
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Appendix A

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.0

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.

Appendix A. Operating Systems

A. A Brief History of Operating Systems.

1. A simple definition of a operating system is the suite of programs

that make the hardware usable. The operating system manages

the CPU, disks, and I/O devices.

2. Manipulation of the operating system was typically one of the

hardest aspects of learning to use computers which is why the

“GUI (Graphic User Interface) mentality” has taken hold of the

modern computers — the user no long needs to talk to the op-

erating system, the GUI does it for you! (Which is actually a

“pain-in-the-butt” if you need to actually talk to the operating

system!)

3. We now follow the history of operating systems and programming

languages that are important in the scientific community, starting

in the 1940s:

a) Early computers had no operating system (e.g., the IBM

604).

b) The computer was told what to do with a low-level set of

commands =⇒ assembly language.

c) The IBM 604 could undertake 60 program steps before

using punch cards as a backing store.

d) Often, the user had to manipulate toggle switches to input

the code for the mainframe.

4. The 1950s saw the advent and rapid changes in the capability of

operating systems.

Appendix A–1

Appendix A–2 PHYS-4007/5007: Computational Physics

a) Jobs were batched so that the time between jobs was min-

imized.

b) The user was now distanced from the mainframe and en-

tered a program via a card reader.

c) This era saw the rapid development in higher-level pro-

gramming languages such as Algol 60 and the first version

of Fortran.

5. The 1960s saw the advent of multiprogramming and the concept

of time-sharing.

a) Multi-user operating systems were developed which al-

lowed users to actually log into the computer simultane-

ously.

b) Since scientists were the primary users of mainframes, an

official programming language for the sciences was de-

clared: Fortran IV (which was also called Fortran 66).

6. The 1970s saw numerous multi-user operating systems come on

line. Two of the most successful were Unix and VMS (Virtual

Memory System).

a) Unix developed by Bell labs in 1970 and further modified

by the University of California at Berkeley.

b) Unix is written in the C programming language and is

capable on running on a variety of different architectures.

c) VMS was released in 1978 by the Digital Equipment Corpo-

ration (DEC) to run on their VAX mainframe computers.

Donald G. Luttermoser, ETSU Appendix A–3

d) Whereas Unix commands are often cryptic, VMS com-

mands were based on English words, and hence was con-

sidered much more “user-friendly” than Unix. As such, it

was typically the preferred OS by scientists during this

decade, whereas, Unix was favored by the computer “sci-

entists.”

e) The 1970s also saw a new Fortran standard come on line

=⇒ Fortran 77. This version of Fortran was much more

versatile and powerful than the earlier version of this pro-

gramming language.

f) Finally, the 1970s saw the beginnings of the PC market

open up through the release of the Apple IIe and IBM PC

(running DOS) computers.

7. The 1980s saw an explosion of computers in science through the

release of the microcomputer (which lasted only a few years) and

the workstation. Both of these types of machines were scaled

down versions of mainframes, with the workstations being de-

signed to fit on a desk.

a) The most popular workstations at that time was the VAX-

station, running VMS, and the Sun workstation, running

Sun OS.

b) During this decade, Unix’s popularity grew leaps and bounds,

whereas, VMS declined.

c) Later this decade, DEC came out with their version of

Unix to run on the VAX chip called Ultrix. Machines that

had Ultrix installed on it were called DECstations.

Appendix A–4 PHYS-4007/5007: Computational Physics

d) Apple came out with a new 32-bit chip that they placed

in a new machine called the Macintosh.

8. In the 1990s, there was a PC explosion which left the workstations

in the dust.

a) Microsoft began to dominate this market with their vari-

ous flavors of the Windows OS (note that Windows origi-

nally was a GUI front end that sat on top of DOS). 16-bit

PCs were replaced by 32-bit PCs during this decade. PCs

started becoming very fast when the Intel Pentium chip

was developed.

b) DEC came out with a new 64-bit chip (the VAX chip was

32-bit) called the Alpha which gave rise to the Alpha-

Stations. This chip required new versions of DEC’s OSs:

VMS → OpenVMS, and Ultrix → OSF/1 (which later was

renamed Digital Unix in 1998, then Tru64 Unix in 2000

when Compaq bought out DEC).

c) Sun then came out with the Sparc-station (32-bit CPU)

and a new OS called Solaris to run on it.

d) This decade saw the last of the mainframes, as the work-

station and PC explosion made this type of computing

obsolete. Because of this, and the fact that their Alpha-

Stations were not as popular as their VAXstations, DEC

went “belly-up” at the end of this decade.

e) Finally, this decade saw the emergence of a “free” version

of Unix called Linux which was designed to run on PC-class

machines.

Donald G. Luttermoser, ETSU Appendix A–5

9. In the 2000s and beyond, the bulk of computing was done by PCs.

However, up through about 2005, the physical science community

did most of their number crunching on workstations. Post 2005,

many scientists started switching to PCs due their fast speeds

and low costs.

a) Sun came out with a new 64-bit chip and workstation

called the Ultra stations, followed by the multi-processor

Blade computers.

b) For workstations, the biggest sellers were Suns, Silicon

Graphics, and IBM Workstations. By the end of this decade,

these workstations gradually became less popular mainly

due to their high cost.

c) In 2002, Hewlett Packard bought Compaq and announced

that they were dropping the AlphaStation from their line

meaning the death of both Tru64 Unix and OpenVMS. This

is a real pity since Tru64 Unix was the most secure version

of Unix on the market. (Note that OpenVMS was also a

very secure operating system.)

d) In 2003, Apple came out with its 64-bit, dual processor,

Power Mac G5, running Mac OS X which is a Unix-based

operating system.

e) In 2004, the Athlon 64 chip by Advanced Micro Devices

(AMD) and the Intel Xeon 64-bit chip have appeared in

PCs. These machines run either the 64-bit version of Mi-

crosoft Windows or the 64-bit version of Linux.

f) Intel continuously comes up with faster and faster chips.

Their latest CPUs are called Core and Xeon processors.

Appendix A–6 PHYS-4007/5007: Computational Physics

B. The Unix Operating System.

1. Since most of you are well aware of the workings on the various

flavors of Microsoft’s OS (i.e., Windows), at this point, I will

highlight the use of the Unix operating system since you will be

working on the Department’s Linux computers.

a) Unix/Linux is the operating system of choice for number-

crunching 64-bit workstations and PCs in the scientific

community (physics and astronomy in particular) and in

technical corporations.

b) There are various flavors of Unix that exist on the market,

each design for use by specific computer platforms.

i) Solaris was the flavor of Unix that existed on Sun

Microsystems’ platforms (e.g., Sparc Stations and

Ultra Station). Solaris superseded the earlier Sun

operating system called SunOS. Sun was purchased

by Oracle in 2009 and the Sun workstations have

virtually disappeared from the market.

ii) Irix was the version of Unix used on Silicon Graph-

ics’ (later SGI) workstations. SGI filed for bank-

ruptcy in 2009.

iii) HP/UX is the Unix flavor on Hewlett Packard’s

RISC-based workstations. With its purchase of

Compaq/DEC, HP/UX had incorporated many of

the security features contained in Tru64 Unix.

iv) Digital Equipment Corporation’s (DEC) version of

Unix was called Tru64 Unix (previously known as

Digital Unix, and previous to that, OSF/1) before

they went out of business. Even though HP no

Donald G. Luttermoser, ETSU Appendix A–7

longer sells AlphaStations, they do still sell Tru64

Unix for those people with still functioning Alpha-

Stations.

v) There are at least two platform-independent ver-

sions of Unix, SCO (Santa Cruz Operating system)

Unix and BSD/OS (Berkeley Systems Development

Operating System) Unix.

vi) Mac OS X (and beyond) of Apple is based on the

BSD version of Unix.

vii) Finally, the Linux version of Unix is designed to

run on a variety of different platforms from Intel

microprocessors to Sun/Ultra and Alpha chip archi-

tectures. Linux is one of the few versions of Unix

that can be downloaded for free. Different compa-

nies have different names for their version of Linux:

• Red Hat two versions of Linux:

– Enterprise Linux which costs money.

– Fedora is Red Hat’s freeware version of Linux.

• Ubuntu, which is the version of Linux on the ma-

chines in Brown Hall 264. This too is freeware.

• GNU Linux is Linux freeware developed by the

people who created Emacs (i.e., the GNU Project

group).

Appendix A–8 PHYS-4007/5007: Computational Physics

2. The History of Unix.

a) Brian Kernighan and Dennis Ritchie both work at Bell

Labs and were involved in the development of the Unix

operating system and the C programming language.

b) In 1968, Ken Thompson of Bell Labs wrote the original

version of Unix in PDP-7 (a DEC mainframe which pre-

ceded the VAX) assembly language.

c) In 1969 a language called TMG was ported to Unix —

the compiler was written in assembly.

d) Using this, Thompson created B, a pared down version of

BCPL. B was essentially C without types.

e) Dennis Ritchie added character, integer, and floating point

types to B, anticipating floating point operations in new

versions of the PDP. This was the beginning of the C

programming language.

f) In 1973, the Unix microkernel was rewritten in C.

g) The K&R White book was first published in 1978. Brian

Kernighan wrote the body of book, and Ritchie wrote the

technical appendices.

h) The ANSI C standard was released in 1983.

3. Note that the Unix operating system is set up in a hierarchal

system as shown in Figure 2.1 of your textbook.

a) The user and programmer “talks” to the shell (e.g., the

Bourne shell [sh], the Korne shell [ksh], the C shell [csh]).

Note that these shells are not designed well for user inter-

face at the keyboard (up/down/side arrows won’t recall

Donald G. Luttermoser, ETSU Appendix A–9

previous commands or edit them). As such, other shells

have been developed that allow keyboard editing: csh →

tcsh, sh → bash.

b) The shell talks to the Unix utilities (i.e., commands like

‘cp’ and ‘ls’).

c) The utilities talk to the kernel (i.e., the actual operating

system).

d) The kernel talks to the hardware.

C. The Structure of Unix.

1. Unix consist of two main parts

a) The kernel controls:

i) Computer memory.

ii) Resource allocation.

iii) Peripheral systems.

iv) Filestore organization.

v) File security and access.

b) The shell provides:

i) User interface or command processor.

ii) Utility programs.

c) Examples of shell are the Bourne shell (sh), C shell (csh),

Bourne Again shell (bash), Korne shell (ksh), and the

tcsh (tcsh).

Appendix A–10 PHYS-4007/5007: Computational Physics

2. Why use Unix?

a) Unix is portable.

b) Unix is a Multi-user Operating System.

c) Unix is a Multi-tasking Operating System.

d) Long running programs can be sent to batch which will

run a process in background mode freeing up the terminal

for coincidence interactive use.

e) Users have the ability to write scripts to control the run-

ning of complicated processes.

f) Unix supports the X-Window protocol. X-Windows was ini-

tially created by computer scientists from MIT to allow a

windowing environment for multi-user operating systems

such as Unix and VMS.

3. Getting Started in Unix.

a) Unix is designed to be user-interactive — that is the user

can ‘talk’ to the operating system directly through termi-

nal windows. Much of the work you will do on the

Linux machines will involve use of such a terminal

window.

b) The following commands are useful for checking on cur-

rent users and changing your password:

passwd sets users password.

who allows you to see who else is logged on, showing the

users on the system, their terminal ID numbers and
when they logged in to the system.

whoami tells you your own username and when you logged in.

Donald G. Luttermoser, ETSU Appendix A–11

Figure A–1: Directory Tree Structure of a Unix File System

/ (root)

dev etc usr

man

man1
man2

man3
man4

lib bin

users

lutter

atlas bin idl

atlas hst mcmath

iraf tex

mwc jmo

sbin

c) Getting Help:

man Displays the online manual page for a command.

d) Other useful utilities are available through ‘pull-down’

menus on the X-Window ‘toolbar’ (e.g., Email, web browser,

etc.).

4. Unix File System.

a) The Unix file structure is a hierarchy with the root direc-

tory ’/’ at the top (see Figure II-1).

b) When you log in to a Unix system you are assigned to a

login (home) directory. For example: /users/lutter.

c) The directory where you are working is your current direc-

tory. The pathname of the file gives you the exact location

of the file. The full path is the absolute pathname relative

to the root directory. For example:

/users/lutter/idl/mcmath

Appendix A–12 PHYS-4007/5007: Computational Physics

is the directory where I might keep my observed spectra

taken with the McMath Telescope.

d) The relative path is the pathname relative to your cur-

rent directory. For example: From the login directory

/users/lutter the relative path is idl/mcmath.

5. File Basics and Filenames.

a) Conventions.

i) Filenames can be any length, and almost any char-

acter is valid. However, you should avoid using the

following characters in filenames since these char-

acters have special meanings to the Unix operating

system:

∼ $ % & () [] ’ ‘ ” ? \ ; < > + - | !

ii) Unix is case sensitive.

iii) There is no division into filename and file ex-

tension, although there are certain naming conven-

tions. For example (the ‘*’ character below is used

as a marker indicating the root name of the file in

question):

*.c C language source code

*.f Fortran 77 source code
*.f90 Fortran 90 source code

*.pro IDL source code

*.tex TEX or LATEX source code

iv) Wildcards can be used:

? represents any one character
* represents any number of characters, including none

Donald G. Luttermoser, ETSU Appendix A–13

b) Directory Navigation:

pwd prints the working directory to the screen so that you

know where you are
cd changes directory, for instance:

cd /users/lutter/idl (moves you to that directory)

cd ∼ (moves you to your login directory)

c) Listing Files:

ls lists the (unhidden) files in the current directory

d) Command switches, or options, are placed after the com-

mand and before any arguments.
ls -a lists files including hidden files

(note that a hidden file begins with a ‘.’)

ls -l lists the contents of a directory in long form

6. File Management Utilities.

a) Copying Files:

cp makes a copy of a file. The syntax of the command is:
cp sourcefile targetfile

mv moves or renames a file. The syntax of the command is:

mv sourcefile targetfile

i) cp makes a new copy of a file leaving the existing

sourcefile unchanged.

ii) The new copy will overwrite a file of the same

name in the target directory.

iii) If there is more than one sourcefile then the

targetfile must be a directory.

Appendix A–14 PHYS-4007/5007: Computational Physics

iv) mv creates a new copy of a file without retaining

the sourcefile.

v) mv is used to move files from one directory to

another.

vi) mv is used to rename files.

b) Removing Files:

rm deletes unwanted files. The syntax of the command

is: rm filename
rm *.old deletes a group of files ending in .old

rm –i *.old Unix asks to confirm a deletion before deleting files

ending in .old

c) Creating and Removing Directories:

mkdir creates new subdirectories. The syntax of the command is
mkdir newdirectory

rmdir deletes directories. The syntax of the command is:

rmdir directory

i) mkdir can create a subdirectory of the current work-

ing directory.

ii) mkdir alos can create directories within directo-

ries other than the current. For example:

mkdir /users/data/newdirectory

(note that you must have “write” permission to cre-

ate directories and files in directories “outside” your

login directory tree).

iii) To remove a directory: (1) you must be the owner;

(2) the directory must be empty; (3) it must not be

the current directory.

Donald G. Luttermoser, ETSU Appendix A–15

7. Other Unix Commands and Tools.

a) Displaying Contents of Files:

cat concatenates and displays the contents of a file. The

syntax of the command is: cat filename
If the file is more than 24 lines the display will

scroll off the screen.

more displays output from file one screenful at a time.
The syntax of command is: more filename

b) Pipes and Redirection: The shell normally expects to re-

ceive input commands from stdin (the keyboard). Out-

put is normally sent to stdout (the screen) and any error

messages to stderr (the screen).
| pipe allows standard output from one command to be

used as standard input for another command. For example:

cat filename | more
The output of the cat command is piped through the more

command.
> redirects stdout to a real file. For example:

ls -l > filelist

< redirects stdin to a real file. For example:
newfile < filelist

Redirection always sends output to a file, whereas pipe

sends output to another command. There is no limit to

the number of pipelines that can be set up.

c) Searching for Strings:

grep searches for text in either a single file or group

of files. The syntax of the command is:
grep “search string” filename

grep -i ignores the case of the search string

grep -l lists only the names of files containing the search

string

Appendix A–16 PHYS-4007/5007: Computational Physics

wc counts words and lines in files. The syntax of the

command is: wc “options” filenames
wc -c displays only the number of characters

wc -l displays only the number of lines

wc -w displays only the number of words

i) grep searches one line at a time.

ii) grep looks for strings of text and does not limit

itself to whole words.

iii) grep can be used with wildcards.

d) File Permissions:

i) The default setting for a new files is:

- r w - - - - - - -

which means that only the user can read and write

a file.

ii) The permissions column consists of ten charac-

ters. The first character denotes the type of file.

For example:

- ordinary file

d directory

l link

iii) The next three show access mode for the user

(owner) of the file.

iv) The next three show the access for the group.

v) The last three show access for all others.

Donald G. Luttermoser, ETSU Appendix A–17

vi) The protection symbols mean:

r read: allows user to read the contents of a file

w write: allows user to modify a file
x execute: allows user to execute or run a program file

e) User Access: The different classes are defined as:

u user (owner) of file

g group file belongs to

o other users
a all users

f) Changing Access Privileges: chmod changes the access

mode of files you own, to restrict or allow access. The

syntax of the command is:

chmod “class(es)” “operation(s)” filename(s)

“operation” is one of: + - = (to add, take away or set

permissions). For example:

chmod ug+w example.dat

D. Summary of Unix Commands

1. There are a large number of commands in the Unix operating

system. Table A-1 lists some of the more common ones.

2. Note that commands that are listed with Unix flags (i.e., letters

after the initial command word) require a minus sign “-”. (Note

that some flavors of Unix do not require the “-” qualifier.)

a) Most processes are run in foreground — this means that

one does not get the Unix prompt back until the process

is complete.

Appendix A–18 PHYS-4007/5007: Computational Physics

Table A–1: Common Unix Commands

Unix

Command Description

cat file concatenate and display file contents

cd dirname Change to directory dirname

cd .. Go back to the parent directory of the current

directory
cd ∼ Go back to home (i.e., login) directory

chmod ijk file Change the read-write-execute protection of a file

cp file1 file2 Copy file file1 to file file2

df Give information about the mounted disks

emacs file Edit file file with the emacs editor (the shortcut
command puts the emacs editor into a

pretty screen with big fonts)

grep str file Search file(s) for pattern

head file Displays beginning of file

(default is ten lines)

logout Log off of the terminal session

lpr file Print the file file on the laser printer

ls Give listing of a directory
ls –l Give a long listing of a directory

ls –a Give listing of a directory including hidden files

man command Display information (man pages) of the Unix
command command

mkdir dirname make directory dirname

more file Type the contents of file file to the screen one

page at a time

mv file1 file2 Move or rename file file1 to file2

passwd Change your password to a new password

printenv var Display the value of the environment variable var

ps Display current process status

ps –af (just gives information on the user’s processes).

pwd Print working directory

rm file Delete file file

rmdir dirname remove directory dirname, if empty

source file Run a Unix shell script called file

tail file Displays end of file

(default is ten lines)

who Displays names and other information about

users on system

Donald G. Luttermoser, ETSU Appendix A–19

Table A–1: (continued)

Unix

Command Description

latex file Run the LATEX file file through the LATEX word

processor

dvipdf file Convert a dvi file file to a PDF file (one
that can be printed on the laser printer)

dvips file Convert a dvi file file to a postscript file (one

that can be printed on the laser printer)

xdvi file Preview a dvi file on an X-Windows terminal

idl Start IDL in command line mode
idlde Start IDL in GUI mode

i) For typical Unix commands and processes, this is

the way to go since these commands and processes

take a fraction of a second to run.

ii) However, for long running processes (editing a file

for instance), it is often wise to put a process in

background mode. To do this, just include an am-

persand sign at the end of a command (e.g., emacs

myfile.txt &).

iii) The job will then run in background mode and

the Unix prompt will immediately come back to the

screen awaiting further input.

b) You can check on background jobs by entering the jobs

command.

i) To bring a background job back to foreground

mode, either enter fg to bring the last entered back-

ground job to foreground or enter fg PID, where

PID is the process ID number which can be ob-

tained with the ps command described above.

Appendix A–20 PHYS-4007/5007: Computational Physics

ii) If you ever need to stop a job while it is in back-

ground, enter kill –9 PID. (Be very careful with

this command!)

c) Your can also suspend a foreground job by entering <Ctrl>–

z (i.e., pressing down on the control (Ctrl) key when you

hit the z key — note that this doesn’t work from inside

an emacs process, <Ctrl>–z will save and exit the file you

are editing).

3. Finally, we have only scratched the surface of Unix in this section

of the notes. This, however, should be enough to enable you to

work on the Linux machines.

E. The Emacs Editor.

1. Emacs is a user-friendly editor that exists on most Unix worksta-

tions.

a) Although emacs is not shipped with Unix itself, it is freely

available to the Internet community.

b) It was written (and still evolving) by the GNU Project,

a group of computer scientists who don’t like the large

amounts of money that vendors are charging for software

— they write software and give it out for free!

2. Unix’s standard editor is vi and it is very user-unfriendly — in-

stead, use emacs!

3. To edit a file in the emacs editor, move to the subdirectory con-

taining the file and enter emacs filename, where filename is the

name of the file to be edited.

Donald G. Luttermoser, ETSU Appendix A–21

4. The most recent versions of emacs brings up a nice GUI widget.

The buttons and pull-down menus are obvious in their operation,

as such, we won’t describe the keyboard commands that one

could also use inside of emacs.

F. Additional Information about Linux.

1. Most of you are not used to talking to the operating system by

issuing commands at the system prompt in a terminal window

(though you should practice getting used to it).

2. Many Unix operating systems have a front-end windowing system

based on the X Window protocol called CDE (Common Desktop

Environment).

3. Many Linux operating systems (e.g., Red Hat) use the gnome

front-end which is also based on X-Windows.

4. As such, you can following the same protocol that you do on a

Window’s machine by double clicking on icons and through the

use of pop-up menus from the “toolbar”:

a) In Red Hat Linux, the toolbar is located horizontally at

the bottom of the main console screen.

b) In Ubuntu Linux, the toolbar is located vertically on the

left side of the main console screen.

