PHYS-4007/5007: Computational Physics Problem Set 1 (Due: 22 February 2023)

1. (20 pts) Write a program in Fortran 77 and in Python 3 (i.e., two separate codes in two separate files) that does the following:

- Asks the user to enter their name (first and last in that order) and year-of-birth (as a four-digit number).
- Calculates the square of their age and the square-root of their age.
- Prints their name, age, age squared, and the square-root of their age to the screen in the format:

Last Name, First Name: nn n.nnnEee n.nnn
where age is printed as a two-digit integer, age squared is printed in scientific notation, and the square-root of age as a real number in floating point notation. Note that there should be 4 spaces between the colon character ($\cdot \because$ ') and the age, 3 spaces in between each of the printed numbers. Make sure that the ' $:$ ' mark appears after the name and before the numbers. For example, for me the output would look like:

Luttermoser, Donald: $\quad 58 \quad 3.364 \mathrm{E}+03 \quad 7.616$
Hint: In Appendix B, Subsection L. 8 (pages B-46 through B-48), note the mantissa multiplier '1P' which will output an exponential number in proper scientific notation in Fortran.
2. (20 pts) Write a code in Fortran 77 that calculates the maximum height obtained ($y_{\max }$), down range distance $\left(x_{\max }\right)$, and total time of flight (T) for a projectile launched with an initial velocity v_{\circ} and projection angle θ_{\circ} in degrees. Your code should request the user to input both v_{\circ} and θ_{\circ} and output $y_{\max }, x_{\max }$, and T with no more than 4 significant digits after the decimal point. Assume the projectile is launched from ground level and ignore air resistance and the Earth's spin. Single preceision is sufficient for these calculations. (Hint: Don't forget that trigonometric functions in Fortran 77 require the angle to be in radians.)
3. (20 pts) Write a code in Python 3 that calculates the maximum speed (in m / s) and the period of a 15.6 kg mass connected to a spring of spring constant $382 \mathrm{~N} / \mathrm{m}$, which oscillates on a frictionless horizontal table surface for the following maximum displacements: (a) 65.2 cm , (b) 127 cm , (c) 321 cm , and (d) 5.66 m . Make sure you pay attention to significant digits in your output.

For each problem, write a short description on how your code operates, and supply your answers for Problem \#3. In addition, email your codes to me as attachments at lutter@etsu.edu by the due date listed above.

