Physics 2020-002 Name:
Physics 2020-002 Name: KEY Exam 1A - & February 2017
Part A: Hard Multiple Choice (10 points total, 2 points each, Circle Best Answer).
1. An alpha particle ion with a charge of $+2e$ experiences a force of 2.67×10^{-12} N as it moves through an electric field. What is the strength of the electric field?
a) 1.67×10^9 N/C b) 1.67×10^{23} N/C c) 3.83×10^{-6} N/C
(d) 8.33×10^6 N/C e) 9.11×10^{-12} N/C $E = \frac{F_e}{4} = \frac{2.67 \times 10^{-12} \text{N}}{2(1.602 \times 10^{-19} \text{C})} = 8.33 \times 10^6$ N/C 2. A particle produces a potential of 2.88×10^{-4} volts a distance of 0.222 m from the particle. What is the charge on this particle?
a) $1.60 \times 10^{-19} \text{ C}$ b) $362 e$ c) $5.66 e$
(d) 7.11×10^{-15} C c) 8.99×10^{-6} C $V = \frac{2.28 \times 10^{-4} \text{ V}}{2}$ (e) 8.99×10^{-6} C $V = \frac{2.28 \times 10^{-4} \text{ V}}{2}$ (f) $V = \frac{2.28 \times 10^{-4} \text{ V}}{2}$ (g) $V = \frac{2.28 \times 10^{-4} \text{ V}}{2}$ (g) $V = \frac{2.28 \times 10^{-4} \text{ V}}{2}$ (g) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (g) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (g) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$ (h) $V = \frac{2.22 \times 10^{-15} \text{ C}}{2.22 \times 10^{-15} \text{ C}}$
a) 1.15×10^{-3} pF b) 1.15×10^{-12} c) 4.68 d) 5.40 e) 120 pF $C = \frac{\text{K } \epsilon_o A}{\text{A}}$, $K = \frac{C A}{\epsilon_o A} = \frac{(5.40 \times 10^{-12} \text{F})(1.88 \times 10^{-3} \text{m})}{(3.85 \times 10^{-12} \text{C}^2/\text{Nm}^2)(2.45 \times 10^{-14} \text{m}^2)} = 4.68$ 4. We experience a potential drop 24.4 V as a 332 mA current flows through a resistor. What is the resistance of the resistor?
a) 0.073Ω b) 8.10Ω c) 13.7Ω d) 73.5Ω e) $81.0 k\Omega$ $R = \frac{24.4 }{332 \times 10^{-3}} A = 73.5 \Omega$ 5. Copper has a resistivity of $1.70 \times 10^{-8} \Omega \cdot m$. How long would a length of copper wire have to be to achieve a resistance of 0.222Ω if the diameter of this copper wire is 3.68 mm ? (Assume the wire has a circular cross-section.)
a) 16.6 m b) 81.7 cm (c) 139 m d) 0.126 cm e) 0.680 m $A = \frac{110^2}{4} = \frac{11(3.68 \times 10^{-3} \text{ m})^2}{4} = 1.06 \times 10^{-5} \text{ m}^2$ $R = \rho \frac{L}{A}, L = \frac{RA}{\rho} = \frac{(0.222 \Omega)(1.06 \times 10^{-5} \text{ m}^2)}{1.70 \times 10^{-2} \Omega \text{ m}} = 139 \text{ m}$
$R = \rho \frac{L}{A}$, $L = \frac{RA}{\rho} = \frac{(0.212 \Omega)(1.06 \times 10^{-5} m^2)}{1.70 \times 10^{-2} \Omega m} = 139 m$

Part B: Easy Multip	ple Choice (10	points total	1 point each	, Circle Best Answe	er).
6. A thermometer that thermometer is called a		iperature as	a result of the	resistance measured	in the
a) calorimeter	b) ammeter		c) barometer		
d) electrocouple	enone of the	ese ther	mocoupl	C	
7. An electron $(q = -1)$ $(q = +2e)$ lies at -3.2 direction will the electron	n on the y axis.	gin of a Cart A proton $(q = 1)$	esian coordinat $= +e$) lies at $+$	e system. A helium n 3.2 m on the y axis.	ucleus Which
a) $+x$ b) $-x$	c) +y	(d)-y	e) none of	these	
8. Three capacitors are	in series in a circ	cuit, which of	the following n	nust be true?	
a) Each capacitor m	ust have the same	e capacitance			
b) The sum of the chi in the reduced cir		acitor must eq	ual the charge o	on the "equivalent" cap	acitor
c) The sum of the ca capacitor in the re		capacitor mu	st equal the cap	pacitance of the "equiv	alent"
(d)Each capacitor m	ust have the same	e charge on it			
e) Each capacitor muis supplying.	ist experience the	same potent	al drop as the v	voltage gain that the b	attery
9. If an E-field in the Ea of the following will occ		exceeds the	lielectric streng	th of the atmosphere,	which
a) rain storm b	o) fog c) r	ainbow	d) sunset	(e) lightning	
.0. An electron that monotonic monotonic monotonic much energy?	oves across a pot	ential differer	ace of one volt	would require (or pro	duce)
a) $3.45 \times 10^{-24} \text{ N} \cdot \text{m}$	b) 0.00 eV	И с)	6.78 N/C		
d) $1.602 \times 10^{-19} \text{ J}$	e) 13.6 eV	7			

11. The expression	on $\Delta V = IR$ is ki	nown as			
a) Coulomb's la	w b) Aı	mpere's law	c) Gauss's la	W	
(d) Ohm's law	e) Ke	epler's law			
12. Which of the	following would	be a good examp	le of a conductor?	,	
(a) copper	b) rubber	c) plastic	d) glass	e) flubber	
13. Charge excha	nge between two	isolated objects	resulting from the	he generated electric	field is
a) induction	b) advect	ion c)	accretion		
d) convection	e) conduc	etion			
14. When adding the whole vector,			s adding compone	ents of a vector to de	termine
a) Coulomb's l	aw				
b) Gauss's Law	7				
(c) principle of	superposition				
d) principle of	relativity				
e) Faraday's L	aw of Induction				
15. Which of the	following physicis	sts formulated the	e force law betwee	en two charges?	
a) Gauss (b) Coulomb	c) Volta	d) Galileo	e) Newton	

Part C: Problems (20 points total, 10 points each).

16. A gold wire of length 13.7 cm and diameter 0.188 mm is going to be used to construct a thermocouple. Gold has a temperature coefficient of resistivity of 3.40 × 10⁻³ °C⁻¹. (a) At 20.0°C, gold has a resistivity of 2.44 × 10⁻⁸ Ω·m, what is the resistance of this wire at this temperature? (b) After constructing our thermocouple, we place it into a liquid of unknown temperature and apply a voltage across the leads of the thermocouple of 0.224 V. If we measure a current of 0.884 A going through this thermocouple, what is the temperature of this liquid in °C? (Show all work!)

17. A proton $(q = +e, m = m_p)$ is released from rest at x = -4.56 m in a uniform electric field of $+6.68 \times 10^6$ N/C \hat{x} . (a) Calculate the change in potential energy when the proton moves along the x-axis to the x = +7.58 m position. (b) What will be the velocity of the proton at this position of +7.58 m? (c) What is the acceleration of this proton as it moves through the electric field? (Physical constants given on Constants Sheet. Show all work!)

$$\frac{q=+e}{\chi_{0}=-4.56m^{2}} \xrightarrow{\chi} \frac{E=+6.63 \times 10^{6} \text{ N/C}}{\chi_{0}=-4.56m^{2}} \xrightarrow{\chi} \frac{\chi}{\chi} = \frac{7.58 \text{ m}}{\chi} \xrightarrow{\chi} \frac{\chi}{\chi} = \frac{7.58 \text{ m}}{\chi} =$$

Extra Credit Problem (5 points, do this only if you have time).

18. A square plane has electric field lines that cut through this plane at an angle of 46.8° with respect to the normal line producing an electric flux of $9.44 \times 10^{4} \text{ N} \cdot \text{m}^{2}/\text{C}$. If the electric field is uniform at a strength of $3.56 \times 10^{4} \text{ N/C}$, what is the length of one of the sides of the square plane? (Show all work including a diagram!)

Square plane: (Show all work including a diagram!)
$$A = \frac{1}{4} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{4} = \frac{1}{4} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{4} = \frac{9.44 \times 10^{4} \text{ N/c}}{3.56 \times 10^{4} \text{ N/c}}$$

$$A = \frac{1}{4} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{4} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{4} = \frac{1}{3.87} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{3.87} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{3.87} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{3.87} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{3.87} = \frac{9.44 \times 10^{4} \text{ N/c}}{10^{4} \text{ N/c}}$$

$$A = \frac{1}{3.87} = \frac{1.97 \text{ m/c}}{10^{4} \text{ N/c}}$$