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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2010:
General Physics I taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 11th Edition (2018) textbook by Serway and Vuille.



XIII. Gas Laws and the Kinetic Theory of Gases

A. State Variables: Quantities that describe the condition or state of a

system.

1. Pressure: P = F/A [SI units: Pa = N m−2] or [cgs units:

dyne cm−2].

2. Temperature: A measure of the amount of heat in a system

[K] or [◦C]. More precisely, it is a measure of the average velocity

of the particles in matter (see §XIII.G).

3. Volume (or Density):

a) Mass Density: ρ (‘rho’) ≡ amount of mass per unit

volume [SI units: kg m−3] or [cgs units: g cm−3].

b) Number Density: N (‘capital N’) ≡ number of parti-

cles per unit volume [SI units: m−3] or [cgs units: cm−3].

Note that one could include ‘atoms,’ ‘molecules,’ or ‘par-

ticles’ in the numerator of the units for this parameter,

but these terms are not really units (like ‘radian’ and an-

gular ‘degree’), and as such, I have not included any of

these labels in the ‘units’ for number density, though their

inclusion are implied. (Note that your textbook uses

capital-N as the total number of particles present

and not the way I define it here.)

c) The total number of particles and volume can be ex-

pressed separately as well:

i) Volume: V ≡ Total ‘space’ that the gas fills [SI

units: m3] or [cgs units: cm3]

XIII–1
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ii) Particle Number: n (‘small n’) ≡ number of

particles present =⇒ typically measured in moles

→ the amount of material whose mass in grams

is numerically equal to the molecular mass of the

substance (i.e., the atomic mass of nitrogen N is

14 since its nucleus is composed of 7 protons and

7 neutrons, the molecular mass of nitrogen N2 is

(14+14=) 28 → a mole of atomic nitrogen is 14

grams and a mole of molecular nitrogen is 28 grams)

[mol].

Example XIII–1. Estimate the “total weight” of the atmosphere, using

your knowledge of barometers and the given radius of the Earth.

Solution:

We just need to use the pressure equation given by Eq. (XI-7). The weight

w is the force Fg of the atmosphere pressing down on us. The area in this

equation is the total surface area of the Earth A⊕ = 4πR2

⊕:

w = Fg = PA = P◦ · 4πR2

⊕ = (1.01 × 105 N/m2)(4π)(6.4 × 106 m)2

= 5.2 × 1019 N .

B. Physical Constants Used in Gas Laws.

1. Avogadro’s Number: A mole of gas contains the same number

of molecules: NA.

NA = 6.02252 × 1023 molecules/mole .



Donald G. Luttermoser, ETSU XIII–3

2. Universal Gas Constant:

R = 8.3143 J/(mol ·K) (SI system)

or

R = 8314.3 J/(kmol ·K)

= 8.2056 × 10−2 m3 · atm/(kmol ·K)

= 8.2056 × 10−2 li · atm/(mol ·K)

= 8.3143 × 107 erg/(mol ·K) (cgs system).

3. Boltzmann’s Constant:

kB =
R

NA

= 1.3807 × 10−23 J/K (SI system)

= 1.3807 × 10−16 erg/K (cgs system).

C. The Various Forms of Density.

1. The density-volume state variable mentioned above can all be

interrelated to one another

ρ = µmHN = mN =
µmHnNA

V
. (XIII-1)

a) mH ≡ mass of the hydrogen atom (the most common atom

in the Universe):

mH = 1.6726 × 10−27 kg

= 1.6726 × 10−24 g

= 1.008 amu ,

where amu ≡ atomic mass unit is another way to de-

scribe the mass of a particle.

i) The size of the amu in terms of kilograms is de-

fined in two different ways. Whenever you use the

amu unit, make sure you notice which definition is

being used (the data table or periodic table you are

using will typically mention this in a footnote).
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ii) The first method is scaled with respect to 12C

(i.e., the 6-proton, 6-neutron isotope of carbon)

where 12C is exactly 12.0000 amu.

iii) The second method is scaled with respect to 16O

(i.e., the 8-proton, 8-neutron isotope of oxygen)

where 16O is exactly 16.0000 amu.

iv) In both cases, the hydrogen atom (1H) is slightly

greater than 1 amu since the mass of the neutron

(which C & N have) is slightly greater than the

mass of the proton (see §XI.A.3 on page XI-1 of

these notes).

b) µ (‘mu’) ≡ mean molecular weight (unitless number) =⇒

takes account of systems composed of different types of

particles.

c) m ≡ mean (average) mass of gas particles:

m =

∑

i miNi
∑

i Ni
. (XIII-2)

i)
∑

i is the summation symbol → it means to add

together each term in the series of terms.

ii) mi ≡ mass of a specific type of gas particle (e.g.,

He, N2, O2, H2O, etc.).

iii) Ni ≡ number density of each specific particle.

iv) Note that N =
∑

i Ni and

µ =
m

mH

. (XIII-3)
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2. The form of density (and/or volume) you use depends upon the

specific problem being solved.

D. Boyle’s (Constant Temperature) Law.

1. In words: The pressure exerted by a gas at ‘constant tem-

perature’ is inversely proportional to the volume in which it is

enclosed.

2. Mathematically:

PV = constant

or

P1V1 = P2V2 , (XIII-4)

where ‘1’ and ‘2’ refer to two different states of the same sample

of gas at constant temperature.

3. This is the constant temperature gas law.

Example XIII–2. An air bubble has a volume of 1.50 cm3 when

it is released by a submarine 100 m below the surface of a lake. What is

the volume of the bubble when it reaches the surface? Assume that the

temperature and the number of air molecules in the bubble remain constant

during the ascent.

Solution:

We just need to apply Boyle’s law (see Eq. XIII-4),

P1V1 = P2V2 ,

where ‘1’ refers to the condition at the location of the submarine and ‘2’

refers to the surface of the lake. At the surface, P2 = P◦ = 1 atm =

1.01× 105 N/m2. We are told that V1 = 1.50 cm3 and we are to calculate
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V2. As such, we need to determine P1. Using Pascal’s Principle (Eq.

XI-10), we can determine this pressure of the lake at the submarine’s

location:

P1 = P◦ + ρgh ,

where ρ = 1000 kg/m3 is the density of water, h = 100 m is the depth of

the submarine, and g = 9.80 m/s2. Solving Boyle’s law for the air bubble

volume at the surface in conjunction with Pascal’s Principle gives

V2 =
P1

P2

V1 =
P1

P◦

V1

=
P◦ + ρgh

P◦

V1 =

(

1 +
ρgh

P◦

)

V1

=



1 +
(1000 kg/m3)(9.80 m/s2)(100 m)

1.01 × 105 N/m2



 (1.50 cm3)

= (1 + 9.70)(1.50 cm3)

= 16.1 cm3 .

E. Charles’ (Constant Pressure) Law.

1. In words: At constant pressure, a volume of gas per unit tem-

perature (in K) remains constant.

2. Mathematically:

V

T
= constant,

V1

V2

=
T1

T2

(XIII-5)

=⇒ T must be measures in Kelvin here.

3. This is the constant pressure gas law.
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F. Gay-Lussac’s (Constant Volume) Law.

1. In words: At constant volume, the pressure of the gas per unit

temperature (in K) remains constant.

2. Mathematically:

P

T
= constant,

P1

P2

=
T1

T2

(XIII-6)

=⇒ T must be measures in Kelvin here.

3. This is the constant volume gas law.

G. Equation of State.

1. Gas pressure typically depends upon the temperature of the ma-

terial and the volume of the container that holds the material.

a) P as a function of T and V (or ρ or N) is called the

equation of state of the material.

b) In general, the equation of state for a material is very

complicated.

c) For low pressures (or low densities), the equation of state

becomes very simple =⇒ the ideal gas law.

2. An ideal gas has the following characteristics:

a) The number of molecules (i.e., particles) in the gas is large

and the average separation between them is large com-

pared to their dimension =⇒ particles are very far apart

compared to their size.

b) The particles move randomly following Newton’s laws of

motion.
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c) The molecules interact only by short-range forces during

elastic collisions =⇒ forces between the particles are neg-

ligible except during a collision.

d) Particle-wall collisions are elastic as well.

e) The composition of the gas is homogeneous (i.e., smooth

and the same everywhere).

3. The equation of state of an ideal gas is (Form 1):

PV = nRT . (XIII-7)

a) P ≡ pressure [Pa = N/m2 = J/m].

b) V ≡ volume [m3].

c) n ≡ number of ‘moles’ in the gas as explained in §XIII.A.3.c.ii

[mol]. Once again:

i) Equal volume of gas at the same temperature and

pressure contain the same number of molecules.

ii) One mole quantity of all gases at standard tem-

perature (0◦C = 273.15 K) and pressure (1 atm =

101.3 kPa) [≡ STP] contain the same number of

molecules.

d) R ≡ universal gas constant = 8.314 J/mol ·K.

e) T ≡ temperature [K].

Example XIII–3. A popular brand of cola contains 6.50 g of

carbon dioxide dissolved in 1.00 L of soft drink. If the evaporating

carbon dioxide is trapped in a cylinder at 1.00 atm and 20◦C, what
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volume does the gas occupy?

Solution:

Carbon, C, has 12 nucleons in it and oxygen, O, has 16. Since

there are 2 oxygen atoms and 1 carbon atom in carbon dioxide

(CO2), its molecular mass is 12 + 2 · 16 = 44 gm/mol. As such,

the number of moles of CO2 present is

n =
6.50 gm

44.0 gm/mol
= 0.148 mol.

Thus, at the given temperature (T = TC + 273.15 = 20 + 273.15

= 293 K) and pressure (P = 1.00 atm = 1.013 × 105 Pa), the

volume can be determined from Form 1 of the ideal gas law (Eq.

XIII-7):

PV = nRT , V =
nRT

P
,

or

V =
(0.148 mol)(8.314 J/(mol K))(293 K)

1.013 × 105 N/m2
= 3.55 × 10−3 m3

= 3.55 L .

4. The equation of state of an ideal gas can also be expressed as

(Form 2):

P = NkBT . (XIII-8)

a) N ≡ particle density as described in §XIII.A.3.b [m−3].

b) kB ≡ Boltzmann’s constant = 1.38 × 10−23 J/K.
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5. Finally, the equation of state of an ideal gas is given by (Form

3):

P =
ρkBT

µmH

. (XIII-9)

a) ρ ≡ mass density as described in §XIII.A.3.a [m−3].

b) µmH measures the average mass of the particles in the

sample.

H. Kinetic Theory of Gases.

1. This theory describes the microscopic motion of gas particles. It

assumes that the gas behaves ideally.

2. At the heart of this theory: The temperature of the gas is

related to the average velocity of a gas particle.

a) Thermal energy = average kinetic energy of particles in

the gas:

TE = KE

or
3

2
kBT =

1

2
mv2 , (XIII-10)

where the ‘overline’ indicates average.

b) The average velocity of a gas particle is

v2 = v2
x + v2

y + v2
z . (XIII-11)

i) The average component velocities are equal to each

other for random motion:

v2
x = v2

y = v2
z .

ii) So, Eq. (XIII-10) can be rewritten as

v2 = 3v2
x . (XIII-12)
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c) A degree of freedom in a gas refers to the number of

independent means by which a gas particle can possess

energy.

i) If it moves in the x, y, and z directions, it has 3

degrees of freedom.

ii) So, we can write three separate energy equations:

Ex =
1

2
mv2

x =
1

2
kBT

Ey =
1

2
mv2

y =
1

2
kBT

Ez =
1

2
mv2

z =
1

2
kBT

and the average kinetic energy is then the sum of

the energies in these three different directions:

E = Ex + Ey + Ez =
1

2
m
(

v2
x + v2

y + v2
z

)

=
1

2
m
(

v2
)

=
1

2
kBT +

1

2
kBT +

1

2
kBT

=
3

2
kBT ,

or

v2 =
3kBT

m
. (XIII-13)

d) The square root of v2 is called the root-mean-square

(rms) velocity:

vrms ≡
√

v2 =

√

√

√

√

3kBT

m
(XIII-14)

=⇒ when we talk about velocity of gas particles, we will

always mean vrms.
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Example XIII–4. Starting with vrms =
√

3kBT/m, where kB

is Boltzmann’s constant, T the temperature, and m the molecular

mass, show that the rms speed can be put in the form vrms =
√

3P/ρ,

where P is the pressure and ρ is the density of an ideal gas.

Solution:

In these equations, m = m = µmH, the mean molecular mass

as defined in Eqs. (XIII-1,2). With this realization, we can use

Form 3 of the ideal gas law as shown by Eq. (XIII-9), then

vrms =

√

√

√

√

3kBT

m
=

√

√

√

√

3kBT

m
=

√

√

√

√

3kBT

µmH

=

√

√

√

√

ρ

ρ

3kBT

µmH

=

√

√

√

√

3P

ρ
.

3. We have seen that thermal energy is identical the average

kinetic energy of the gas:

TE = KE =
3

2
kBT [per particle] =

3

2
RT [per mole] . (XIII-15)

from this the ideal gas law can be written as

P =
2

3
N KE . (XIII-16)

(Once again note that my capital N and the textbook’s

capital N do not mean the same thing: Nnotes = Nbook/V ,

where Nbook is the total number of particles in the sample

[not particle density as used in the notes].)

a) The product N KE is the total translational kinetic energy

per unit volume of the gas due to the random thermal

motion of the molecules.



Donald G. Luttermoser, ETSU XIII–13

b) If we ignore the intermolecular bonds in molecules, Eq.

(XII-6) shows that this kinetic energy represents one of

the three components of the total internal energy U of

a gas:

U = KEtrans + KErot + KEvib .

c) If there are no rotational nor internal vibrational motion

of the particles in the gas (a so-called monatomic gas),

then we can write the ideal gas law as

PV = nRT =
2

3
KE =

2

3
U ,

or

U =
3

2
nRT . (XIII-17)

I. Hydrostatic Equilibrium.

1. Whenever you have a volume of gas, there are two competing

forces:

a) The force per unit volume from the internal pressure:

F/V = ∆P · A/V .

b) The weight per unit volume of the gas trying to pull the

gas to the lowest potential: Fg/V = −mg/V = −ρg.

2. Assume we have a column of gas, then A = πr2 and V = πr2 ∆z,

where r is the radius of the column cylinder and ∆z is the length

of the column. Then equating the two forces above, we get

∆P

∆z
= −ρg . (XIII-18)

a) This is the equation of hydrostatic equilibrium =⇒

internal pressure is balanced by the weight of the gas.
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b) We can use a modified version of Form 3 of the ideal gas

law to rewrite Eq. (XIII-17) as

∆P

∆z
= −

mg

kBT
P . (XIII-19)

c) This equation can be solved with integral calculus by let-

ting ∆z → 0. Since this is beyond the scope of this class,

we will just write the solution to this equation:

P (z) = P◦ e−mgz/kBT , (XIII-20)

where P◦ is the pressure at z = 0 and e is the base of the

natural logarithm system (see Page II-3 of these notes).

d) We could also carried out the integration for number den-

sity which results as

N = N◦e
−mgz/kBT , (XIII-21)

this equation is called the barometric formula =⇒ it

gives the number of molecules per unit volume as a func-

tion of height z.

Example XIII–5. (a) At what height above sea level is the atmospheric

pressure half the pressure at sea level? Assume the temperature is a constant

0◦C. (b) How high must you go for the pressure to drop to one-fourth the

pressure at sea level? (Use m = m = 4.80×10−26 kg for the mean molecular

mass of air.)

Solution (a):

We start by converting our temperature to the absolute scale, T = 0◦C

= 273 K. Using the solution to the hydrostatic equilibrium equation (Eq.

XIII-20), we want P = 0.5P◦, so

e−mgz/kBT =
P

P◦

=
0.5P◦

P◦

= 0.5
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−
mgz

kBT
= ln(0.5) = −0.693

z = 0.693
kBT

mg
= 0.693

(1.38 × 10−23 J/K)(273 K)

(4.80 × 10−26 kg)(9.80 m/s2)

= 5.55 × 103 m = 5.55 km .

Solution (b):

Now we want P = 0.25P◦, so

e−mgz/kBT =
P

P◦

=
0.25P◦

P◦

= 0.25

−
mgz

kBT
= ln(0.25) = −1.386

z = 1.386
kBT

mg
= 1.386

(1.38 × 10−23 J/K)(273 K)

(4.80 × 10−26 kg)(9.80 m/s2)

= 1.11 × 104 m = 11.1 km .


