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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2020:
General Physics II taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 10th Hybrid Edition (2015) textbook by Serway and
Vuille.



VIII. Sound

A. Characteristics of Sound Waves.

1. Sound waves are compression and rarefactions is some medium

(e.g., air or water) and propagate like longitudinal waves.

2. Categories of Sound Waves:

a) Audible waves are longitudinal waves which the human

ear is sensitive =⇒ 20 – 20,000 Hz.

b) Infrasonic waves have f < 20 Hz.

c) Ultrasonic waves have f > 20, 000 Hz = 20 kHz.

3. The method of transforming electrical energy to mechanical en-

ergy in crystals is called the piezoelectric effect.

4. The speed of sound in a medium follows

v =

√

√

√

√

elastic property

inertial property
. (VIII-1)

a) For liquid or gas, elastic properties are described by the

Bulk Modulus (from General Physics I):

B ≡ −
∆P

∆V/V
, (VIII-2)

where P is pressure (in Pa) and V is volume (∆V and V

must have the same units).

b) Inertial properties are described by the mass-density ρ,

hence

v =

√

√

√

√

B

ρ
(for liquid or gas). (VIII-3)

VIII–1
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c) For a solid rod, elastic properties are given by Young’s

modulus Y , or

v =

√

√

√

√

Y

ρ
(for solid rod). (VIII-4)

d) For a gas, the Bulk Modulus is given by B = γP , where γ

is constant which depends upon the composition of the gas

(it is determined by the ratio of the specific heat at con-

stant pressure to specific heat at constant volume, which

are concepts covered in the upper-level Thermal and Sta-

tistical Physics course that we offer). As such, the speed

of sound in a gas depends the pressure and density of the

gas following

v =

√

√

√

√

γP

ρ
. (VIII-5)

i) If we make use of the ideal gas law, P = ρkBT/(µmH),

we can write the speed of sound in terms of tem-

perature T (measured in K):

v =

√

√

√

√

γρkBT

µmHρ
=

√

√

√

√

γkBT

µmH

. (VIII-6)

ii) We can determine sound speeds at any tempera-

ture if we can determine it at some reference tem-

perature T◦ by setting up a ratio using Eq. (VIII-6):

v

v◦
=

√

√

√

√

√

γkBT/(µmH)

γkBT◦/(µmH)
=

√

√

√

√

T

T◦
.

iii) At T◦ = 0◦C = 273 K, we can use the values of

γ and µ (the mean molecular weight of the gas) in

Eq. (VIII-6) to determine the speed of sound in air

at this temperature to be v◦ = 331.3 m/s.
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iv) Using this value in the above equation, the sound

speed in air depends upon air temperature via

v = (331.3 m/s)

√

√

√

√

T

273 K
, (VIII-7)

where T is measured in Kelvins.

v) We also can express Eq. (VIII-7) as a function of

temperature measured in degrees Celsius by mak-

ing use of the relation TC = T − 273, then

v = (331.3 m/s)

√

√

√

√

273 + TC

273
,

= (331.3 m/s)

√

√

√

√1 +
TC

273◦C
. (VIII-8)

Example VIII–1. Suppose that you hear a clap of thunder 16.2

seconds after seeing the associated lightning stroke. The speed of

sound waves in air is 343 m/s and the speed of light in air is 3.00×108

m/s. (a) How far are you from the lightning stroke? (b) Do you

need to know the value of the speed of light to answer this question?

Explain.

Solution (a):

Since vlight � vsound, we ignore the time required for the light-

ning flash to reach the observer (it is virtually instantaneous) in

comparison to the transit time for sound. Since the sound wave

travels at a constant speed, we only need to use the definition of

velocity, v = ∆x/∆t = d/∆t, to determine the distance d:

d = v ∆t = (343 m/s)(16.2 s) = 5.56 × 103 m = 5.56 km .

Solution (b):

Since the time interval given is related to hearing the sound and
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not seeing the flash, and the fact that the speed of light is much

greater than the speed of sound, the speed of light is not needed

to solve this problem.

B. Energy and Intensity of Sound Waves.

1. The intensity I of a wave is the rate at which energy flows

through a unit area A, ⊥ to the direction of travel of the wave:

I ≡
1

A

∆E

∆t
. (VIII-9)

a) Since power is P = ∆E/∆t, we can rewrite Eq. (VIII-9)

as

I =
P

A
=

power

area
. (VIII-10)

b) Units of intensity are W/m2.

2. Levels of intensity:

a) Threshold of hearing: Ith = 1.00 × 10−12 W/m2.

b) Threshold of pain: Itp = 1.00 W/m2.

c) The human ear can work undamaged at intensities be-

tween these two extremes.

d) The human ear is a logarithmic detector (so is the human

eye) — a sound that is 1000 times louder than another

sound is perceived as being only 30 times louder!

e) The relative intensity of a sound wave with respect to

a different sound wave is called the intensity level or

decibel level β:

β ≡ 10 log

(

I

I◦

)

. (VIII-11)
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i) I◦ is the reference sound level which is set to the

threshold of hearing: I◦ = Ith.

ii) If the sound of interest also is equal to this thresh-

old (I = Ith), then

β = 10 log

(

Ith

Ith

)

= 10 log(1) = 10 · 0 = 0 dB ,

where dB ≡ decibel.

iii) If the sound of interest is equal to the threshold

of pain (I = Itp), then

β = 10 log

(

Itp

Ith

)

= 10 log





1.00 W/m2

1.00 × 10−12 W/m2





= 10 log
(

1012
)

= 10 · 12 = 120 dB .

Example VIII–2. A microphone in the ocean is sensitive to

sounds emitted by porpoises. To produce a usable signal, sound

waves striking the microphone must have an intensity of 10 dB. If

the porpoises emit sound waves with a power of 0.050 W, how far

can the porpoise be from the microphone and still be heard? Disre-

gard absorption of sound waves by the water.

Solution:

The intensity required for a sound level of 10 dB is found from

Eq. (VIII-11). Using this equation and solving for I gives

β = 10 log

(

I

I◦

)

log

(

I

I◦

)

=
β

10
I

I◦
= 10β/10

I = I◦ 10β/10 = (1.0 × 10−12 W/m2) · 1010/10
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= (1.0 × 10−12 W/m2) · 101 = 1.0 × 10−11 W/m2

Intensity is power per unit area (see Eq. VIII-10). If we assume

the sound propagates in spherical wavefronts (see §VIII.C) under

water (and it does), such a wave has a total surface area of 4πr2,

where r is the distance that the wavefront is from the source.

We can use this to solve for r (i.e., the distance from which the

porpoises can be heard):

I =
P

4πr2

r2 =
P

4πI

r =

√

√

√

√

P

4πI
=

√

√

√

√

√

0.050 W

4π(1.0 × 10−11 W/m2)

= 2.0 × 104 m = 20 km .

C. Spherical and Plane Waves.

1. Ideally, one can treat a sound emitter as a point source =⇒ the

sound waves propagate out as a spherical wave as shown in Figure

14.4 of your textbook.

a) The spherical surfaces of maximum intensity (i.e., the

crests of the wave) are called wavefronts. The separa-

tion between 2 wavefronts is called the wavelength (λ)

of the spherical wave.

b) The radial lines pointing outward from the source and

cutting the wavefronts perpendicularly are called rays.

c) Since the surface area of a sphere is A = 4πr2, we can use

Eq. (VIII-10) to write the intensity of a spherical wave
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(whether it be sound or light) as

I =
P

4πr2
, (VIII-12)

where r is the distance that the wavefront is from the

source and P is the average power of the wave at the

source’s location.

d) As such, the intensity follows an inverse-square law, just

as is the case with the gravitational force and the Coulomb

force. Since P is the power emitted by the source, this is

a constant term when comparing the intensity from the

same source at 2 different positions (which we will label

as ‘1’ and ‘2’ here):

I1

I2

=
P/(4πr2

1
)

P/(4πr2
2)

=
r2

2

r2
1

. (VIII-13)

2. If r � λ (the wavelength of the wave), the wavefronts become

parallel surfaces.

a) When examining a small sectional area of this spherical

wavefront when r � λ, the rays going through this small

area are effectively parallel lines! We will make use of this

fact when we discuss optics.

b) When this is true, the wave is called a plane wave.

Example VIII–3. An outside loudspeaker (considered a small

source) emits sound waves with a power output of 100 W. (a) Find

the intensity 10.0 m from the source. (b) Find the intensity level, in

decibels, at this distance. (c) At what distance would you experience

the sound at the threshold of pain, 120 dB?
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Solution (a):

To calculate the intensity, we only need to make use of Eq. (VIII-

12):

I =
P

4πr2
=

100 W

4π(10.0 m)2
= 7.96 × 10−2 W/m2 .

Solution (b):

To determine the decibel level, we make use of Eq. (VIII-11):

β = 10 log

(

I

I◦

)

= 10 log





7.96 × 10−2 W/m2

1.00 × 10−12 W/m2





= 10 log(7.96 × 1010) = 109 dB .

Solution (c):

At the threshold of pain (β = 120 dB), the intensity is I =

1.00 W/m2. Thus, from Eq. (VIII-12), the distance from the

speaker is

I =
P

4πr2

r2 =
P

4πI

r =

√

√

√

√

P

4πI
=

√

√

√

√

√

100 W

4π(1.00 W/m2)

= 2.82 m .

Think about this the next time you go to a concert or night club

where the speakers are generally delivering anywhere from 500 W

to 1 kW of power!
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D. The Doppler Effect.

1. In the mid-1800s, Christian Doppler discovered that whenever

there is relative motion between a source of waves and an ob-

server, the observer hears a higher frequency emitted by the

source if the two are moving towards each other as compared

to when both are at rest with respect to each other. Also, a

lower frequency is heard if the source and observer are moving

apart from each other =⇒ the Doppler effect.

a) This effect is present for any type of wave phenomenon,

whether is be sound or light (i.e., electromagnetic radia-

tion, see §IX of the notes).

b) For sound, the change in frequency is perceived as a change

in pitch.

c) For light, the change in frequency is perceived as a change

in color — blueshifts for higher-frequency shifts, red-

shifts for lower-frequency shifts.

2. If the source is at rest (vs = 0) with respect to the observer and

the observer is moving (vo 6= 0), the Doppler effect, or frequency

shift, takes the following form:

fo = fs

(

v ± vo

v

)

. (VIII-14)

a) fo ≡ frequency heard by the observer.

b) fs ≡ frequency emitted by the source.

c) vo ≡ velocity of the observer.

d) v ≡ velocity of the wave.

e) The positive sign is used when the observer is moving
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towards the source, negative when moving away.

3. If the observer is at rest (vo = 0) and the source is moving (vs 6=

0), the Doppler effect formula becomes

fo = fs

(

v

v ∓ vs

)

(VIII-15)

=⇒ negative sign when the source is moving toward observer,

positive if away from observer.

4. Finally, if both source and observer are moving, then

fo = fs

(

v ± vo

v ∓ vs

)

. (VIII-16)

a) The “upper” signs (i.e., +vo and −vs) refer to motion of

one towards the other.

b) The “lower” signs (i.e., −vo and +vs) refer to motion of

one away from the other.

Example VIII–4. An airplane traveling at half the speed of

sound (v = 172 m/s) emits a sound of frequency 5.00 kHz. At

what frequency does the stationary listener hear the sound (a) as

the plane approaches? (b) after it passes?

Solution (a):

Here we could use either Eq. (VIII-15) or Eq. (VIII-16) with

vo = 0 since the observer is at rest. Using Eq. (VIII-15) with

the negative sign in the denominator since the source is first

approaching the listener, and noting that vs = v/2 (i.e., half the

speed of sound) and fs = 5.00 kHz, we get

fo = fs





v

v − v/2



 = fs
v

v/2
= fs · 2

= (5.00 kHz) · (2) = 10.0 kHz .
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Solution (b):

Once again we use Eq. (VIII-15) but with a positive sign in the

denominator since the source is receding from the stationary lis-

tener:

fo = fs





v

v + v/2



 = fs
v

3v/2
= fs ·

2

3

= (5.00 kHz) ·

(

2

3

)

= 3.33 kHz .

5. If the source velocity exceeds the wave velocity, the sound waves

can’t escape the source before the next sound wave is emitted

=⇒ the waves build into a shock wave!

a) The Mach number is defined as

M ≡
vs

v
, (VIII-17)

where vs is the velocity of the source and v is the veloc-

ity of sound for the given temperature (or pressure and

density) of the gas in which the source is traveling.

b) If M < 1, the object (i.e., source) is said to be traveling

subsonically.

c) If M = 1, the object (i.e., source) is said to be traveling

at the sonic point or (incorrectly) sound barrier (in

reality it is not a barrier, the press actually came up with

that name).

d) If 1 < M < 10, the object (i.e., source) is said to be

traveling supersonically.
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e) If M ≥ 10, the object (i.e., source) is said to be traveling

hypersonically.

E. The Interference of Sound Waves.

1. Let’s assume that we have two different speakers separated from

each other delivering the same sound signal.

a) Let r1 be the separation of the first speaker from the ob-

server.

b) Let r2 be the separation of the second speaker from the

observer.

2. If the path difference |r2 − r1| is zero or some integer multiple of

wavelengths, constructive interference occurs:

|r2 − r1| = nλ (n = 0, 1, 2, . . .) (VIII-18)

=⇒ the sound intensity increases by a factor of two (assuming

both speakers are delivering the same power).

3. If the path difference |r2 − r1| is a half-integer multiple of the

wavelengths, destructive interference occurs:

|r2 − r1| =

(

n +
1

2

)

λ (n = 0, 1, 2, . . .) (VIII-19)

=⇒ the no sound is detected at the listening position.

4. These characteristics are important whenever you are setting up

a sound system in your house.

a) Ideally, you want to place the listener such that they are

not at a position that allows destructive interference for

the audio range of frequencies.



Donald G. Luttermoser, ETSU VIII–13

b) The sweet spot of a stereo system is the position such that

maximum constructive interference occurs at a frequency

around 1 kHz.

c) Destructive interference can occur at any position in the

room if the speakers are not connected to the amplifier in

phase (i.e., same polarity) with each other.

Example VIII–5. A pair of speakers separated by 0.700 m are

driven by the same oscillator at a frequency of 690 Hz. An observer

originally positioned at one of the speakers begins to walk along a

line perpendicular to the line joining the speakers as in the figure be-

low. (a) How far must the observer walk before reaching a relative

maximum in intensity? (b) How far will the observer be from the

speaker when the first relative minimum is detected in the intensity?

Solution (a):

We will define the speaker that we are walking away from as

Speaker 2 and the second as Speaker 1. The figure below shows

the geometry of the situation which will help us determine the

distances from the speakers, where r1 is the distance from Speaker

1, r2 is the distance from Speaker 2, and L is the separation

distance between the two speakers (= 0.700 m).

r1

L

r2

Observer

Speaker 1

Speaker 2
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The first thing we need to do is to calculate the wavelength of

the sound wave:

λ =
v

f
=

345 m/s

690 Hz
= 0.500 m ,

where we have assumed that the speed of sound is v = 345 m/s.

To hear the first relative maximum in sound intensity, we need

to find the point from the speaker where the first constructive

interference occurs from the waves of the two speakers. This

occurs when n = 1 in Eq. (VIII-18), so with respect to Speaker

1, we add this extra wavelength length to the shorter of the two

paths giving

r1 = r2 + λ .

Now we use the Pythagorean theorem to solve for r2, the per-

dendicular distance from Speaker 2 with respect to the known

quantities of λ and L, giving

r2

1
= r2

2
+ L2

(r2 + λ)2 = r2

2
+ L2

r2

2 + 2λr2 + λ2 = r2

2 + L2

2λr2 = L2 − λ2

r2 =
L2 − λ2

2λ

=
(0.700 m)2 − (0.500 m)2

2(0.500 m)

= 0.240 m

to produce constructive interference.

Solution (b):

At the first relative minimum we have destructive interference.

Setting n = 1 in Eq. (VIII-19), we get a path difference of

r1 = r2 + λ/2 .
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Now we use the Pythagorean theorem once again to solve for r2,

giving a perpendicular distance of

r2

1 = r2

2 + L2

(r2 + λ/2)2 = r2

2
+ L2

r2

2 + λr2 + λ2/4 = r2

2 + L2

λr2 = L2 − λ2/4

r2 =
L2 − λ2/4

λ

=
(0.700 m)2 − (0.500 m)2/4

0.500 m

= 0.855 m

to produce destructive interference.

F. Standing Waves.

1. If a wave travels in a closed path (i.e., one whose length does

not change) such that the path length is a “half-integer” of the

wave’s wavelength,

L =
n

2
λ , (n = 1, 2, 3, . . .), (VIII-20)

the wave is said to be a standing wave =⇒ the appears not to

propagate.

a) Positions on the wave where ∆y = 0 (zero amplitude

points) at all times are called nodes.

b) Positions on the wave where ∆y = A (maximum ampli-

tude) at all times are called antinodes.

c) All points on the wave oscillates with the same frequency

except for the node points (which do not oscillate).
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λ

L
L = 3λ/2

N N N N

AN AN

AN

N = node
AN = antinode

2. If a string is attached between 2 immovable walls of separation L

as in the diagram above, we can use Eq. (VII-22) in Eq. (VIII-20)

with

v = fλ

to get

fn =
v

λn
=

√

F/µ

(2/n)L
=

n

2L

√

√

√

√

F

µ
, (n = 1, 2, 3, . . .), (VIII-21)

where F = T is the tension of the string.

a) When n = 1, half of a full wave sits in the cavity. This is

lowest frequency of vibration is called the fundamental

frequency:

f1 =
1

2L

√

√

√

√

F

µ
. (VIII-22)

b) This fundamental frequency also is called the first har-

monic.

c) n = 2 is the second harmonic: f2 = 2f1.

d) Note that all higher harmonics are integer multiples of the

fundamental frequency:

fn = n f1 . (VIII-23)
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Example VIII–6. A steel wire in a piano has a length of

0.7000 m and a mass of 4.300 × 10−3 kg. To what tension must

this wire be stretched in order that the fundamental vibration cor-

responds to middle C (fC = 261.6 Hz on the chromatic musical

scale)?

Solution:

In the fundamental mode of vibration, the wavelength of waves

in the wire is

λ = 2L = 2(0.7000 m) = 1.400 m ,

(as given by Eq. VIII-20 with n = 1). If the wire is to vibrate at

f = 261.6 Hz, the speed of the wave must be

v = fλ = (261.6 Hz)(1.400 m) = 366.2 m/s .

With µ = m/L = 4.300×10−3 kg/0.7000 m = 6.143×10−3 kg/m,

the required tension is given by v =
√

F/µ as

F = T = v2µ = (366.2 m/s)2(6.143×10−3 kg/m) = 824.0 N .

G. Forced Vibrations and Resonance.

1. One can apply an external force to a mass that is already oscil-

lating =⇒ forced vibration.

a) The amplitude of such a vibration reaches a maximum

when the frequency of the driving force, f , equals the

natural frequency, f◦ = resonance frequency.

b) Under this condition, the system is in resonance.
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2. Forced vibrations applied at the resonance frequency will caused

a runaway oscillation (see Figure 14.22 in the textbook for a

disastrous example of a runaway oscillation).

H. Standing Waves in Air Columns.

1. If a pipe is open at both ends, the natural frequencies of vi-

bration form a series in which all harmonics are present. In such

a pipe, harmonics are obtained when the wavelength of the wave

follows

λn =
2

n
L (n = 1, 2, 3, . . .), (VIII-24)

where L is the length of the pipe. Hence, these harmonics are

equal to integer multiples of the fundamental frequency:

fn =
v

λn
=

n

2L
v = nf1 (n = 1, 2, 3, . . .). (VIII-25)

2. If a pipe is closed at one end and open at the other end,

only odd harmonics are present (see Figure 14.23 in the text-

book). The wavelengths of these harmonics follows

λn =
4

n
L (n = 1, 3, 5, . . .) (VIII-26)

which gives the frequencies of these harmonics as

fn =
v

λn
=

n

4L
v = nf1 (n = 1, 3, 5, . . .). (VIII-27)

Example VIII–7. The windpipe of a typical whooping crane is

about 5.0 feet long. What is the lowest resonance frequency of this

pipe assuming it is a pipe closed at one end? Assume a temperature

of 37◦C.

Solution:

Assuming an air temperature of T = 37◦C = 310 K, the speed of

sound inside the pipe is

v = (331 m/s)

√

√

√

√

T

273 K
= (331 m/s)

√

√

√

√

310 K

273 K
= 353 m/s .
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In the fundamental resonance mode, the wavelength of the sound

waves in a pipe closed at one end is λ1 = 4L (see Eq. VIII-26).

Thus, for the whooping crane

λ1 = 4 (5.0 ft) = 20. ft

(

1 m

3.281 ft

)

= 6.1 m .

and

f1 =
v

λ1

=
353 m/s

6.10 m
= 58 Hz .


