear momentum.

a) When no external forces are acting on a system (or these

forces are small with respect to the impulse force), the

total momentum before a collision is equal to the total

momentum after a collision.

b) The conservation of linear momentum (Eq. VII-9) is noth-

ing more than Newton’s 3rd law of motion!
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Example VII–3. An 80.0-kg astronaut is working on the engines

of her spaceship, which is drifting through space with a constant ve-

locity. The astronaut, wishing to get a better view of the Universe,

pushes against the ship and later finds herself 30.0 m behind the

ship and moving so slowly that she can be considered at rest with

respect to the ship. Without a thruster, the only way to return to

the ship is to throw a 0.500-kg wrench with a speed of 20.0 m/s in

the opposite direction from the ship. How long will it take to get

back to the ship (in minutes) once the wrench has been thrown?

vavw

SHIP

xa = 30.0 m

Solution:

vwf = −20.0 m/s vaf =?

mw = 0.500 kg ma = 80.0 kg

wrench+astronaut initial mom. = wrench+astronaut final mom.

pwi + pai = pwf + paf .

Initially, both the astronaut and wrench are at rest so

pai = 0 , since vai = 0

pwi = 0 , since vwi = 0 .
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Plugging these values into our momentum equation above and

solving for the final astronaut velocity, we get

0 = mw vwf + ma vaf

vaf = −
mw

ma

vwf = −
0.500 kg

80.0 kg
(−20.0 m/s)

= 0.125 m/s .

However, we want to know how long it will take to get to the

ship, we just use this velocity in a 1-D equation of motion. Since

the velocity of the astronaut will be constant once the wrench is

thrown, a = 0, so vaf = xa/t, and

t =
xa

vaf

=
30.0 m

0.125 m/s
= 240 s ×

1 min

60 s
= 4.00 min .

C. Collisions in One Dimension.

1. An inelastic collision is one in which momentum is conserved

but kinetic energy is not. Hence for this type of collision, we can

only use Eq. (VII-9) to try and solve the problem. (Of course, we

can always use Newton’s 2nd law of motion in addition to this

equation if we need more equations.)

a) Some of the kinetic energy goes into deformation (and

heat) of the surfaces in contact.

b) If the two objects stick together during a collision, it is

called a perfectly inelastic collision. For such a col-

lision, Eq. (VII-9), the conservation of momentum, be-

comes

m1 ~v1i + m2 ~v2i = (m1 + m2) ~vf . (VII-10)
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2. An elastic collision is one where both momentum (CM) and ki-

netic energy (CE) are conserved (e.g., billiard balls, air molecules,

etc.). To solve such a collision problem, we use

CM: m1 ~v1i + m2 ~v2i = m1 ~v1f + m2 ~v2f (a)

CE: 1

2
m1 v2

1i +
1

2
m2 v2

2i = 1

2
m1 v2

1f +
1

2
m2 v2

2f (b)

.

(VII-11)

a) Here we are assuming the potential energy (PE) remains

constant during the collision.

b) Note that we can rewrite Eq. (VII-11b) as

m1 v2

1i − m1 v2

1f = m2 v2

2f − m2 v2

2i .

c) Factoring gives

m1

(

v2

1i − v2

1f

)

= m2

(

v2

2f − v2

2i

)

m1 (v1i − v1f)(v1i + v1f) = m2 (v2f − v2i)(v2f + v2i) .

(VII-12)

d) We can rewrite Eq. (VII-11a) as

m1 v1i − m1 v1f = m2 v2f − m2 v2i

m1 (v1i − v1f) = m2 (v2f − v2i) . (VII-13)

e) Now, divide Eq. (VII-12) by Eq. (VII-13):

m1 (v1i − v1f)(v1i + v1f)

m1 (v1i − v1f)
=

m2 (v2f − v2i)(v2f + v2i)

m2 (v2f − v2i)
v1i + v1f = v2f + v2i ,

and finally,

v1i − v2i = −(v1f − v2f) . (VII-14)

f) We can use Eqs. (VII-11a, 11b, and 14) to solve head-on

elastic collisions.
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3. Problem-Solving Strategy for One-Dimensional Collisions:

a) Set up a coordinate axis and define your velocities with

respect to this axis. It is convenient to make your axis

coincide with one of the initial velocities direction. De-

termine which quantities are given (and make sure they

all have units that are consistent) and which need to be

determined.

b) Make a sketch the situation and draw all velocity vectors

and display the given information for both before and af-

ter the collision.

c) Write expressions for the momentum of each object before

and after the collision. Remember to include the appro-

priate signs for the velocity vectors.

d) Now write expressions for the total momentum of the sys-

tem of the objects before and after the collision and equate

the two momenta sum.

e) If the collision is inelastic, the kinetic energy of the sys-

tem is not conserved. Proceed to solve the momentum

equations for the unknown quantities.

f) If the collision is elastic, the kinetic energy of the system

is conserved, so you can equate the total kinetic energies

before and after the collision. Proceed to solve the system

of equations simultaneously for the unknown quantities.

Example VII–4. A 12.0-g bullet is fired horizontally into a

100-g wooden block that is initially at rest on a frictionless horizon-

tal surface and connected to a spring having a spring constant of

150 N/m. The bullet becomes embedded in the block. If the bullet-

block system compresses the spring by a maximum of 80.0 cm, what
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was the speed of the bullet at impact with the block?

Solution:

Since we have two bodies sticking together, the collision will be

perfectly inelastic, hence Eq. (VII-10) will be the equation we will

use for CM. In order to solve this problem, we need an additional

equation. Even though kinetic energy is not conserved, the to-

tal mechanical energy is conserved assuming we ignore energy

loss due to deformation and heat caused by the friction between

the bullet and wood. As such, we will use the conservation of

mechanical energy (i.e., Eq. VI-9) in conjunction with the con-

servation of linear momentum for this perfectly inelastic collision

problem. Since we are not changing height in the gravitational

field, PEg-i = PEg-f in the CE equation. However, the potential

energy of the spring is changing, hence we will need the potential

energy equation of a spring:

PE s =
1

2
kx2 ,

where k = 150 N/m is the spring constant.

There are two steps that we have to worry about here. It is

easier to work in the reverse order that the events take place.

Part (a) concerns the events just after impact of the bullet and

block. For this part we will call the ‘initial ’ epoch just after the

bullet embeds in the wood block and the ‘final ’ epoch when the

bullet+block have compressed the spring to its maximum extent.

Part (b) concerns the epoch just ‘before’ the bullet/block collision

and the epoch just ‘after ’ the collision.

The input parameters are

m = 12.0 g = 0.0120 kg : mass of the bullet

M = 100 g = 0.100 kg : mass of the block

m + M = 0.112 kg : combined mass of bullet+block



Donald G. Luttermoser, ETSU VII–11

v bullet =? : velocity of bullet prior to impact

v block = 0 (rest) : velocity of block prior to impact

V i =? : velocity of bullet+block at just

after impact

V f = 0 : velocity of bullet+block at max

spring compression

x i = 0 : position of bullet+block just after

: impact

x f = 80.0 cm = 0.800 m : position of bullet+block at max

spring compression

Part (a): The conservation of mechanical energy is now applied

where the initial epoch is the point just after the collision has

taken place and the final epoch occurs at maximum spring com-

pression.

[KE (bullet+block) + PE s] i
= [KE (bullet+block) + PE s] f

1

2
(m + M)V 2

i +
1

2
kx2

i =
1

2
(m + M)V 2

f +
1

2
kx2

f

1

2
(m + M)V 2

i + 0 = 0 +
1

2
kx2

f

V 2

i =
kx2

f

(m + M)

V i =

√

√

√

√

√

kx2
f

(m + M)

V i =

√

√

√

√

(150 N/m)(0.800 m)2

0.112 kg
= 29.3 m/s

Part (b): Let’s now relabel V i = V which will represent the veloc-

ity of the bullet+block just after the collision. The conservation

of linear momentum can now be used to determine the initial

velocity of the bullet (here the subscripts ‘b’ mean before the

collision and ‘a’ after the collision).

p b = p a
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p b-bullet + p b-block = p a

mv bullet + Mv block = (m + M) V

mv bullet + 0 = (m + M) V

mv bullet = (m + M) V

v bullet =
m + M

m
V

v bullet =

(

0.112 kg

0.0120 kg

)

(29.3 m/s) = 273 m/s .

D. Glancing (Two-Dimensional) Collisions.

1. Colliding masses rebound at some angle relative to the line of

motion.

2. Conservation of momentum still applies, but is applied for each

component of the motion:
∑

pix =
∑

pfx (VII-15)
∑

piy =
∑

pfy . (VII-16)

3. Problem-Solving Strategy for Two-Dimensional Collisions:

a) Define a 2-D coordinate system (usually Cartesian) and

identify the masses and velocities. It is convenient to make

your x-axis coincide with one of the initial velocities di-

rection. Determine which quantities are given (and make

sure they all have units that are consistent) and which

need to be determined.

b) Make sketches of the situations for both before and after

the collision with respect to the coordinate system you

have defined.
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c) Write the equations for the total momentum before and

after the collision for both coordinates (i.e., px and py).

This will produce two sets of equations since the momen-

tum is a vector (see Eqs. VII-11a, VII-15,16).

(Note that if one object is moving and the second is sta-

tionary, with both objects having the same mass, the an-

gle between the two outgoing objects is 90◦.)

d) If the collision is inelastic, the kinetic energy of the sys-

tem is not conserved. Proceed to solve the momentum

equations simultaneously for the unknown quantities. If

the collision is perfectly inelastic, the final velocities of

the two objects are equal since they stick together.

e) If the collision is elastic, the kinetic energy of the system

is conserved, so you can equate the total kinetic energies

before and after the collision. Proceed to solve the system

of equations (momentum and kinetic energy) simultane-

ously for the unknown quantities.

Example VII–5. An 8.00-kg object moving east at 15.0 m/s on

a frictionless horizontal surface collides with a 10.0-kg object that is

initially at rest. After the collision, the 8.00-kg object moves south

at 4.00 m/s. (a) What is the velocity of the 10.0-kg object after the

collision? (b) What percentage of the initial kinetic energy is lost in

the collision?
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x

EW

yN

S

BEFORE

m1 = 8.00 kg

m2 = 10.0 kg
v1i = 15.0 m/s

v2i = 0

x

EW

yN

S

AFTER

θ

m1

m2

v1f = 4.00 m/s

v2f

Solution (a):

Since we are told that kinetic energy will be lost during the colli-

sion, the collision is not an elastic collision, hence we cannot use

the conservation of kinetic energy equation here. We are given

sufficient information, however, to solve the problem using the

conservation of linear momentum (in 2-D). Since the first object

has changed direction and the second object was initially at rest,

the final velocity of the second object will have both an x and y

component in order to conserve momentum in both axes as shown

in the diagram above. We are given the following parameters:

BEFORE AFTER

~v1i = (15.0 m/s) x̂ ~v1f = (−4.00 m/s) ŷ

~v2i = 0 ~v2f =?

θ =?

m1 = 8.00 kg

m2 = 10.0 kg

We have defined the eastern direction along the positive x axis

and the northern direction along the positive y axis. Angle θ is
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the direction of motion of the second object after the collision

with respect to the eastern direction.

Conservation of linear momentum in the x direction:

m1 v1ix + m2 v2ix = m1 v1fx + m2 v2fx

m1 v1ix + 0 = 0 + m2 v2fx

v2fx =
m1

m2

v1ix

=

(

8.00 kg

10.0 kg

)

(15.0 m/s)

= 12.0 m/s .

Conservation of linear momentum in the y direction:

m1 v1iy + m2 v2iy = m1 v1fy + m2 v2fy

0 + 0 = m1 v1fy + m2 v2fy

−m2 v2fy = m1 v1fy

v2fy = −
m1

m2

v1fy

= −

(

8.00 kg

10.0 kg

)

(−4.00 m/s)

= 3.20 m/s .

The magnitude of the final velocity of object 2 is then found from

the Pythagorean theorem:

v2f =
√

v2
2fx + v2

2fy

=
√

(12.0 m/s)2 + (3.20 m/s)2 = 12.4 m/s .

The angle θ can now easily be found with

tan θ =
v2fy

v2fx

θ = tan−1

(

v2fy

v2fx

)

= tan−1





3.20 m/s

12.0 m/s





= 14.9◦ .
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Thus,

v2f = 12.4 m/s at 14.9◦ N of E .

Solution (b):

The percentage of kinetic energy lost is given by

KE lost

KE i

=
KE i − KE f

KE i

= 1 −
KE f

KE i

.

The initial kinetic energy is just the kinetic energy of object 1

since object 2 is initially at rest, hence

KE i =
1

2
m1 v2

1i =
1

2
(8.00 kg) (15.0 m/s)2 = 900 J .

The final kinetic energy is the sum of the kinetic energies of object

1 and object 2, hence

KE f =
1

2
m1 v2

1f +
1

2
m2 v2

2f

=
1

2
(8.00 kg) (−4.00 m/s)2 +

1

2
(10.00 kg) (12.4 m/s)2

= 64.0 J + 770 J = 834 J .

Hence the percentage lost is

KE lost

KE i

= 1 −
834 J

900 J
= 1 − 0.928 = 0.072 ,

or 7.2% of the original kinetic energy is lost in the collision.


