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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.



Appendix B. Scientific Programming Using FORTRAN

A. Fortran 77 Basics.

1. Section II introduces programming in Fortran 77. Fortran 77 is

still widely used by professional physicists and astronomers for its

number-crunching capabilities. This Appendix gives a detailed

tutorial in programming in Fortran.

2. When writing computer code that is compiled, remember this

simple rule: computers do not think, they only follow in-

structions following a set of rules! As mentioned a little

later on, integer ‘3’ divided by integer ‘2’ is equal to ‘1’ (one)

in compiled programs, whereas real ‘3.’ divided by real ‘2.’ (note

the decimal points) is equal to ‘1.5’.

3. A Fortran program is just a sequence of lines of text. The text

has to follow a certain structure to be a valid Fortran program.

We start by looking at a simple example:

PROGRAM CIRCLE

REAL R, AREA

C This program reads a real number r and prints

C the area of a circle with radius r.

WRITE (∗, ∗) ’Give radius R:’

READ (∗, ∗) R

AREA = 3.14159∗R∗R

WRITE (∗, ∗) ’Area = ’, AREA

STOP

END

a) The lines that begin with “C” are comments and have no

purpose other than to make the program more readable
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for humans. Originally, all Fortran programs had to be

written in all upper-case letters. Many people now use

lower-case letters in their code.

b) You may wish to mix case, but Fortran is not case-sensitive

(unlike the C programming language), so “X” and “x” are

the same variable.

c) In order to make my Fortran codes more readable, I always

use upper-case letters for the coding part of my programs

and save lower-case letters for the comments in my codes.

4. Program organization: A Fortran program generally consists

of a main program (or driver) and possibly several subprograms

(functions or subroutines). For now we will place all the state-

ments in the main program; subprograms will be treated later.

The structure of a main program is:

PROGRAM name

declarations

statements

STOP

END

a) In programs listed in these course notes, words that are

in italics should not be taken as literal text, but rather as

a description of what belongs in their place.

b) The STOP statement is optional and may seem super-

fluous since the program will stop when it reaches the

end anyway, but it is recommended to always terminate a

program with the STOP statement to emphasize that the

execution flow stops there.
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c) You should note that you cannot have a variable with the

same name as the program (or subroutines or functions).

5. Column position rules: Fortran 77 is not a free-format lan-

guage, but has a very strict set of rules for how the source code

should be formatted. The most important rules are the column

position rules:

Col. 1 : Blank, or a “c” or “*” for comments

Col. 1–5 : Statement label (optional)

Col. 6 : Continuation of previous line (optional)

Col. 7–72 : Statements
Col. 73–80 : Sequence number (optional, rarely used today)

Most lines in a Fortran 77 program starts with 6 blanks and ends

before column 72 (i.e., only the statement field is used).

6. Comments: A line that begins with the letter “c”, “C”, or

an asterisk in the first column is a comment. Comments may

appear anywhere in the program. Well-written comments are

crucial to program readability. Commercial Fortran codes often

contain about 50% comments. You may also encounter Fortran

programs that use the exclamation mark (!) for comments. This

is not a standard part of Fortran 77, but is supported by several

Fortran 77 compilers and is explicitly allowed in Fortran 90 and

beyond. When understood, the exclamation mark may appear

anywhere on a line (except in columns 2-6).

7. Continuation: Sometimes, a statement does not fit into the

66 available columns of a single line. One can then break the

statement into two or more lines, and use the continuation mark

in position 6. Example:
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c23456789 (This demonstrates column position!)

c The next statement goes over two physical lines

area = 3.14159265358979

+ * r * r

Any character can be used instead of the plus sign as a contin-

uation character. It is considered good programming style to

use either the plus sign, an ampersand, or digits (using 2 for the

second line, 3 for the third, and so on).

8. Blank spaces: Blank spaces are ignored in Fortran 77. So if you

remove all blanks in a Fortran 77 program, the program is still

acceptable to a complier but almost unreadable to humans.

B. Fortran Variables, Types, and Declarations

1. Variable names: Variable names in the ANSI standard version

of Fortran consist of 1-6 characters chosen from the letters A-Z

and the digits 0-9.

a) The first character must be a letter. Fortran 77 does not

distinguish between upper and lower case, in fact, it as-

sumes all input is upper case. However, nearly all Fortran

77 compilers will accept lower case. If you should ever

encounter a Fortran 77 compiler that insists on upper case

it is usually easy to convert the source code to all upper

case.

b) The words which make up the Fortran language are called

reserved words and cannot be used as names of variable.

Some of the reserved words which we have seen so far are

PROGRAM, REAL, STOP, and END.
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c) Most of the modern Fortran 77 compilers allow more than

the maximum of 6 characters in length for a variable

name.

2. Types and declarations: Every variable should be defined in

a declaration. This establishes the type of the variable. The most

common declarations are:
INTEGER list of variables

REAL list of variables
DOUBLE PRECISION list of variables

COMPLEX list of variables

LOGICAL list of variables

CHARACTER list of variables

a) The list of variables should consist of variable names sep-

arated by commas. Each variable should be declared ex-

actly once.

b) If a variable is undeclared, Fortran 77 uses a set of im-

plicit rules to establish the type. This means all variables

starting with the letters I-N are integers and all others are

real.

c) Table IV-1 lists these data types of variables for the For-

tran compiler that follow the DEC Standard Fortran 77 on

64-bit machines. The Fortran data types are as follows:

i) Integer — a whole number.

ii) REAL (REAL∗4) — a single-precision floating

point number (a whole number or a decimal frac-

tion or a combination).

iii) DOUBLE PRECISION (REAL∗8) — a double-

precision floating point number (like REAL∗4, but
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with twice the degree of accuracy in its representa-

tion).

iv) REAL∗16 (64-bit processors only) — a quad pre-

cision floating point number (like REAL∗4, but with

four times the degree of accuracy in its representa-

tion).

v) COMPLEX (COMPLEX∗8) — a pair of REAL∗4

values representing a complex number (the first

part of the number is the real part, the second is

the imaginary part).

vi) COMPLEX∗16 (DOUBLE COMPLEX) — like

complex, but with twice the degree of accuracy in

its representation (its real or imaginary part must

be a REAL∗8).

vii) Logical — a logical value, .TRUE. or .FALSE.

viii) Character — a sequence of characters.

ix) BYTE — equivalent to INTEGER∗1.

3. Integers and Floating Point Variables: Fortran 77 has only

one type for integer variables. Integers are usually stored as 32

bits (4 bytes) variables. Therefore, all integer variables should

take on values in the range listed in Table IV-1.

a) Fortran 77 has two different types for floating point vari-

ables, called REAL and DOUBLE PRECISION. While REAL

is often adequate, some numerical calculations need very

high precision and DOUBLE PRECISION should be used.
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Table B–1: Fortran 77 Data Types on 64-bit Processors

Data Type Also Called Bytes Range

INTEGER INTEGER*4 4 –2147483648 to 2147483647
(–2∗∗31 to 2∗∗31–1)

BYTE INTEGER*1 1 –128 to 127 (–2∗∗7 to 2∗∗7–1)
— INTEGER*2 2 –32768 to 32767 (–2∗∗15 to 2∗∗15–1)
— INTEGER*8 8 –9223372036854775808 to

9223372036854775807
(–2∗∗63 to 2∗∗63–1)

REAL REAL*4 4 1.175E–38 to 3.403E38
DOUBLE PRECISION REAL*8 8 2.225D–308 to 1.798D308

REAL*16 16 2.225D–308 to 1.798D308
CHARACTER† — 1 ’a’, ’B’, etc.

LOGICAL INTEGER*1 1 .TRUE., .FALSE.
COMPLEX COMPLEX*8 8 (c,c): c is a REAL*4

DOUBLE COMPLEX COMPLEX*16 16 (c,c): c is a REAL*8
† CHARACTER∗9 would allocate 9 bytes: ’Joe”s hat’

b) Usually a real is a 4 byte variable and the double precision

is 8 bytes, but this is machine dependent (see Table IV-

1). Some non-standard Fortran versions use the syntax

REAL∗8 to denote 8 byte floating point variables.

4. The PARAMETER Statement: Some constants appear many

times in a program. It is then often desirable to define them

only once, in the beginning of the program. This is what the

PARAMETER statement is for. It also makes programs more

readable. For example, the circle area program should rather

have been written like this:

PROGRAM CIRCLE

REAL R, AREA, PI

PARAMETER (PI = 3.14159)

C This program reads a real number r and prints

C the area of a circle with radius r.

WRITE (∗, ∗) ’Give radius R:’
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READ (∗, ∗) R

AREA = PI∗R∗R

WRITE (∗, ∗) ’Area = ’, AREA

STOP

END

a) The syntax of the parameter statement is

PARAMETER (name = constant, ... , name = constant )

b) The rules for the PARAMETER statement are:

i) The name defined in the PARAMETER statement

is not a variable but rather a constant. (You cannot

change its value at a later point in the program.)

ii) A name can appear in at most one PARAMETER

statement.

iii) The PARAMETER statement(s) must come be-

fore the first executable statement.

c) Some good reasons to use the PARAMETER statement

are:

i) It helps reduce the number of typos.

ii) It makes it easier to change a constant that ap-

pears many times in a program.

iii) It increases the readability of your program.

C. Fortran Expressions and Assignment.

1. Constants: The simplest form of an expression is a constant.

There are 6 types of constants, corresponding to the 6 data types:

a) Integers: 3, -606.
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b) Reals: -2.345, 6.0234E-23.

c) Double precision constants: -2.34567823D-1, 1.0D209].

d) Complex: (2, -3), (1., 9.9E-1) — this is designated by a

pair of constants (integer or real), separated by a comma

and enclosed in parentheses, the first number denotes the

real part and the second the imaginary part.

e) Logical: .TRUE., .FALSE. — note that the dots are re-

quired.

f) Character constants: ’abc’, ’Hi There!’.

i) Strings and character constants are case sensitive.

A problem arises if you want to have an apostrophe

in the string itself.

ii) In this case, you should double the apostrophe:

’It”s a nice day’

2. Expressions: The simplest non-constant expressions are of the

form

operand operator operand

and an example is

X + Y

The result of an expression is itself an operand, hence we can

nest expressions together like X + 2 ∗ Y

a) This raises the question of precedence: Does the last ex-

pression mean X + (2∗Y) or (X+2)∗Y? The precedence

of arithmetic operators in Fortran 77 are (from highest to

lowest):
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∗∗ exponentiation

∗, / multiplication, division
+,− addition, subtraction

b) All these operators are calculated left-to-right, except the

exponentiation operator ∗∗, which has right-to-left prece-

dence.

c) If you want to change the default evaluation order, you

can use parentheses.

d) The above operators are all binary operators.

e) There is also the unary operator − for negation, which

takes precedence over the others. Hence an expression

like −X+Y means what you would expect.

f) Extreme caution must be taken when using the division

operator, which has a quite different meaning for integers

and reals.

i) If the operands are both integers, an integer divi-

sion is performed, otherwise a real arithmetic divi-

sion is performed.

ii) For example, 3/2 equals 1, while 3./2. equals 1.5

(note the decimal points).

3. Assignment: The assignment has the form

variable name = expression

The interpretation is as follows: Evaluate the right hand side

and assign the resulting value to the variable on the left. The

expression on the right may contain other variables, but these
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never change value! For example,

AREA = PI ∗ R∗∗2

does not change the value of PI or R, only AREA.

4. Type Conversion: When different data types occur in the same

expression, type conversion has to take place, either explicitly or

implicitly.

a) Fortran will do some type conversion implicitly. For ex-

ample,

REAL X

X = X + 1

will convert the integer one to the real number one, and

has the desired effect of incrementing X by one.

b) However, in more complicated expressions, it is good pro-

gramming practice to force the necessary type conversions

explicitly. For numbers, the following functions are avail-

able:

Mode of Value of

Name Argument Function

INT or IFIX Real Integer

IDINT Double Precision Integer

FLOAT Integer Real

SNGL Double Precision Real

REAL Complex Real

DFLOAT Integer Double Precision

DBLE Real Double Precision

ICHAR Character Integer

CHAR Integer Character
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Example B–1. How to multiply two real variables X

and Y using double precision and store the result in the

double precision variable W:

W = DBLE(X)∗DBLE(Y)

Note that this is different from

W = DBLE(X∗Y)

D. Logical Expressions.

1. Logical expressions can only have the value .TRUE. or .FALSE.

. A logical expression can be formed by comparing arithmetic

expressions using the following relational operators :

.LT. meaning <

.LE. <=

.GT. >

.GE. >=

.EQ. =

.NE. / =

a) So you cannot use symbols like < or = for comparison

in Fortran 77, but you have to use the correct two-letter

abbreviation enclosed by dots!

b) Logical expressions can be combined by the logical opera-

tors .AND. .OR. .NOT. which have the obvious meaning.

2. Logical variables and assignment: Truth values can be stored

in logical variables. The assignment is analogous to the arith-

metic assignment. Example:

LOGICAL A, B

A = .TRUE.

B = A .AND. 3 .LT. 5/2
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a) The order of precedence is important, as the last example

shows. The rule is that arithmetic expressions are eval-

uated first, then relational operators, and finally logical

operators. Hence B will be assigned .FALSE. in the exam-

ple above.

b) Among the logical operators the precedence (in the ab-

sence of parenthesis) is that .NOT. is done first, then

.AND., then .OR. is done last.

c) Logical variables are seldom used in Fortran. But logical

expressions are frequently used in conditional statements

like the IF statement.

E. The IF Statements.

1. An important part of any programming language are the condi-

tional statements. The most common such statement in Fortran

is the IF statement, which actually has several forms. The sim-

plest one is the logical IF statement:

IF (logical expression ) executable statement

This has to be written on one line. This example finds the abso-

lute value of X:

IF (X .LT. 0) X = –X

a) If more than one statement should be executed inside the

IF, then the following syntax should be used:

IF (logical expression ) THEN

statements

ENDIF

b) The most general form of the IF statement has the follow-

ing form:

IF (logical expression ) THEN
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statements

ELSEIF (logical expression ) THEN

statements

:

:

ELSE

statements

ENDIF

c) The execution flow is from top to bottom. The conditional

expressions are evaluated in sequence until one is found

to be true. Then the associated statements are executed

and the control resumes after the ENDIF.

2. Nested IF Statements: IF statements can be nested in several

levels. To ensure readability, it is important to use proper inden-

tation. Here is an example:

IF (X .GT. 0) THEN

IF (X .GE. Y) THEN

WRITE(∗, ∗) ’X is positive and X >= Y.’

ELSE

WRITE(∗, ∗) ’X is positive and X < Y.’

ENDIF

ELSEIF (X .LT. 0) THEN

WRITE(∗, ∗) ’X is negative.’

ELSE

WRITE(∗, ∗) ’X is zero.’

ENDIF

3. You should avoid nesting many levels of IF statements since

things get hard to follow.
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F. Fortran Loops.

1. For repeated execution of similar things, loops are used. Fortran

77 has only one loop construct, called the DO-loop. The DO-loop

corresponds to what is known as a for -loop in other languages.

Other loop constructs have to be built using the IF and GOTO

statements.

2. DO-Loops: The DO-loop is used for simple counting. Here is a

simple example that prints the cumulative sums of the integers

from 1 through N (assume N has been assigned a value else-

where):

INTEGER I, N, SUM

DO 10 I = 1, N

SUM = SUM + I

WRITE(∗, ∗) ’I = ’, I

WRITE(∗, ∗) ’SUM = ’, SUM

10 CONTINUE

a) The number 10 is a statement label. Typically, there will

be many loops and other statements in a single program

that require a statement label.

b) The programmer is responsible for assigning a unique num-

ber to each label in each program (or subprogram).

c) Recall that column positions 1-5 are reserved for state-

ment labels. The numerical value of statement labels have

no significance, so any integers can be used, in any order.

Typically, most programmers use consecutive multiples of

10.
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3. The variable defined in the DO-statement is incremented by 1 by

default. However, you can define the step to be any number but

zero. This program segment prints the even numbers between 1

and 10 in decreasing order:

INTEGER I

DO 20 I = 10, 1, -2

WRITE(∗, ∗) ’I = ’, I

20 CONTINUE

4. The general form of the DO-loop is as follows:

DO label var = expr1, expr2, expr3

statements

label CONTINUE

a) var is the loop variable (often called the loop index ) which

must be integer.

b) expr1 specifies the initial value of var,

c) expr2 is the terminating bound,

d) expr3 is the increment (step).

e) Note: The DO-loop variable must never be changed by

other statements within the loop! This will cause great

confusion.

5. The loop index can be of type real, but due to round off errors

may not take on exactly the expected sequence of values. It’s

recommended that you use integers for the loop index.

6. Many Fortran 77 compilers allow DO-loops to be closed by the

ENDDO statement. The advantage of this is that the statement
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label can then be omitted since it is assumed that an ENDDO

closes the nearest previous DO statement. The ENDDO construct

is widely used, but it is not a part of ANSI Fortran 77.

7. It should be noted that unlike some programming languages, For-

tran only evaluates the start, end, and step expressions once, be-

fore the first pass thought the body of the loop. This means that

the following DO-loop will multiply a non-negative J by two (the

hard way), rather than running forever as the equivalent loop

might in another language.

INTEGER I, J

READ(∗, ∗) J

DO I = 1, J

J = J + 1

ENDDO

WRITE(∗, ∗) J

8. While-Loops: The most intuitive way to write a WHILE-loop is

WHILE (logical expr) DO

statements

ENDDO

or alternatively,

DO WHILE (logical expr)

statements

ENDDO

a) The program will alternate testing the condition and exe-

cuting the statements in the body as long as the condition

in the WHILE statement is true.

b) Even though this syntax is accepted by many compilers,

it is not ANSI Fortran 77. The correct way is to use IF and
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GOTO:

label IF (logical expr) THEN

statements

GOTO label

ENDIF

c) Here is an example that calculates and prints all the pow-

ers of two that are less than or equal to 100:

INTEGER N

N = 1

10 IF (N .LE. 100) THEN

WRITE(∗, ∗) N

N = 2∗N

GOTO 10

ENDIF

9. Until-Loops: If the termination criterion is at the end instead

of the beginning, it is often called an until-loop. The pseudocode

looks like this:

DO

statements

UNTIL (logical expr)

Again, this should be implemented in Fortran 77 by using IF and

GOTO:

label CONTINUE

statements

IF (logical expr) GOTO label

Note that the logical expression in the latter version should be

the negation of the expression given in the pseudocode!
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G. Fortran Arrays.

1. Many scientific computations use vectors and matrices. The data

type Fortran uses for representing such objects is the array.

a) A one-dimensional array corresponds to a vector, while

a two-dimensional array corresponds to a matrix.

b) To fully understand how this works in Fortran 77, you will

have to know not only the syntax for usage, but also how

these objects are stored in memory.

2. One-dimensional arrays: The simplest array is the one-dimensional

array, which is just a sequence of elements stored consecutively

in memory.

a) For example, the declaration

REAL A(20)

declares A as a real array of length 20. That is, A consists

of 20 real numbers stored contiguously in memory.

b) By convention, Fortran arrays are indexed from 1 and up.

Thus the first number in the array is denoted by A(1) and

the last by A(20).

c) Note that this is different from either C and IDL, where a

20-dimensional array would range from A[0] to A[19].

d) However, in Fortran, it is possible to define an arbitrary

index range for your arrays using the following syntax:

REAL B(0:19), WEIRD(–162:237)

Here, B is exactly similar to A from the previous example,

except the index runs from 0 through 19. WEIRD is an

array of length 237–(–162)+1 = 400.
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3. The type of an array element can be any of the basic data types.

Examples:

INTEGER I(10)

LOGICAL AA(0:1)

DOUBLE PRECISION X(100)

4. Each element of an array can be thought of as a separate variable.

You reference the I’th element of array A by A(I). Here is a code

segment that stores the 10 first square numbers in the array SQ:

INTEGER I, SQ(10)

DO 100 I = 1, 10

SQ(I) = I∗∗2

100 CONTINUE

5. A common bug in Fortran is that the program tries to access

array elements that are out of bounds or undefined. This is the

responsibility of the programmer, and the Fortran compiler will

not detect any such bugs prior to execution!

6. Two-dimensional arrays: Matrices are very important in lin-

ear algebra. Matrices are usually represented by two-dimensional

arrays. For example, the declaration

REAL A(3,5)

defines a two-dimensional array of 3∗5=15 real numbers. It is

useful to think of the first index as the row index, and the second

as the column index. Hence we get the graphical picture:

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)
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7. Two-dimensional arrays may also have indices in an arbitrary

defined range. The general syntax for declarations is:

name (low index1 : hi index1, low index2 : hi index2)

The total size of the array is then

size = (hi index1-low index1+1)∗(hi index2-low index2+1)

8. It is quite common in Fortran to declare arrays that are larger

than the matrix we want to store. (This is because Fortran 77 does

not have dynamic storage allocation. Note, however, that Fortran

90 does possess the ability to make dynamic storage arrays.) This

is perfectly legal, for example,

REAL A(3,5)

INTEGER I,J

C

C We will only use the upper 3 by 3 part of this array.

C

DO 20 J = 1,3

DO 10 I = 1,3

A(I,J) = REAL(I) / REAL(J)

10 CONTINUE

20 CONTINUE

The elements in the submatrix A(1:3,4:5) are undefined. Do not

assume these elements are initialized to zero by the compiler

(some compilers will do this, but not all).

9. Storage format for 2-dimensional arrays: Fortran stores

higher dimensional arrays as a contiguous sequence of elements.

a) It is important to know that 2-dimensional arrays are

stored by column. In the above example, array element

(1,2) will follow element (3,1), then follows the rest of the

second column, thereafter the third column, and so on.
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b) Consider again the example where we only use the up-

per 3 by 3 submatrix of the 3 by 5 array A(3,5). The 9

interesting elements will then be stored in the first nine

memory locations, while the last six are not used. This

works out neatly because the leading dimension is the

same for both the array and the matrix we store in the

array. However, frequently the leading dimension of the

array will be larger than the first dimension of the matrix.

c) Then the matrix will not be stored contiguously in mem-

ory, even if the array is contiguous. For example, suppose

the declaration was A(5,3) instead. Then there would be

two “unused” memory cells between the end of one col-

umn and the beginning of the next column (again we are

assuming the matrix is 3 by 3).

d) This may seem complicated, but actually it is quite simple

when you get used to it. If you are in doubt, it can be

useful to look at how the address of an array element is

computed. Each array will have some memory address

assigned to the beginning of the array, that is element

(1,1). The address of element (I,J) is then given by

addr [A(I,J)] = addr [A(1,1)] + (J-1)∗LDA + (I-1)

where LDA is the leading (i.e., row) dimension of A. Note

that LDA is in general different from the actual matrix

dimension. Many Fortran errors are caused by this, so it

is very important you understand the distinction!

10. Multi-dimensional arrays: Fortran 77 allows arrays of up to seven

dimensions. The syntax and storage format are analogous to the

two-dimensional case, so we will not spend time on this.



Donald G. Luttermoser, ETSU Appendix B–23

11. The DIMENSION Statement: There is an alternate way to

declare arrays in Fortran 77. The statements

REAL A, X

DIMENSION X(50)

DIMENSION A(10,20)

are equivalent to

REAL A(10,20), X(50)

This DIMENSION statement is considered old-fashioned style to-

day.

H. Fortran Subprograms.

1. When a program is more than a few hundred lines long, it gets

hard to follow. Fortran codes that solve real engineering and

scientific problems often have tens of thousands of lines. The

only way to handle such big codes, is to use a modular approach

and split the program into many separate smaller units called

subprograms.

a) A subprogram is a (small) piece of code that solves a well

defined subproblem. In a large program, one often has to

solve the same subproblems with many different data.

b) Instead of replicating code, these tasks should be solved

by subprograms.

c) The same subprogram can be invoked many times with

different input data.

d) Fortran has two different types of subprograms, called

functions and subroutines.

e) In C, all subprograms are functions, even the “main” pro-

gram is a function.
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f) Meanwhile in IDL, the two types of subprograms are func-

tions (like Fortran functions) and procedures.

2. Functions: Fortran functions are quite similar to mathematical

functions: They both take a set of input arguments (parameters)

and return a value of some type.

a) In the preceding discussion we talked about user defined

subprograms. Fortran 77 also has some intrinsic (built-in)

functions.

b) A simple example illustrates how to use a function:

X = COS(PI/3.0)

Here COS is the cosine function, so X will be assigned the

value 0.5 (if PI has been correctly defined; Fortran 77 has

no built-in constants, unlike IDL which has !PI as a single-

precision constant of π and !DPI as the double-precision

version).

c) There are many intrinsic functions in Fortran 77. Some of

the most common are:

ABS absolute value
MIN minimum value

MAX maximum value

SQRT square root

SIN sine
COS cosine

TAN tangent

ATAN arctangent
EXP exponential (natural)

LOG logarithm (natural)

d) In general, a function always has a type. Most of the

intrinsic functions mentioned above, however, are generic.
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So in the example above, PI and X could be either of

type REAL or DOUBLE PRECISION. The compiler would

check the types and use the correct version of COS (real

or double precision).

e) Unfortunately, Fortran 77 is not really a polymorphic lan-

guage (unlike IDL which is) so in general you have to be

careful to match the types of your variables and your func-

tions! (See the Fortran Function Conversion handout on the

course web pages.)

3. Now we turn to the user-written functions. Consider the follow-

ing problem: A meteorologist has studied the precipitation levels

in the Bay Area and has come up with a model r(m, t), where r

is the amount of rain, m is the month, and t is a scalar parameter

that depends on the location. Given the formula for r and the

value of t, compute the annual rainfall.

a) The obvious way to solve the problem is to write a loop

that runs over all the months and sums up the values

of r. Since computing the value of r is an independent

subproblem, it is convenient to implement it as a function.

b) The following main program can be used:

PROGRAM RAIN

REAL R, T, SUM

INTEGER M

READ (∗, ∗) T

SUM = 0.0

DO 10 M = 1, 12

SUM = SUM + R(M,T)

10 CONTINUE
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WRITE (∗, ∗) ’Annual rainfall is ’, SUM, ’inches’

STOP

END

c) Note that we have declared R to be REAL just as we would

a variable. In addition, the function R has to be defined as

a Fortran function. The formula the meteorologist came

up with was

r(m, t) = t/10 ∗ (m ∗ ∗2 + 14 ∗ m + 46) if this is positive

r(m, t) = 0 otherwise

d) The corresponding Fortran function is

REAL FUNCTION R(M,T)

INTEGER M

REAL T

R = 0.1*T * (M∗∗2 + 14∗M + 46)

IF (R .LT. 0.) R = 0.0

RETURN

END

e) We see that the structure of a function closely resembles

that of the main program. The main differences are:

i) Functions have a type. This type must also be

declared in the calling program.

ii) The return value should be stored in a variable

with the same name as the function.

iii) Functions are terminated by the RETURN state-

ment instead of STOP.
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f) To sum up, the general syntax of a Fortran 77 function is:

type FUNCTION name (list-of-variables)

declarations

statements

RETURN

END

g) The function has to be declared with the correct type in

the calling program unit. If you use a function which has

not been declared, Fortran will try to use the same implicit

typing used for variables, probably getting it wrong.

h) The function is called by simply using the function name

and listing the parameters in parenthesis.

i) It should be noted that strictly speaking Fortran 77 doesn’t

permit recursion (functions which call themselves). How-

ever, it is not uncommon for a compiler to allow recursion.

4. Subroutines: A Fortran function can essentially only return one

value. Often we want to return two or more values (or sometimes

none!). For this purpose we use the SUBROUTINE construct.

The syntax is as follows:

SUBROUTINE name (list-of-arguments)

declarations

statements

RETURN

END

a) Note that subroutines have no type and consequently should

not (cannot) be declared in the calling program unit.

b) They are also invoked differently than functions, using the

word CALL before their names and parameters.
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c) We give an example of a very simple subroutine. The

purpose of the subroutine is to swap two integers.

SUBROUTINE ISWAP(A,B)

INTEGER A, B

C Local variables

INTEGER TMP

TMP = A

A = B

B = TMP

RETURN

END

d) Note that there are two blocks of variable declarations

here. First, we declare the input/output parameters, i.e.,

the variables that are common to both the caller and the

callee. Afterwards, we declare the local variables, i.e., the

variables that can only be used within this subprogram.

e) We can use the same variable names in different subpro-

grams and the compiler will know that they are different

variables that just happen to have the same names.

5. Call-by-reference: Fortran 77 uses the so-called call-by-reference

paradigm.

a) This means that instead of just passing the values of the

function/subroutine arguments (call-by-value ), the mem-

ory address of the arguments (pointers) are passed in-

stead. A small example should show the difference:

PROGRAM CALLEX

INTEGER M, N

C

M = 1
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N = 2

CALL ISWAP(M,N)

WRITE (∗, ∗) M,N

STOP

END

b) The output from this program is “2 1”, just as one would

expect. However, if Fortran 77 had been using call–by–

value (the way the C Programming Language does), then

the output would have been “1 2”, i.e., the variables M

and N were unchanged!

c) The reason for this is that only the values of M and N

had been copied to the subroutine ISWAP, and even if A

and B were swapped inside the subroutine the new values

would not have been passed back to the main program.

d) In the above example, call-by-reference was exactly what

we wanted. But you have to be careful about this when

writing Fortran code, because it is easy to introduce un-

desired side effects.

i) For example, sometimes it is tempting to use an

input parameter in a subprogram as a local variable

and change its value.

ii) Since the new value will then propagate back to

the calling program with an unexpected value, you

should never do this unless (like our ISWAP sub-

routine) the change is part of the purpose of the

subroutine.
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6. We will come back to this issue in a later section on passing

arrays as arguments (parameters).

I. Arrays in Subprograms.

1. Fortran subprogram calls are based on call-by-reference. This

means that the calling parameters are not copied to the called

subprogram, but rather that the addresses of the parameters

(variables) are passed.

a) This saves a lot of memory space when dealing with ar-

rays. No extra storage is needed as the subroutine oper-

ates on the same memory locations as the calling

(sub-)program.

b) However, you as a programmer have to know about this

and take it into account.

c) It is possible to declare local arrays in Fortran subpro-

grams, but this feature is rarely used. Typically, all arrays

are declared (and dimensioned) in the main program and

then passed on to the subprograms as needed.

2. Variable length arrays: A basic vector operation is the SAXPY

operation. This calculates the expression

y = α ∗ x + y

where α is a scalar but x and y are vectors. Here is a simple

subroutine for this:

SUBROUTINE SAXPY(ALPHA, X, Y, N)

INTEGER N

REAL ALPHA, X(∗), Y(∗)

C

C SAXPY: Compute y = alpha∗x + y,

C where x and y are vectors of length n (at least).
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C

C Local variables

INTEGER I

C

DO 10 I = 1, N

Y(I) = ALPHA ∗ X(I) + Y(I)

10 CONTINUE

C

RETURN

END

a) The only new feature here is the use of the asterisk in

the declarations X(∗) and Y(∗). This notation says that

X and Y are arrays of arbitrary length.

b) The advantage of this is that we can use the same sub-

routine for all vector lengths. Recall that since Fortran

is based on call-by-reference, no additional space is al-

located but rather the subroutine works directly on the

array elements from the calling routine/program.

c) It is the responsibility of the programmer to make sure

that the vectors X and Y really have been declared to

have length N or more in some other program unit.

d) A common error in Fortran 77 occurs when you try to

access out-of-bounds array elements.

e) We could also have declared the arrays like this:

REAL X(N), Y(N)

f) Most programmers prefer to use the asterisk notation to

emphasize that the “real array length” is unknown.

g) Some old Fortran 77 programs may declare variable length
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arrays like this:

REAL X(1), Y(1)

This is legal syntax even if the array lengths are greater

than one! However, this is considered poor programming

style and is strongly discouraged.

3. Passing subsections of arrays: Next we want to write a subroutine

for matrix-vector multiplication. There are two basic ways to

do this, either by using inner products or saxpy operations. Let

us be modular and re-use the SAXPY code from the previous

section. A simple code is given below.

SUBROUTINE MATVEC(M, N, A, LDA, X, Y)

INTEGER M, N, LDA

REAL X(∗), Y(∗), A(LDA,∗)

C

C Compute Y = A*X, where A is M by N and stored in an array

C with leading dimension LDA.

C

C Local variables

INTEGER I, J

C Initialize Y

DO 10 I = 1, M

Y(I) = 0.0

10 CONTINUE

C Matrix-vector product by SAXPY on columns in A.

C Notice that the length of each column of A is M, not N!

DO 20 J = 1, N

CALL SAXPY(M, X(J), A(1,J), Y)

20 CONTINUE

RETURN

END
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a) There are several important things to note here. First,

note that even if we have written the code as general as

possible to allow for arbitrary dimensions M and N, we

still need to specify the leading dimension of the matrix

A.

b) The variable length declaration (∗) can only be used for

the last dimension of an array! The reason for this is the

way Fortran 77 stores multidimensional arrays (see the

section on arrays, §H in this Appendix).

c) When we compute y = A∗x by saxpy operations, we need

to access columns of A. The J’th column of A is A(1:M,J).

However, in Fortran 77 we cannot use such subarray syn-

tax (but it is encouraged in Fortran 90!).

d) So instead we provide a pointer to the first element in the

column, which is A(1,J) (it is not really a pointer, but it

may be helpful to think of it as if it were). We know that

the next memory locations will contain the succeeding

array elements in this column. The SAXPY subroutine

will treat A(1,J) as the first element of a vector, and does

not know that this vector happens to be a column of a

matrix.

e) Finally, note that we have stuck to the convention that

matrices have M rows and N columns. The index I is used

as a row index (1 to M), while the index J is used as a

column index (1 to N). Most Fortran programs handling

linear algebra use this notation and it makes it a lot easier

to read the code!
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4. Different dimensions: Sometimes it can be beneficial to treat a 1-

dimensional array as a 2-dimensional array and vice versa. This

is fairly simple to do in Fortran 77.

a) Let us look at a very simple example. Another basic vec-

tor operation is scaling, i.e., multiplying each element in

a vector by the same constant. Here is a subroutine for

this:

SUBROUTINE SCALE(N, ALPHA, X)

INTEGER N

REAL ALPHA, X(∗)

C

C Local variables

INTEGER I

DO 10 I = 1, N

X(I) = ALPHA ∗ X(I)

10 CONTINUE

RETURN

END

b) Now suppose we have a M by N matrix we want to scale.

Instead of writing a new subroutine for this, we can sim-

ply treat the matrix as a vector and use the subroutine

SCALE. A simple version is given first:

INTEGER M, N

PARAMETER (M=10, N=20)

REAL ALPHA, A(M,N)

C Some statements here define A...

C Now we want to scale A

CALL SCALE(M∗N, ALPHA, A)
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c) Note that this example works because we assume the de-

clared dimension of A equals the actual dimension of the

matrix stored in A. This does not hold in general. Often

the leading dimension LDA is different from the actual di-

mension M, and great care must be taken to handle this

correctly.

d) Here is a more robust subroutine for scaling a matrix that

uses the subroutine SCALE:

SUBROUTINE MSCALE(M, N, ALPHA, A, LDA)

INTEGER M, N, LDA

REAL ALPHA, A(LDA,*)

C

C Local variables

INTEGER J

DO 10 J = 1, N

CALL SCALE(M, ALPHA, A(1,J))

10 CONTINUE

RETURN

END

e) This version works even when M is not equal to LDA since

we scale one column at a time and only process the m first

elements of each column (leaving the rest untouched).

J. File I/O.

1. So far we have assumed that the input/output has been to the

standard input or the standard output. It is also possible to read

from or write to files which are stored on some external storage

device, typically a disk (hard disk, floppy) or a tape.
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2. In Fortran each file is associated with a unit number, an integer

between 1 and 99 (IDL also follows the Fortran style). Some unit

numbers are reserved: 5 is standard input, 6 is standard output.

3. Opening and closing a file: Before you can use a file you have

to open it. The command is

OPEN (list-of-specifiers )

where the most common specifiers are:

UNIT = u

IOSTAT = ios
ERR = err

FILE = fname

STATUS = sta
ACCESS = acc

FORM = frm

RECL = rl

a) The unit number u is a number in the range 1-99 that

denotes this file (the programmer may chose any number

but he/she has to make sure it is unique).

b) ios is the I/O status identifier and should be an integer

variable. Upon return, ios is zero if the statement was

successful and returns a non-zero value otherwise.

c) err is a label which the program will jump to if there is

an error.

d) fname is a character string denoting the file name.

e) sta is a character string that has to be either NEW, OLD

or SCRATCH. It shows the prior status of the file. A

scratch file is a file that is created when opened and deleted

when closed (or the program ends).
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f) acc must be either SEQUENTIAL or DIRECT. The de-

fault is SEQUENTIAL.

g) frm must be either FORMATTED or UNFORMATTED.

The default is UNFORMATTED.

h) rl specifies the length (in bytes) of each record in a direct-

access file.

i) For more details on these specifiers, see a good Fortran 77

book.

4. After a file has been opened, you can access it by read and write

statements. When you are done with the file, it should be closed

by the statement

CLOSE ([UNIT=]u [,IOSTAT=ios, ERR=err, STATUS=sta])

where, as usual, the parameters in brackets are optional.

5. In this case sta is a character string which can be KEEP (the

default) or DELETE.

6. Read and write revisited: The only necessary change from our

previous simplified read/write statements, is that the unit num-

ber must be specified. But frequently one wants to add more

specifiers. Here is how:

READ ([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s )

WRITE ([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s )

where most of the specifiers have been described above. The

END=s specifier defines which statement label the program jumps

to if it reaches end-of-file.
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Example B–2. You are given a data file with xyz coordinates

for a bunch of points. The number of points is given on the first

line. The file name of the data file is points.dat. The format for

each coordinate is known to be F10.4 (we’ll learn about FOR-

MAT statements in §L of this chapter of the notes). Here is a

short program that reads the data into 3 arrays x, y, z:

PROGRAM INPDAT

C

C This program reads n points from a data file and stores them in

C 3 arrays X, Y, Z.

C

INTEGER NMAX, U

PARAMETER (NMAX=1000, U=20)

REAL X(NMAX), Y(NMAX), Z(NMAX)

C

C Open the data file

C

OPEN (U, FILE=’oints.dat’, STAUS=’OLD’)

C

C Read the number of points

C

READ(U,∗) N

IF (N .GT. NMAX) THEN

WRITE(∗, ∗) ’Error: N = ’, N, ’ is larger than NMAX = ’,

NMAX

GOTO 9999

ENDIF

C

C Loop over the data points

C



Donald G. Luttermoser, ETSU Appendix B–39

DO 10 I = 1, N

READ(U,100) X(I), Y(I), Z(I)

10 CONTINUE

100 FORMAT (3(F10.4))

C

C Close the file

C

CLOSE(U)

C Now we should process the data somehow...

C (missing part)

9999 STOP

END

K. Simple I/O

1. An important part of any computer program is to handle input

and output. In our examples so far, we have already used the

two most common Fortran constructs for this: READ and WRITE.

Fortran I/O can be quite complicated, so we will only describe

some simpler cases in these course notes.

2. Read and Write: READ is used for input, while WRITE is used

for output. A simple form is

READ (unit no, format no ) list-of-variables

WRITE (unit no, format no ) list-of-variables

a) The unit number can refer to either standard input, stan-

dard output, or a file. The format number refers to a label

for a FORMAT statement, which will be described in the

next section of the notes.
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b) It is possible to simplify these statements further by using

asterisks (∗) for some arguments, like we have done in

most of our examples so far. This is sometimes called list

directed read/write.

READ (∗, ∗) list-of-variables

WRITE (∗, ∗) list-of-variables

c) The first statement will read values from the standard

input and assign the values to the variables in the variable

list, while the second one writes to the standard output.

Example B–3. Here is a code segment from a Fortran pro-

gram:

INTEGER M, N

REAL X, Y, Z(10)

READ(∗, ∗) M, N

READ(∗, ∗) X, Y

READ (∗, ∗) Z

We give the input through standard input (possibly through a

data file directed to standard input). A data file consists of

records according to traditional Fortran terminology. In this ex-

ample, each record contains a number (either integer or real).

Records are separated by either blanks or commas. Hence a le-

gal input to the program above would be:

–1 100

–1.0 1e+2

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Or, we could add commas as separators:

–1, 100

–1.0, 1E+2

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0



Donald G. Luttermoser, ETSU Appendix B–41

3. Note that Fortran 77 input is line sensitive, so it is important

not to have extra input elements (fields) on a line (record). For

example, if we gave the first four inputs all on one line as

–1 100, –1.0, 1E+2

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

then M and N would be assigned the values –1 and 100 respec-

tively, but the last two values would be discarded, X and Y would

be assigned the values 1.0 and 2.0, ignoring the rest of the second

line. This would leave the elements of Z all undefined.

4. If there are too few inputs on a line then the next line will be

read. For example

–1

100

–1.0

1E+2

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

would produce the same results as the first two examples.

5. Other versions: For simple list-directed I/O it is possible to

use the alternate syntax

READ ∗, list-of-variables

PRINT ∗, list-of-variables

which has the same meaning as the list-directed read and write

statements described earlier. This version always reads/writes to

standard input/output so the ∗ corresponds to the format.

L. Format Statements.

1. So far we have mostly used free format input/output. This uses a

set of default rules for how to input and output values of different
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types (integers, reals, characters, etc.).

2. Often the programmer wants to specify some particular input or

output format, e.g., how many decimals places in real numbers.

For this purpose Fortran 77 has the format statement. The same

format statements are used for both input and output.

3. Syntax:

WRITE(∗, label ) list-of-variables

label FORMAT format-code

a) A simple example demonstrates how this works. Say you

have an integer variable you want to print in a field 4

characters wide and a real number you want to print in

fixed point notation with 3 decimal places.

WRITE(∗, 900) I, X

900 FORMAT (I4,F8.3)

The format label 900 is chosen somewhat arbitrarily, but

it is common practice to number format statements with

higher numbers than the control flow labels.

b) After the keyword FORMAT follows the format codes en-

closed in parenthesis. The code I4 stands for an integer

with width four, while F8.3 means that the number should

be printed using fixed point notation with field width 8

and 3 decimal places.

c) The format statement may be located anywhere within

the program unit. There are two programming styles: Ei-

ther the format statement follows directly after the read/write

statement, or all the format statements are grouped to-

gether at the end of the (sub-)program.
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4. Common format codes: The most common format code letters

are:

A — text string

D — double precision numbers, exponent notation

E — real numbers, exponent notation

F — real numbers, fixed point format

I — integer

X — horizontal skip (space)

/ — vertical skip (newline)

a) The format code F (and similarly D, E) has the general

form Fw.d, where w is an integer constant denoting the

field width and d is an integer constant denoting the num-

ber of significant digits.

b) For integers only the field width is specified, so the syntax

is Iw.

c) Similarly, character strings can be specified as Aw but the

field width is often dropped.

d) If a number or string does not fill up the entire field width,

spaces will be added. Usually the text will be adjusted

to the right, but the exact rules vary among the different

format codes.

e) For horizontal spacing, the nX code is often used. This

means n horizontal spaces. If n is omitted, n=1 is as-

sumed.

f) For vertical spacing (newlines), use the code /. Each slash

corresponds to one newline. Note that each READ or

WRITE statement by default ends with a newline (here

Fortran differs from C).
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Example B–4. This piece of Fortran code

X = 0.025

WRITE(∗,100) ’X=’, X

100 FORMAT(A,F)

WRITE(∗,110) ’X=’, X

110 FORMAT(A,F5.3)

WRITE(∗,120) ’X=’, X

120 FORMAT(A,E)

WRITE(∗,130) ’X=’, X

130 FORMAT(A2,E8.1)

produces the following output when we run it:

X= 0.0250000

X=0.025

X= 0.2500000E-01

X= 0.3E-01

Note how blanks are automatically padded on the left and

that the default field width for real numbers is usually 14.

We see that Fortran 77 follows the rounding rule that

digits 0-4 are rounded downwards while 5-9 are rounded

upwards.

g) In this example each WRITE statement used a different

format statement. But it is perfectly fine to use the same

format statement for many different WRITE statements.

In fact, this is one of the main advantages of using format

statements. This feature is handy when you print tables

for instance, and you want each row to have the same

format.
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5. Format strings in READ/WRITE statements: Instead of

specifying the format code in a separate format statement, one

can give the format code in the READ/WRITE statement directly.

For example, the statement

WRITE (∗,’(A, F8.3)’) ’The answer is X = ’, X

is equivalent to

WRITE (∗,990) ’The answer is X = ’, X

990 FORMAT (A,F8.3)

Sometimes text strings are given in the format statements, e.g.,

the following version is also equivalent:

WRITE (∗,999) X

999 FORMAT (’The answer is x = ’,F8.3)

6. Implicit loops and repeat counts: Now let us do a more

complicated example. Say you have a two-dimensional array of

integers and want to print the upper left 5 by 10 submatrix with

10 values each on 5 rows. Here is how:

DO 10 I = 1, 5

WRITE(∗,1000) (A(I,J), J=1,10)

10 CONTINUE

1000 FORMAT (I6)

a) We have an explicit do loop over the rows and an implicit

loop over the column index J.

b) Often a format statement involves repetition, for example

950 FORMAT (2X, I3, 2X, I3, 2X, I3, 2X, I3)

There is a shorthand notation for this:

950 FORMAT (4(2X, I3))

c) It is also possible to allow repetition without explicitly

stating how many times the format should be repeated.
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Suppose you have a vector where you want to print the

first 50 elements, with ten elements on each line. Here is

one way:

WRITE (∗,1010) (X(I), I=1,50)

1010 FORMAT (10I6)

d) The format statement says ten numbers should be printed.

But in the WRITE statement we try to print 50 numbers.

So after the ten first numbers have been printed, the same

format statement is automatically used for the next ten

numbers and so on.

7. Implicit DO-loops can be multi-dimensional and can be used to

make a READ or WRITE statement difficult to understand. As

such, you should try to avoid using implicit loops.

8. Proper Scientific Notation

a) When printing numbers out in exponential notation (e.g.,

the ‘E’ qualifier in a FORMAT statement, Fortran 77 prints

the number out in the manner in which the machine stores

the number, for instance, 2.3456 × 109 would be printed

out as 0.23456E+10 with E11.5 in a FORMAT statement.

b) However, this is not proper scientific notation. The way

to correct this is to use a mantissa-multiplier prefix in

the FORMAT statement — instead of E11.5, use 1PE10.4,

which would produce 2.3456E+09 in the output.

c) Note that this mantissa multiplier automatically subtracts

1 (one) from the exponent.
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d) This mantissa multiplier is applied to all floating point

numbers in the FORMAT statement after it is first used,

hence the ‘1P’ prefix would only have to be used once

in a given FORMAT statement, for instance, if IGH =

3458, R67 = 2.3456× 109, I89 = 87, J67 = 19, and R98 =

−4.115645 × 10−7 in the WRITE statement below:

WRITE(12, 990) IGH, R67, I89, J67, R98

990 FORMAT(3X, I4, 1PE10.4, 2I3, E13.6)

would produce the following output:

3458 2.3456E+09 87 19 -4.115645E-07

e) However, this mantissa multiplier would also be used in

any floating-point number printed in decimal notation fol-

lowing its first use in a FORMAT statement. As such, if

YUH = 98.245 and DGL98 = -897.22 in the WRITE state-

ment below:

WRITE(12, 992) IGH, YUH, R67, R98, DGL98

992 FORMAT(3X, I4, F7.3, 1PE10.4, E13.6, F8.2)

This would produce the following output:

3458 98.245 2.3456E+09 -4.115645E-07 -8972.20

f) To fix this, we have to undo the mantissa multiplier with

the with the ‘0P’ (zero-P) format prefix, for instance in

the statement above:

WRITE(12, 992) IGH, YUH, R67, R98, DGL98

992 FORMAT(3X, I4, F7.3, 1PE10.4, E13.6, 0PF8.2)

This would produce the correct output:

3458 98.245 2.3456E+09 -4.115645E-07 -897.22

g) Note that if we had another variable to print in scientific

notation after the ‘0P’ prefix was issued in a FORMAT



Appendix B–48 PHYS-4007/5007: Computational Physics

statement, we would then have to include another ‘1P’

prefix after the ‘0P’ prefix was used, for instance:

WRITE(12, 992) IGH, YUH, R67, DGL98, R98

992 FORMAT(3X, I4, F7.3, 1PE10.4, 0PF8.2, 1PE13.6)

which would produce the correct output:

3458 98.245 2.3456E+09 -897.22 -4.115645E-07

h) Finally note that if we had a series of numbers to print in

scientific notation on one line, we would have the follow

FORMAT statement:

WRITE(12, 992) IGH, YUH, R67, DGL98, R98

992 FORMAT(3X, I4, F7.3, 1P3E10.4)

This would produce the following output:

3458 98.245 2.3456E+09 -8.9722E+02 -4.1156E-07

M. Common Blocks.

1. Fortran 77 has no global variables, i.e., variables that are shared

among several program units (subroutines).

2. The only way to pass information between subroutines we have

seen so far is to use the subroutine parameter list.

a) Sometimes this is inconvenient, e.g., when many subrou-

tines share a large set of parameters.

b) In such cases one can use a common block. This is a way

to specify that certain variables should be shared among

certain subroutines.

c) IDL also has common blocks. C, however, does not, but

instead, has global variables.
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3. Example: Suppose you have two parameters α and β that many

of your subroutines need. The following example shows how it

can be done using common blocks.

PROGRAM MAIN

some declarations

REAL ALPHA, BETA

COMMON /COEFF/ ALPHA, BETA

statements

STOP

END

SUBROUTINE SUB1 (some arguments )

declarations of arguments

REAL ALPHA, BETA

COMMON /COEFF/ ALPHA, BETA

statements

RETURN

END

SUBROUTINE SUB2 ( some arguments )

declarations of arguments

REAL ALPHA, BETA

COMMON /COEFF/ ALPHA, BETA

statements

RETURN

END

a) Here we define a common block with the name COEFF.

The contents of the common block are the two variables

ALPHA and BETA.

b) A common block can contain as many variables as you

like. They do not need to all have the same type.



Appendix B–50 PHYS-4007/5007: Computational Physics

c) Every subroutine that wants to use any of the variables

in the common block has to declare the whole block.

d) Note that in this example we could easily have avoided

common blocks by passing alpha and beta as parame-

ters (arguments). A good rule is to try to avoid common

blocks if possible. However, there are a few cases where

there is no other solution.

4. Syntax:

COMMON / name / list-of-variables

You should know that:

a) The COMMON statement should appear together with the

variable declarations, before the executable statements.

b) Different common blocks must have different names (just

like variables).

c) A variable cannot belong to more than one common block.

d) The variables in a common block do not need to have the

same names each place they occur (although it is a good

idea to do so), but they must be listed in the same order

and have the same type and size.

5. To illustrate this, look at the following continuation of our ex-

ample:

SUBROUTINE SUB3 (some arguments )

declarations of arguments

REAL A, B

COMMON /COEFF/ A, B

statements

RETURN
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END

a) This declaration is equivalent to the previous version that

used ALPHA and BETA. It is recommended that you al-

ways use the same variable names for the same common

block to avoid confusion. Here is a dreadful example:

SUBROUTINE SUB4 (some arguments )

declarations of arguments

REAL ALPHA, BETA

COMMON /COEFF/ BETA, ALPHA

statements

RETURN

END

b) Now ALPHA is the BETA from the main program and

vice versa. If you see something like this, it is probably a

mistake. Such bugs are very hard to find.

6. Arrays in common blocks: Common blocks can include ar-

rays, too. Suppose we have the following declarations in the main

program:

PROGRAM MAIN

INTEGER NMAX

PARAMETER (NMAX=20)

INTEGER N

REAL A(NMAX,NMAX)

COMMON / MATRIX / A, N

a) This common block contains first all the elements of A,

then the integer N. Now assume you want to use the ma-

trix A in some subroutines. Then you have to include the

same declarations in all these subroutines, e.g.,
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SUBROUTINE SUB1 (...)

INTEGER NMAX

PARAMETER (NMAX=20)

INTEGER N

REAL A(NMAX,NMAX)

COMMON / MATRIX / A, N

b) Arrays with variable dimensions cannot appear in com-

mon blocks, thus the value of NMAX has to be exactly

the same as in the main program. Recall that the size of

a matrix has to be known at compile time, hence NMAX

has to be defined in a parameter statement.

c) The preferred method in Fortran 77 is to pass arrays as

arguments to subroutines (along with the leading dimen-

sions). This is not always possible, however, especially in

large codes.

N. Data and Block Data Statements.

1. The DATA Statement: The DATA statement is another way

to input data that are known at the time when the program is

written. It is similar to the assignment statement. The syntax

is:

DATA list-of-variables / list-of-values /, ...

where the three dots means that this pattern can be repeated.

a) Here is an example:

DATA M/10/, N/20/, X/2.5/, Y/2.5/

We could also have written this

DATA M,N/10,20/, X,Y/2*2.5/

We could have accomplished the same thing by the as-
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signments

M = 10

N = 20

X = 2.5

Y = 2.5

b) The DATA statement is more compact and therefore often

more convenient. Notice especially the shorthand nota-

tion for assigning identical values repeatedly.

c) The DATA statement is performed only once, right before

the execution of the program starts. For this reason, the

DATA statement is mainly used in the main program and

not in subroutines.

d) The DATA statement can also be used to initialize arrays

(vectors, matrices). This example shows how to make sure

a matrix is all zeros when the program starts:

REAL A(10,20)

DATA A/ 200 ∗ 0.0 /

e) Some compilers will automatically initialize arrays like

this but not all, so if you rely on array elements to be

zero it is a good idea to follow this example. Of course

you can initialize arrays to other values than zero. You

may even initialize individual elements:

DATA A(1,1)/12.5/, A(2,1)/–33.3/, A(2,2)/1.0/

Or you can list all the elements for small arrays like this:

INTEGER V(5)

REAL B(2,2)

DATA V/10,20,30,40,50/, B/1.0,-3.7,4.3,0.0/
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f) The values for two-dimensional arrays will be assigned in

column-first order as usual.

2. The BLOCK DATA statement: The DATA statement cannot

be used for variables contained in a common block. There is a

special subroutine for this purpose, called BLOCK DATA.

a) It is not really a subroutine, but it looks a bit similar

because it is given as a separate program unit. Here is an

example:

BLOCK DATA

INTEGER NMAX

PARAMETER (NMAX=20)

REAL V(NMAX), ALPHA, BETA

COMMON /VECTOR/ V, ALPHA, BETA

DATA V/20∗100.0/, ALPHA/3.14/, BETA/2.71/

END

b) Just as the DATA statement, BLOCK DATA is executed

once before the execution of the main program starts. The

position of the block data subroutine in the source code

is irrelevant (as long as it is not nested inside the main

program or a subprogram).

O. Numerical Software.

1. Most computational problems in science and engineering can be

broken down into well-known types of calculations, e.g., solving

linear systems of equations, computing fast Fourier transforms,

etc.

2. Furthermore, software to solve these subtasks is often already

available. Consequently, you only have to write a short driver
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routine for your particular problem. This way people don’t have

to reinvent the wheel over and over again.

3. The best software for a particular type of problem must often be

purchased from a commercial company, but for linear algebra and

some other basic numerical computations there is high-quality

free software available (through Netlib).

4. Netlib: Netlib (the NET LIBrary) is a large collection of freely

available software, documents, and databases of interest to the

numerical, scientific computing, and other communities. The

repository is maintained by AT&T Bell Laboratories, the Uni-

versity of Tennessee and Oak Ridge National Laboratory, and

replicated at several sites around the world.

a) Netlib contains high-quality software that has been exten-

sively tested, but (as all free software) it comes with no

warranty and little (if any) support. In order to use the

software, you first have to download it to your computer

and then compile it yourself.

b) There are many ways to access Netlib. The most common

way is through their web page at

http://www.netlib.org/index.html

c) Two of the most popular packages at Netlib are the BLAS

and LAPACK libraries which we will describe in later sec-

tions.

5. Some commercial Fortran packages: In this section we briefly

mention a few of the largest (commercial) software packages for

general numerical computations.
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a) NAG: The Numerical Algorithms Group (see

http://www.nag.com:81/) has developed a numerical

libraries at

http://www.nag.com:81/numeric/numerical libraries.asp

which are written in a variety of different programming

languages including Fortran. The Fortran library contains

over 1000 user-callable subroutines for solving general ap-

plied math problems, including: ordinary and partial dif-

ferential equations, optimization problems, FFT and other

transforms, quadrature, linear algebra, non-linear equa-

tions, integral equations, and more.

b) IMSL: The IMSL Fortran numerical library was origi-

nally sold by Visual Numerics, Inc., but now is sold by

Rogue Wave Software (http://www.roguewave.com/). The

IMSL software covers most of the areas contained in the

NAG library. It also has support for analyzing and pre-

senting statistical data in scientific and business applica-

tions.

c) Numerical Recipes: The books Numerical Recipes in

C/Fortran are very popular among scientists and engi-

neers because they can be used as a cookbooks where you

can find a recipe to solve the problem at hand. However,

the corresponding software is in no way (e.g., scope or

quality) comparable to that provided by NAG or IMSL.

d) It should be mentioned that all the software listed above

also comes in a C version (or is at least callable from C)

and other programming languages.
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6. BLAS: BLAS is an acronym for Basic Linear Algebra Subrou-

tines. As the name indicates, it contains subprograms for basic

operations on vectors and matrices. BLAS was designed to be

used as a building block in other codes, for example LAPACK.

The source code for BLAS is available through Netlib. How-

ever, many computer vendors will have a special version of BLAS

tuned for maximal speed and efficiency on their computer. This

is one of the main advantages of BLAS: the calling sequences are

standardized so that programs that call BLAS will work on any

computer that has BLAS installed. If you have a fast version of

BLAS, you will also get high performance on all programs that

call BLAS. Hence BLAS provides a simple and portable way to

achieve high performance for calculations involving linear alge-

bra.

7. LAPACK is a higher-level package built on the same ideas.

8. Levels and naming conventions: The BLAS subroutines can

be divided into three levels :

a) Level 1: Vector-vector operations. O(n) data and O(n)

work.

b) Level 2: Matrix-vector operations. O(n2) data and O(n2)

work.

c) Level 3: Matrix-matrix operations. O(n2) data and O(n3)

work.

9. Each BLAS and LAPACK routine comes in several versions, one

for each precision (data type). The first letter of the subprogram

name indicates the precision used:
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S Real single precision.

D Real double precision.
C Complex single precision.

Z Complex double precision.

10. Complex double precision is not strictly defined in Fortran 77,

but most compilers will accept one of the following declarations:

DOUBLE COMPLEX list-of-variables

COMPLEX*16 list-of-variables

11. Elements of BLAS and How to Get It.

a) BLAS 1: Some of the BLAS 1 subprograms are:

xCOPY — copy one vector to another
xSWAP — swap two vectors

xSCAL — scale a vector by a constant

xAXPY — add a multiple of one vector to another
xDOT — inner product

xASUM — 1-norm of a vector

xNRM2 — 2-norm of a vector

IxAMAX — find maximal entry in a vector

The first letter (x) can be any of the letters S,D,C,Z de-

pending on the precision. A quick reference to BLAS 1

can be found at http://www.netlib.org/blas/blasqr.ps .

b) BLAS 2: Some of the BLAS 2 subprograms are:

xGEMV — general matrix-vector multiplication
xGER — general rank-1 update

xSYR2 — symmetric rank-2 update

xTRSV — solve a triangular system of equations

A detailed description of BLAS 2 can be found at

http://www.netlib.org/blas/blas2-paper.ps .
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c) BLAS 3: Some of the BLAS 3 subprograms are:

xGEMM — general matrix-matrix multiplication

xSYMM — symmetric matrix-matrix multiplication

xSYRK — symmetric rank-k update

xSYR2K — symmetric rank-2k update

The more advanced matrix operations, like solving a lin-

ear system of equations, are contained in LAPACK. A

detailed description of BLAS 3 can be found at

http://www.netlib.org/blas/blas3-paper.ps .

Example B–5. Let us first look at a very simple BLAS

routine, SSCAL. The call sequence is

CALL SSCAL ( N, A, X, INCX )

Here X is the vector, N is the length (number of elements

in X we wish to use), and A is the scalar by which we

want to multiply X. The last argument INCX is the in-

crement. Usually, INCX=1 and the vector X corresponds

directly to the one-dimensional Fortran array X. For INCX

> 1 it specifies how many elements in the array we should

jump between each element of the vector X. For example,

if INCX=2 it means we should only scale every other ele-

ment (note: the physical dimension of the array X should

then be at least 2n-1 ). Consider these examples where X

has been declared as REAL X(100).

CALL SSCAL(100, A, X, 1)

CALL SSCAL( 50, A, X(50), 1)

CALL SSCAL( 50, A, X(2), 2)

The first line will scale all 100 elements of X by A. The

next line will only scale the last 50 elements of X by A.

The last line will scale all the even indices of X by A.
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d) Observe that the array X will be overwritten by the new

values. If you need to preserve a copy of the old X, you

have to make a copy first, e.g., by using SCOPY.

e) Now consider a more complicated example. Suppose you

have two 2-dimensional arrays A and B, and you are asked

to find the (i, j) entry of the product A∗B.

i) This is easily done by computing the inner product

of row i from A and column j of B. We can use the

BLAS 1 subroutine SDOT. The only difficulty is to

figure out the correct indices and increments.

ii) The call sequence for SDOT is

CALL SDOT ( N, X, INCX, Y, INCY )

iii) Suppose the array declarations were

REAL A(LDA,LDA)

REAL B(LDB,LDB)

but in the program you know that the actual size

of A is M∗P and for B it is P∗N. The i’th row

of A starts at the element A(I,1). But since For-

tran stores 2-dimensional arrays down columns, the

next row element A(I,2) will be stored LDA elements

later in memory (since LDA is the length of a col-

umn). Hence we set INCX = LDA.

iv) For the column in B there is no such problem,

the elements are stored consecutively so INCY = 1.

The length of the inner product calculation is P.

Hence the answer is
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CALL SDOT ( P, A(I,1), LDA, B(1,J), 1 )

f) How to get the BLAS: You can find it on Netlib at

http://www.netlib.org/blas/ .

g) Documentation: The BLAS routines are almost self-

explanatory. Once you know which routine you need,

fetch it and read the header section that explains the input

and output parameters in detail. We will look at an ex-

ample in the next section when we address the LAPACK

routines.

12. Elements of LAPACK and How to Get It.

a) LAPACK: LAPACK is a collection of Fortran subpro-

grams for advanced linear algebra problems like solving

systems of simultaneous linear equations, least-squares

solutions of linear systems of equations, eigenvalue prob-

lems, and singular value problems. LAPACK replaces the

older packages LINPACK and EISPACK. LAPACK sub-

routines were written to exploit BLAS as much as possi-

ble.

i) Routines: Probably the most widely used LA-

PACK routines are the ones that solve systems of

linear equations:

xGESV — Solve AX=B for a general matrix A

xPOSV — Solve AX=B for a symmetric positive

definite matrix A
xGBSV — Solve AX=B for a general banded

matrix A

ii) There are many more routines for other special

types of matrices.
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iii) The source code and executables for some com-

puters are available from Netlib at

http://www.netlib.org/lapack .

b) Documentation: Just like the BLAS routines, the LA-

PACK routines are virtually self-explanatory. Details of

the input and output parameters for any given subroutine

are contained in the header section of the file.

i) For example, here is the header section of the LA-
PACK subroutine SGESV:

SUBROUTINE SGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
∗

∗ – LAPACK driver routine (version 2.0) –
∗ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

∗ Courant Institute, Argonne National Lab, and Rice University
∗ March 31, 1993

∗

∗ .. Scalar Arguments ..

INTEGER INFO, LDA, LDB, N, NRHS
∗ ..

∗ .. Array Arguments ..
INTEGER IPIV( ast )
REAL A( LDA, ast ), B( LDB, ast )

∗ ..
∗

∗ Purpose
∗ =======

∗

∗ SGESV computes the solution to a real system of linear equations

∗ A ast X = B,
∗ where A is an N-by-N matrix and X and B are N-by-NRHS

∗ matrices.
∗

∗ The LU decomposition with partial pivoting and row interchanges

∗ is used to factor A as
∗ A = P ast L ast U,

∗ where P is a permutation matrix, L is unit lower triangular, and U
∗ is upper triangular. The factored form of A is then used to solve

∗ the system of equations A ast X = B.
∗

∗ Arguments
∗ =========

∗
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∗ N (input) INTEGER

∗ The number of linear equations, i.e., the order of the
∗ matrix A. N >= 0.

∗

∗ NRHS (input) INTEGER

∗ The number of right hand sides, i.e., the number of columns
∗ of the matrix B. NRHS >= 0.

∗

∗ A (input/output) REAL array, dimension (LDA,N)
∗ On entry, the N-by-N coefficient matrix A.

∗ On exit, the factors L and U from the factorization
∗ A = P*L*U; the unit diagonal elements of L are not stored.

∗

∗ LDA (input) INTEGER

∗ The leading dimension of the array A. LDA >= max(1,N).
∗

∗ IPIV (output) INTEGER array, dimension (N)
∗ The pivot indices that define the permutation matrix P;

∗ row i of the matrix was interchanged with row IPIV(i).
∗

∗ B (input/output) REAL array, dimension (LDB,NRHS)
∗ On entry, the N-by-NRHS matrix of right hand side matrix B.
∗ On exit, if INFO = 0, the N-by-NRHS solution matrix X.

∗

∗ LDB (input) INTEGER

∗ The leading dimension of the array B. LDB >= max(1,N).
∗

∗ INFO (output) INTEGER
∗ = 0: successful exit

∗ < 0: if INFO = –i, the i-th argument had an illegal value
∗ > 0: if INFO = i, U(i,i) is exactly zero. The factorization

∗ has been completed, but the factor U is exactly
∗ singular, so the solution could not be computed.
∗

∗ ==================================

ii) The complete LAPACK User’s Guide is also on

the Web at
http://www.netlib.org/lapack/lug/lapack lug.html .

13. Using Libraries under Unix: A Fortran package of subpro-

grams may contain hundreds of files. It is very slow and incon-

venient to recompile these files every time you want to use any
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of the subroutines.

a) Under the Unix operating system you can avoid this by

making a library file. The library file is an object file, so

you only have to compile your additional main (driver)

program and then link it with library. (Linking is much

faster than compiling.)

b) Libraries have file names starting with lib and ending in

.a (and sometimes .so).

c) Currently, no Fortran math libraries have been installed

on the Linux side of the PCs in Brown Hall 264.

d) For a generic Unix system, if for example, the BLAS

library is stored in the file /usr/local/lib/libblas.a, you

would use the –l option to link it together with your main

program, e.g.,

f77 main.f –lblas

(note that on Linux, one would use the GNU Fortran com-

piler gfortran instead of f77).

e) You can link several files with several libraries at the same

time if you wish:

f77 main.f mysub.f –llapack –lblas

f) The order you list the libraries is significant. In the ex-

ample above –llapack should be listed before –lblas since

LAPACK calls BLAS routines.

g) If you want to create your own library, you can do so

by compiling the source code to object code and then

collecting all the object files into one library file. This
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example generates a library called my lib:

f77 -c *.f

ar rcv libmy lib.a *.o

ranlib libmy lib.a

rm *.o

h) Check the manual pages or a Unix book for more infor-

mation on the commands ar and ranlib.

i) If you have the library file in the current directory, you

can link with it as follows:

f77 main.f -L. -lmy lib

j) One advantage of libraries is that you only compile them

once but you can use them many times.

14. Searching for mathematical software: A common situation

is that you need a piece of code to solve a particular problem.

You believe somebody must have written software to solve this

type of problem already, but you do not know how to find it.

Here are some suggestions:

a) Ask your co-workers and colleagues. Always do this first,

otherwise you can waste lots of time trying to find some-

thing the person next-door may have already.

b) Check http://www.netlib.org/index.html . They have a

search feature.

c) Look it up in GAMS (http://gams.nist.gov/), the ‘Guide

to Available Mathematical Software’ from the National

Bureau of Standards and Technology (NIST).
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P. Fortran Programming Style.

1. There are many different programming styles, but here are some

general guidelines that are fairly non-controversial.

a) Portability: To ensure portability, use only ANSI stan-

dard Fortran 77 or Fortran 90.

b) Program structure: The overall program structure should

be modular. Each subprogram should solve a well-defined

task. Many people prefer to write each subprogram in a

separate file.

c) Comments: Write legible code, but also add (many)

comments in the source explaining what is happening! It

is especially important to have a good header for each sub-

program that explains each input/output argument and

what the subprogram does.

d) Indentation: Always use proper indentation for loops

and if blocks as demonstrated in the notes here.

e) Variables: Always declare all variables. Implicit type

declaration is bad (but actually, I do it all the time)! Try

to use variable names that describe what is being rep-

resented. Most Fortran compilers these days allow up to

31-characters maximum for the length of a variable name.

f) Subprograms: Never let functions have side effects, i.e.,

do not change the value of the input parameters. Use

subroutines in such cases.

g) In the declarations, separate parameters, common blocks,

and local variables.

h) Minimize the use of common blocks.
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i) Goto: Minimize the use of GOTO. Unfortunately, it is

necessary to use GOTO in some loops since WHILE is

not standard Fortran 77 (it is standard in Fortran 90).

j) Arrays: In many cases it is best to declare all large arrays

in the main program and then pass them as arguments to

the various subroutines. This way all the space alloca-

tion is done in one place. Remember to pass the leading

dimensions. Avoid unnecessary reshaping of matrices.

k) Efficiency concerns: When you have a double loop ac-

cessing a two-dimensional array, it is usually best to have

the first (row) index in the innermost loop. This is be-

cause of the storage scheme in Fortran.

l) When you have IF-THEN-ELSEIF statements with mul-

tiple conditions, try to place the most likely conditions

first.

2. Be consistent in your programming style from this point forward.

You will find it much easier to work with codes over time if you

do.

3. Save the results of your ‘run’ in ASCII (i.e., text) output

files. This will insure that your data file can be read on

any machine by any operating system via any program-

ming language.

Q. Debugging Hints.

1. It has been estimated that about 90% of the time it takes to

develop software is spent debugging and testing. This shows

how important it is to write good code in the first place.
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2. Still, we all discover bugs from time to time. Here are some hints

for how to track them down.

3. Useful compiler options: Most Fortran compilers will have

a set of options you can turn on if you like. In standard Unix,

print out the manual page on ‘f77’ or ‘f90’. In Linux, print out

the manual pages of ‘g77’ or ’gfortran’ if using either of these

GNU Fortran compilers.

4. Some common errors: Here are some common errors to watch

out for:

a) Make sure your lines end at column 72. The rest will be

ignored!

b) Do your parameter lists in the calling and the called pro-

gram match?

c) Do your common blocks match?

d) Have you done integer division when you wanted real di-

vision?

e) Have you typed an o (letter ‘o’) when you meant 0 (num-

ber zero), an l (letter ‘ell’) when you meant 1 (number

one)?

5. Debugging tools: If you have a bug, you have to try to locate

it. Syntax errors are easy to find. The problem is when you have

run-time errors.

a) The old-fashioned way to find errors is to add WRITE

statements in your code and try to track the values of

your variables.
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b) This is a bit tedious since you have to recompile your

source code every time you change the program slightly.

c) Today one can use special debuggers which is a convenient

tool. You can step through a program line by line or define

your own break points, you can display the values of the

variables you want to monitor, and much more.

d) Most Unix machines will have debuggers. Check the ‘man’

pages or the ‘Help’ utility for further information about

debuggers for your given system.


