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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2010:
General Physics I taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 11th Edition (2018) textbook by Serway and Vuille.



VIII. Circular Motion

A. Angular Speed and Angular Acceleration.

1. Arc length of a rotating or revolving object is analogous to

linear displacement:

a) Arc length, s, is swept out as an object rotates θ degrees

such that

s = θ r . (VIII-1)
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i) s is measured in the same units as r (i.e., a length).

ii) θ is measured in radians (not degrees).

1 revolution (rev) = 2π radians (rad) = 360◦ ,

(VIII-2)

or

1 rad ≡
360◦

2π
≈ 57.3◦.

VIII–1
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b) Conversion of angles (θ ≡ angular displacement):

θ (rad) =
π

180◦
θ (deg) , (VIII-3)

θ (rad) = 1.745 × 10−2 θ (deg) .

c) Sometimes you may run across angular measure dealing

with very small angles. There are 60’ (arcminutes =

arcmin) per 1◦ and 60” (arcseconds = arcsec) per 1

arcminute:

1◦ = 60′ = 3600′′

d) An object is said to ‘rotate’ if it is spinning about an axis

(e.g., the Earth ‘rotates’ about its axis).

axis

"spins"
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e) A body ‘revolves’ around another object if the first body

is in orbit about the second object (e.g., the Earth ‘re-

volves’ about the Sun).

Sun

Earth

"orbits"
Sun

Example VIII–1. A wheel of radius 4.1 meters rotates at a

constant velocity. How far (path length) does a point on the circum-

ference travel if the wheel is rotated through angles of 30◦, 30 rad,

and 30 rev?

Let r be the radius of the wheel, s be the path length along the

circumference, and θ be the angle that this point subtends from

a reference point as the wheel rotates. As such, r = 4.1 m, and

θ1 = 30◦, θ2 = 30 rad, and θ3 = 30 rev. We will use Eq. (VI-1),

s = θ r ,

except that all of these angles must be expressed in radians, so

θ1 = 30◦ ×
π rad

180◦
= 0.5236 rad,

θ2 = 30 rad (which is what we want),

θ3 = 30 rev ×
2π rad

1 rev
= 188.5 rad.

Plugging these values of θ into Eq. (VI-1) gives

s1 = θ1 r = 0.5236 (4.1 m) = 2.1 m
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s2 = θ2 r = 30 (4.1 m) = 120 m

s3 = θ3 r = 188.5 (4.1 m) = 770 m

2. The length s in Eq. (VIII-1) is actually an arc length (curved

length). However, if θ is small (i.e., θ � 1), s → D, the actual

linear size (or diameter if the object is round).

a) As such, by measuring the angle that a distance object

subtends, we can calculate its actual size (or diameter) D

by knowing the distance d to the object.

b) Since θ is small here, it is often more convenient to express

this angle in terms of arcseconds instead of radians. We

can rewrite Eq. (VIII-1) by setting s = D, r = d, and

expressing θ in arcseconds and relabeling it as α, then

θ(rad) = α(arcseconds) ×
π rad

180◦
×

1◦

3600 arcsec

=
α arcsec

206, 265 arcsec/rad
.

c) Using α instead of θ in Eq. (VIII-1) gives

D =
αd

206, 265
, (VIII-4)

which is called the small-angle formula. Here, D is the

linear size (i.e., diameter) of the object at a distance d

which subtends an angle α measured in arcseconds (the

206,265 is the conversion factor between arcseconds and

radians). The lengths d and D will be in the same units

(e.g., if d is measured in km, then D will be in km). Note
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that this formula is only valid when θ � 1 (typically,

one would want α < 1000 arcseconds in order to use this

small-angle approximation).

Example VIII–2. The star Betelguese (α Ori) has an angular

size of 0.040 arcsec (40 milliarcseconds = 40 mas) and it is at a

distance of 200 pc. What is the linear size of Betelgeuse? How does

this size compare to the planet’s distances from the Sun in our solar

system?

d = 200 pc x 3.09 × 1016 m/pc = 6.18 × 1018 m

D = 0.040 x 6.18 × 1018 m / 206,265 = 1.20 × 1012 m.

The Sun is 1.39×109 m in diameter which means that Betelgeuse

is

D =
1.20 × 1012 m

1.39 × 109 m/D�
= 860 D� = 8.0 AU,

where an Astronomical Unit (AU) is the size of the Earth’s orbital

semimajor axis (note that 1 AU = 1.496 × 1011 m). Betelgeuse

is 860 times bigger than the Sun! This diameter gives a stellar

radius of 4.0 AU for Betelgeuse. If it was put in the place of

the Sun, then Mercury (0.39 AU), Venus (0.72 AU), Earth (1.0

AU), and Mars (1.5 AU) would be inside Betelgeuse! The planet

Jupiter (5.2 AU) would be close (1.2 AU) from the photosphere

(“surface”) of Betelgeuse.

3. Angular speed, ω, is the change of angular displacement di-

vided by the time interval that the angular displacement took

place.

a) Average angular speed:

ω =
θ2 − θ1

t2 − t1
=

∆θ

∆t
. (VIII-5)
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b) Instantaneous angular speed:

ω ≡ lim
∆t→0

∆θ

∆t
=

dθ

dt
. (VIII-6)

c) Angular speed has units of radians/second =⇒ rad/s (or

just s−1 since “radian” is a pseudo-unit).

d) ω is positive when θ is increasing (counter-clockwise mo-

tion) and negative in the clockwise direction.

4. Angular acceleration, α (alpha), is the change of angular speed

over the time interval of interest:

α ≡
change in angular speed

time interval
=

ω2 − ω1

t2 − t1
=

∆ω

∆t
, (VIII-7)

which is the average angular acceleration.

a) Whereas the instantaneous acceleration is

α ≡ lim
∆t→0

∆ω

∆t
=

dω

dt
=

d2θ

dt2
. (VIII-8)

b) The units of angular acceleration are rad/s2 (or just s−2).

5. When a rigid object rotates about an axis, every portion of the

object has the same angular speed and same angular acceleration.

6. Note that we have not written the angular variables as vectors. In

reality they are vectors, but the unit vectors for the magnitudes

we have written above, point out of the plane in which the object

is rotating. Since this is a bit complicated, we will just discuss

the magnitudes of these angular motions in this course.
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B. Rotation Motion under Constant Angular Acceleration.

1. These are analogous to their counterparts in linear motion.

LINEAR ANGULAR

v = v◦ + at ω = ω◦ + αt , (VIII-9)

x = v◦t +
1

2
at2 θ = ω◦t +

1

2
αt2 , (VIII-10)

v2 = v2

◦ + 2ax ω2 = ω2

◦ + 2αθ . (VIII-11)

Note that in the above equations, the initial times, angles, and

displacements are all set to zero. If these initial setting are not

zero, replace t with ∆t, θ with ∆θ, and x with ∆x.

2. The tangential speed of a point on a rotating object equals the

distance of that point from the axis of rotation (r) multiplied by

the angular speed (ω):

∆θ =
∆s

r
,

∆θ

∆t
︸ ︷︷ ︸

ω

=
1

r

∆s

∆t
︸ ︷︷ ︸

v

,

lim
∆t→0

∆θ

∆t
=

1

r
lim

∆t→0

∆s

∆t
,

ω =
1

r
v ,

vt = r ω , (VIII-12)
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where vt is the “tangential” velocity tangent to the curved path

of motion the particle is taking.

r

s

vt

ω

θ

3. The tangential acceleration, a t, of a point on a rotating object

equals the distance of that point from the axis of rotation (r)

multiplied by the angular acceleration (α):

∆vt = r ∆ω ,

∆vt

∆t
︸ ︷︷ ︸

a

= r
∆ω

∆t
︸ ︷︷ ︸

α

lim
∆t→0

∆vt

∆t
= r lim

∆t→0

∆ω

∆t
,

a t = r α . (VIII-13)

C. Centripetal Acceleration and Force.

1. If an object travels at constant speed in a curved path, it is

accelerating since the velocity vector is continuously changing

direction.

2. Besides, the tangential acceleration (i.e., acceleration tangent to

the curved path), there must be an acceleration perpendicular

(⊥) to the tangent line pointing toward the center of the curved

path.
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a) Otherwise, the object would fly off in a straight path in

the direction of a t as per Newton’s 1st law of motion.

b) This center-seeking acceleration is called the centripetal

acceleration,

a c = r ω2 =
v2

t

r
. (VIII-14)

i) Gravity is a centripetal force for planets orbiting

the Sun. Hence, each planet has a sunward pointing

centripetal acceleration associated with it.

ii) A string’s tension is a centripetal force (hence ac-

celeration) for an object attached to that string be-

ing rotated in circular motion.

ac

at

ω

strin
g

rock

c) The total acceleration of an object in circular motion is

~a = ~at + ~ac , (VIII-15)

a =
√

a2
t + a2

c . (VIII-16)
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Example VIII–3. A race car starts from rest on a circular track

of radius 400 m. The car’s speed increases at a constant rate of

0.500 m/s2. At the point where the magnitudes of the centripetal

and tangential accelerations are equal, determine (a) the speed of

the race car, (b) the distance traveled, and (c) the elapsed time.

Solution (a):

From Eq. (VIII-14), the centripetal acceleration is a c =
v2

t

r
. Thus,

when a c = a t = 0.500 m/s2, we have

vt =
√

r a c =
√

(400 m)(0.500 m/s2) = 14.1 m/s .

Solution (b):

The distance traveled is the total arc length traveled on the cir-

cular track, s. From one of the linear 1-D equations of motion:

v2 = v2

◦ + 2 a s ,

where v = vt = 14.1 m/s, v◦ = 0 (starts from rest), and a = a t =

0.500 m/s2. The total arc length (i.e., distance) traveled is then

s =
v2 − v2

◦
2 a t

=
(14.1 m/s)2 − 0

2 · 0.500 m/s2
= 200 m .

Solution (c):

The elapsed time can be found with:

v = v◦ + a t ,

where v = vt = 14.1 m/s, v◦ = 0 (starts from rest), and a = a t

= 0.500 m/s2. Hence, the time it take to reach the tangential

velocity from part (a) is

t =
vt − v i

a t

=
14.1 m/s − 0

0.500 m/s2
= 28.2 s .
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3. The centripetal force is just the mass times the centripetal accel-

eration:

Fc = ma c =
mv2

t

r
= mr ω2 . (VIII-17)

a) Centripetal forces are “center-seeking” forces.

i) The gravitational force is a center-seeking force

=⇒ planets are in orbit about the Sun.

ii) The tension force is a centripetal force for an ob-

ject connected to a string being swung about some

axis.

b) The concept of centrifugal force, the apparent force

that forces an object outward while moving in a circu-

lar path, is not really a force =⇒ this tendency to follow

a straight line path away from the curved path is nothing

more than Newton’s 1st law — the law of inertia.

Example VIII–4. It has been suggested that rotating cylin-

ders about 10 mi long and 5.0 mi in diameter be placed in space

and used as colonies. What angular speed must such cylinders have

so that the centripetal acceleration at its surface equals the free-fall

acceleration on Earth?

Solution:

The centripetal acceleration is given by Eq. (VIII-14):

ac = r ω2 .

The radius of the cylinder is r = (5.0 mi)/2 = 2.5 mi. Converting

this to meters gives

r = 2.5 mi

(

1609 m

1 mi

)

= 4.0 × 103 m .
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Since we are told that ac = g, the angular speed would have to

be

ω =

√

ac

r
=

√

g

r

=

√
√
√
√
√

9.80 m/s2

4.0 × 103 m

= 4.9 × 10−2 rad/s .

Example VIII–5. A 0.400-kg pendulum bob passes through

the lowest part of its path at a speed of 3.00 m/s. (a) What is

the tension in the pendulum cable at this point if the pendulum is

80.0 cm long? (b) When the pendulum reaches its highest point,

what angle does the cable make with the vertical? (c) What is

the tension in the pendulum cable when the pendulum reaches its

highest point?

Solution (a):

r = L = 80.0 cm

T

Fc

Fg

vt = 3.00 m/s
y

x

The diagram above shows the system when the bob is at its low-

est point and shows the direction of the forces involved and the

tangential velocity vector. The mass of the bob is m = 0.400 kg,
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and the length of the cable as L = 80.0 cm = 0.800 m. Since the

bob follows a circular path about the pivot of the pendulum, the

radius of this path is just the length of the cable, r = 0.800 m.

The centripetal force is always directed toward the center of the

“orbit,” which we will define as the positive y direction as indi-

cated in the figure above. As a result, the sum of the forces in

the y direction is just the total centripetal force:

∑

Fy = Fc = T − Fg .

Solving for the tension T gives

T = Fg + Fc = mg + mac = m (g + ac)

= m



g +
v2

t

r



 = (0.400 kg)



9.80 m/s2 +
(3.00 m/s)2

0.800 m





= 8.42 N .

Solution (b):

Lθmax

vi = 3.00 m/s
yi = 0

yf

vf = 0

L - yf

yf

The diagram above shows the bob at its maximum height. To

find this height, hence θmax, we only need to use the conservation

of mechanical energy. We will set the lowest position of the bob at

the “ground” level, y i = 0. At its highest position, y f, the velocity
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changes from the counter-clockwise to the clockwise direction,

hence goes through zero at this point, v f = 0. From the diagram

above, we can solve for y f in terms of θmax:

cos θmax =
L − y f

L
L cos θmax = L − y f

y f = L − L cos θmax

y f = L (1 − cos θmax) .

We can now determine θmax from the conservation of mechanical

energy by setting the lowest point as the initial position, so v i =

vt [from part (a)], and y i = 0, and the highest point as the final

position, so v f = 0 and y f is given in the equation above:

(KE + PEg) i
= (KE + PEg) f

1

2
mv2

i + mgy i =
1

2
mv2

f + mgy f

1

2
mv2

t + 0 = 0 + mgL (1 − cos θmax)

mgL (1 − cos θmax) =
1

2
mv2

t

1 − cos θmax =
v2

t

2gL

cos θmax = 1 −
v2

t

2gL

θmax = cos−1



1 −
v2

t

2gL





= cos−1



1 −
(3.00 m/s)2

2(9.80 m/s2)(0.800 m)





= cos−1(0.4260) = 64.8◦ .
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Solution (c):

θmax

Fg

T

y x

θmax

The diagram above shows the forces acting on the bob at the

highest point with respect to an arbitrary coordinate system cho-

sen such that the tension and total centripetal force points in the

positive y direction. From this, we now construct a free-body

diagram: y

x

T

Fg

θmax
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Since the tangential velocity at this highest point is zero [as men-

tioned in part (b)], the centripetal force must be zero:

Fc = mac = m
v2

t

r
= 0 .

Using this equilibrium equation in conjunction with the free-body

diagram above, we get

Fc =
∑

Fy = T − Fg-y

0 = T − mg cos θmax

T = mg cos θmax

= (0.400 kg)(9.80 m/s2) cos(64.8◦)

= 1.67 N .


