PHYS-4007/5007: Computational Physics Problem Set 3 (Due: 14 April 2023)

This problem set is due back to me by 5 p.m. on the date listed above. Note that you will need to supply a short **written analysis** of your work including plots (see below) and you will need to email your codes to me (lutter@etsu.edu). Your written analysis can either be submitted via email or as a hardcopy.

1. (60 pts) Rydberg (1890), Ritz (1908), Planck (1910), and Bohr (1913) were all responsible for developing the theory of the spectrum of the H atom. A transition in an hydrogen-like atom/ion from an upper level m to a lower level n will radiate a photon at frequency

$$\nu_{mn} = c \, R_A \, Z^2 \, \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$

where the velocity of light, $c = 2.997925 \times 10^{10}$ cm/s, Z is the *effective* charge of the nucleus $(Z_H = 1, Z_{He} = 2, \text{ etc.})$, and R_A the Rydberg constant for the hydrogen-like atom/ion. We can also be expressed this equation in terms of wavelengths (vacuum) by

$$\frac{1}{\lambda_{mn}} = R_A Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right).$$

For neutral hydrogen, $R_A = R_H = 109,677.6 \text{ cm}^{-1}$. Write a code in either Fortran or Python 3, that will calculate the first 20 wavelengths (in nm = nanometers) for any series of hydrogen. Your code should allow the user to specify (via input) which series of hydrogen are to be calculated (*e.g.*, n = 1, Lyman series; n = 2, Balmer series; n = 3, Paschen series, etc.) The code should be able to output the data to an ASCII file in tabular format with the column headings of n (lower-level quantum number), m (upper-level quantum number), and wavelength (in nm) with no more that 3 digits past the decimal point printed.

You are then to calculate the first 20 wavelengths of the Lyman series, (n = 1), the Balmer series (n = 2), and the Paschen series (n = 3). You should present this data in tabular format in your write-up. Your analysis should include a discussion of the physics involved with these calculations, steps you took in the coding, and any issues you encountered when debugging your code. Use double precision in your value for R_H and note that nand m must be integers with m > n. 2. (20 pt) Now, write a code in Python3 that will plot the output generated in Problem 1 similar to the following plot:

Balmer Series for Hydrogen

Make plots for the Lyman lines, Balmer lines, and Paschen lines in encapsulated postscript format. Then email these plots to me when you email your code from Problem 1.