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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2020:
General Physics II taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 10th Hybrid Edition (2015) textbook by Serway and
Vuille.



VII. Vibrations and Waves

A. Hooke’s Law.

1. A mass connected to a spring will experience a force described

by Hooke’s Law:

Fs = −kx . (VII-1)

a) x ≡ displacement of the mass from the unstretched (x =

0) position.

b) k ≡ spring constant.

i) Stiff springs have large k values.

ii) Soft springs have small k values.

c) The negative sign signifies the F exerted by a spring is

always directed opposite of the displacement of the mass.

d) The direction of the restoring force is such that the mass

is either pulled or pushed toward the equilibrium position.
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2. The oscillatory motion set up by such a system is called simple

harmonic motion (SHM).

a) SHM occurs when the net force along the direction of

motion is a Hooke’s Law type of force.

b) SHM when F ∝ −x.

c) Terms of SHM:

i) Amplitude (A): Maximum distance traveled by

an object away from its equilibrium position.

ii) Period (T ): The time it takes an object in SHM

to complete one cycle of motion.
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iii) Frequency (f): Number of cycles per unit of

time =⇒ f = 1/T .

3. If a spring hangs downward in a gravitational field, we can use

Newton’s 2nd Law of Motion in conjunction with Hooke’s Law

to obtain
∑

F = Fs − Fg = 0

Fs = Fg

k y = mg (VII-2)

(remember that signs associated with forces depend upon the

orientation of the coordinate system).

4. In general, the equation of motion for a spring (i.e., SHO – simple

harmonic oscillator) is

F = −kx = ma (VII-3)

or

a = −
k

m
x . (VII-4)

Example VII–1. A spring oriented vertically is attached to a

hard horizontal surface. The spring has a force constant of 1.46 kN/m.

How much is the spring compressed when an object of mass m =

2.30 kg is placed on top the spring and the system is at rest?

Solution:

Using Eq. (VII-2), we have k = 1.46×103 N/m and m = 2.30 kg.

Solving for y we get

k y = mg

y =
mg

k
=

(2.30 kg) (9.80 m/s2)

1.46 × 103 N/m

= 1.54 × 10−2 m = 1.54 cm .
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B. Energy and Motion of a Simple Harmonic Oscillator (SHO).

1. The energy stored in a stretched/compressed spring (or other

elastic material) is called elastic potential energy PEs:

PEs ≡
1

2
kx2 . (VII-5)

2. Energy equation of a SHO:

Wnc = (KE + PEg + PEs)f
− (KE + PEg + PEs)i

. (VII-6)

a) Wnc ≡ work done by a non-conservative force.

b) i, f ≡ initial and final values.

c) KE ≡ kinetic energy = 1

2
mv2.

d) PEg ≡ gravitational potential energy = mgy.

e) PEs ≡ elastic potential energy given by Eq. (VII-5).

f) Note that if there are no non-conservative forces present,

Wnc = 0 and the conservation of energy results:

(KE + PEg + PEs)i
= (KE + PEg + PEs)f

= constant (VII-7)

3. From these energy equations, we can deduce v as a function of x:

a) Assume the spring is horizontal (hi = hf = 0) and no

non-conservative forces are present (i.e., no friction):

i) (PEg)i = (PEg)f = 0, then

ii) (KE + PEs)i = (KE + PEs)f .
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b) Now extend the spring a distance A from the equilibrium

position and release from rest (v = 0).

i) KEi = 1

2
mv2

i
= 0.

ii) (PEs)i = 1

2
kA2 (x = A).

c) From the equations above and setting vf = v and xf = x,

we can write

0 +
1

2
kA2 =

1

2
mv2 +

1

2
kx2

and solving for v gives

v = ±

√

√

√

√

k

m
(A2 − x2) . (VII-8)

i) If x = ±A, then v = 0.

ii) If x = 0, then v = ±
√

k/m A.

4. SHO motion is very similar to circular motion.

a) An “orbit” is analogous to a SHO “cycle.”

b) Remember from circular motion,

vorbit =
circumference of orbit

period of orbit
=

2πR

T

T =
2πR

v
=

2πA

v
(R = amp. of orbit = A).

c) The radius of the orbit is analogous to the position of a

SHO when passing through its equilibrium position, thus

T =
2πA

A
√

(k/m)
.
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Note that only the ‘+’ solution is used for velocity (Eq.

VII-8) since “period” is always positive. Simplifying gives

T = 2π

√

m

k
. (VII-9)

d) Eq. (VII-9) is the oscillation period of a SHO. The fre-

quency is then

f =
1

T
=

1

2π

√

√

√

√

k

m
(VII-10)

=⇒ the unit of frequency is hertz (Hz) = 1/s.

5. The position of a SHO as a function of time (see §13.5 of the

textbook) is given by

x = A cos(ωt) . (VII-11)

a) ω ≡ angular speed = 2π/T = 2πf .

b) In terms of frequency:

x = A cos(2πft) . (VII-12)

6. The derivation of velocity and acceleration as a function of time is

complicated using algebra. However with calculus, the derivation

is easy:

v =
dx

dt
= −ωA sin(ωt) (VII-13)

a =
dv

dt
= −ω2A cos(ωt) . (VII-14)

a) The velocity is 90◦ out of phase with displacement.

b) The acceleration is 90◦ out of phase with velocity and 180◦

out of phase with displacement.
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Example VII–2. An object-spring system oscillates with an am-

plitude of 3.5 cm. If the spring constant is 250 N/m and the object

has a mass of 0.50 kg, determine (a) the mechanical energy of the

system, (b) the maximum speed of the object, and (c) the maximum

acceleration.

Solution (a):

Since there are no non-conservative forces involved here, the ini-

tial mechanical energy = final mechanical energy = total me-

chanical energy. If we choose the maximum extension point as

our reference point, we have x = A = 3.5 cm = 0.035 m and

v = 0. Since no information was given as to whether the spring

is positioned vertically or horizontally, we will assume it is hori-

zontal to make the problem easier. As such, set y = h = 0 and

PEg = 0 which gives the total mechanical energy as

E = KE + PEg + PEs =
1

2
mv2 + mgy +

1

2
kx2

= 0 + 0 +
1

2
kA2 =

1

2
(250 N/m)(0.035 m)2

= 0.15 J .

Solution (b):

The maximum speed occurs at the equilibrium position, x = 0:

E = KE + PEg + PEs =
1

2
mv2 + mgy +

1

2
kx2

=
1

2
mv2 + 0 + 0 =

1

2
mv2

max

v2

max
=

2E

m

vmax =

√

√

√

√

2E

m
=

√

√

√

√

2(0.15 J)

0.50 kg

= 0.77 m/s .
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Solution (c):

The acceleration is simply found from Newton’s 2nd law:

a =

∑

F

m
=

−kx

m
.

As can be seen from this equation, the acceleration will take on

its maximum value when x = −xmax = −A, so

amax =
−k(−A)

m
=

kA

m
=

(250 N/m)(0.035 m)

0.50 kg

= 18 m/s2 .

C. Pendulum Motion.

1. Consider a pendulum bob of mass m hanging from a support at

a distance L from the pivot point. If the pendulum bob moves θ

degrees from the equilibrium position, we have

L

equilibrium
position

s

T

mg

Ft m

θ

θ

y

x
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a) In the diagram on the previous page, we define a Cartesian

coordinate system which is centered on the moving bob

with the y axis pointing in the radial direction (i.e., to-

wards the pivot point) and the x axis pointing in the neg-

ative of the tangential force direction. Note that ~Fr ⊥ ~Ft

(i.e., the radial force is perpendicular to the tangential

force).

b) Summing the forces in the tangential (x) direction gives

Ft =
∑

Fx = −mg sin θ . (VII-15)

c) Summing the forces in the radial direction gives

Fr =
∑

Fy = T − mg cos θ = 0 , (VII-16)

since the bob always remains a fixed distance L away from

the pivot point.

2. The tangential force acts to restore the pendulum to its equilib-

rium position.

a) Sets up an oscillation.

b) Motion is not simple harmonic since the force doesn’t fol-

low F ∝ −x =⇒ instead it follows F ∝ − sin θ.

3. If the pendulum oscillates at small angles (θ < 15◦), then

sin θ ≈ θ (with θ measured in radians) . (VII-17)

a) Then F ∝ −θ and the motion becomes simple harmonic!

b) Mathematically we have

Ft = −mg θ , (θ small). (VII-18)
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c) Note that θ = s/L (from angular measure of General

Physics I), so we also can write

Ft = −

(

mg

L

)

s , (s � L). (VII-19)

i) Similar to Hooke’s Law, however ‘k’ is replaced by

‘mg/L’.

ii) From analogy with Hooke’s Law, we can write the

period of a pendulum as

T = 2π

√

m

k
= 2π

√

√

√

√

m

mg/L
,

or

T = 2π

√

√

√

√

L

g
. (VII-20)

iii) Note that the period of a pendulum (under small

oscillation) is independent of mass =⇒ Galileo showed

this empirically long before Newton’s Laws were de-

veloped!

Example VII–3. A man enters a tall tower, needing to know

its height. He notes that a long pendulum extends from the ceiling

almost to the floor and that its period is 15.5 s. (a) How tall is

the tower? (b) If this pendulum is taken to the Moon, where the

free-fall acceleration is 1.67 m/s2, what is the period there?

Solution (a):

This problem is simple enough that we need no figure. Here, we

only have to use Eq. (VII-20) and solve for L, the length of the

pendulum (which is nearly the same length as the height of the

building as indicated in the question).

T = 2π

√

√

√

√

L

g
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T 2 =
4π2L

g

L =
gT 2

4π2
=

(9.80 m/s2)(15.5 s)2

4π2

= 59.6 m .

Solution (b):

On the Moon, where g = 1.67 m/s2, the period will be

T = 2π

√

√

√

√

L

g
= 2π

√

√

√

√

√

59.6 m

1.67 m/s2
= 37.5 s .

D. Types of Waves.

1. Waves can either move in space (e.g., water waves), the so-called

traveling waves, or be stationary in an enclosure, the so-called

standing waves.

a) Let’s define the y direction as the direction in which the

oscillation occurs (i.e., ∆ymax = A, the amplitude of the

wave) and the x direction as the direction of propagation

(for traveling waves) or the length of the enclosure (for

standing waves). We also will define a node in the wave

as those positions where ∆y = 0 (for a sine wave, this will

occur at 0◦ = 0 rad, 180◦ = π rad, 360◦ = 2π rad, etc.)

b) Standing waves do not change in time. An enclosure can

only contain those standing waves that have an integer

number wavelengths that can fit inside the enclosure with

node points lying at the boundaries of the enclosure.

c) Traveling waves move in space at a velocity given by

v = λf , (VII-21)
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where λ is the wavelength (i.e., distance between wave-

crests) and f is the frequency (i.e., number of wavecrests

past a given point per second) of the wave.

d) Note that a single ‘hump’ (i.e., a pulse) can propagate

along a medium too, and as such, is also considered a

traveling wave, even though it has no definite wavelength

associated with it. Examples of wave pulses are tsunami

(often incorrectly called tidal waves ) and shock waves.

2. Two types of traveling waves exist in nature:

a) Transverse waves: Each segment of the medium (e.g.,

a rope or water) that is disturbed moves perpendicular to

the wave motion as shown in the diagram below:

+
⇑

⇓

λ
crest

trough

=⇒ water waves, guitar strings, and E/M radiation are

examples of transverse waves.

b) Longitudinal waves: The elements of the medium un-

dergo displacements parallel to the direction of motion as

shown in the diagram below:

+
stretched

compressed

stretched

compressed

stretched

λ

crest

trough

Ö
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=⇒ sound waves are longitudinal waves.

3. The speed of a transverse wave on a string is

v =

√

√

√

√

F

µ
, (VII-22)

where F = T is the tension on the string (or rope) and µ is the

mass per unit length of the string.

Example VII–4. An astronaut on the Moon wishes to measure

the local value of g by timing pulses traveling down a wire that has

a large object suspended from it. Assume a wire of mass 4.00 g is

1.60 m long and has a 3.00 kg object suspended from it. A pulse

requires 36.1 ms to traverse the length of the wire. Calculate gMoon

from these data. (You may neglect the mass of the wire when cal-

culating the tension in it.)

Solution:

The given parameters (converted to SI units) are mw = 4.00 ×

10−3 kg, L = 1.60 m, m = 3.00 kg, and ∆t = 3.61 × 10−2 s. The

mass per unit length of the wire is

µ =
mw

L
=

4.00 × 10−3 kg

1.60 m
= 2.50 × 10−3 kg/m ,

and the speed of the pulse is

v =
L

∆t
=

1.60 m

3.61 × 10−2 s
= 44.3 m/s .

Using Eq. (VII-22), we can calculate the tension in the wire as

F = T = v2µ = (44.3 m/s)2(2.50 × 10−3 kg/m) = 4.91 N .

Since we are not told that the mass is accelerating up or down, we

will assume that the tension of the wire is being counterbalanced

by the force of gravity downward, hence we will assume that the
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mass is in static equilibrium. Then summing the forces in the y

direction gives:

∑

Fy = T − mgMoon = 0

mgMoon = T

gMoon =
T

m
=

4.91 N

3.00 kg
= 1.64 m/s2 .

E. The Interference and Reflection of Waves.

1. Two waves can meet and pass through each other without being

destroyed or even altered.

a) We must add interacting waves together using the princi-

ple of superposition =⇒ If two or more traveling waves are

moving through a medium, the resultant wave is found by

adding together the displacements of the individual waves

point by point.

b) This superposition principle is only valid when the indi-

vidual waves have small amplitudes of displacement.

2. The interaction of two or more waves is called interference.

a) Constructive interference occurs if the waves are in

phase with each other =⇒ wavecrests line up with wave-

crests and troughs line up with troughs. This produces a

larger amplitude resultant wave which is the sum of the

amplitudes of the individual waves.

b) Destructive interference occurs if the waves are out of

phase with each other =⇒ wavecrests line up with troughs

and troughs line up with crests which nullifies the wave

=⇒ a wave of zero amplitude results.
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3. Waves also can bounce off of immovable objects.

a) If the “attached” end of a string is fixed to the immovable

object (like a wall), a wave-pulse will become inverted

upon reflection.

b) If the “attached” end of a string is free to move on the im-

movable object (e.g., string attached to a ring surround-

ing a pole where the ring is free to slide up and down the

pole), a wave-pulse will not be inverted upon reflection

(see Figures 13.34 and 13.35 of your textbook).


