
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Appendix D

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.0

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.

Appendix D. Scientific Computing Using IDL

A. Introduction.

1. One of the most important aspects of scientific research is the

ability to present one’s work to the scientific community and to

the public =⇒ one of the best way to do this is through good

graphics.

2. Many programming languages are available that have graphics

capabilities. In science, the most commonly used are Mathemat-

ica, Matlab, Maple, Origin, Mongo, Supermongo, and IDL.

3. For this Appendix of the notes, we will use IDL (Interactive

Data Language) as our prototype graphics language. See §II.D

in these notes for an overview of IDL and a discussion on the

history of IDL.

B. IDL Highlights.

1. IDL is a mature packaged evolving through years of use by scien-

tists.

a) If users are at all comfortable with programming, they

will be able to perform calculations and produce graphics

without many of the irrelevant aspects of programming.

b) Graphic output quality is very good and the annotation

capabilities are better than some other software packages.

c) IDL is case insensitive (like Fortran), ‘HELP’, ‘Help’, and

‘help’ all mean the same thing.

Appendix D–2 PHYS-4007/5007: Computational Physics

2. Assuming IDL has been installed on a computer, one starts IDL

on a Linux machine by opening a terminal window and typing:

idl at the Unix prompt.

3. To run IDL on the Microsoft machines, double click on the IDL

icon. Once the GUI is created, one can access the command

prompt at the bottom of the GUI.

4. Using IDL. At the IDL prompt you can type commands like:

IDL> orig = sin((findgen(200)/35)∧2.5)

IDL> plot, orig

IDL> exit

or run an interactive demo program

IDL> demo

5. Additional Help/Documentation.

a) Help from within IDL under Linux: Type a question mark

(?) at the IDL prompt. This will open a web browser

window with a Table of Contents allowing point-and-click

access to various topics.

b) Help from within the IDL Graphical User Interface (GUI)

under Windows. Typing ? at the IDL prompt will produce

a window containing a search box. Just enter the com-

mand name for which you need help. Or just select the

Help icon at the top of the GUI.

c) Note that the command HELP exists, but only gives in-

formation on the current IDL session and not on the com-

mands.

Donald G. Luttermoser, ETSU Appendix D–3

C. A Tutorial of IDL.

1. Communicating with IDL is handled differently in the Microsoft

world than it is in the Unix/Linux world. Note that IDL must

be installed on a machine in order for these steps to

work.

a) On a Microsoft Windows PC, double click the IDL icon

that is on the background screen. This will bring up the

IDL GUI interface.

b) On a Linux machine, there are two ways to start IDL:

i) Type ‘idlde’ at the Linux command prompt. This

will bring up an IDL GUI similar to what is on the

PC.

ii) Or, type ‘idl’ at the Linux command prompt. This

will place you in the standard IDL Command Prompt

mode.

c) The discussion here requires you to enter commands at the

IDL prompt (which you will see in “Command Mode”). In

“GUI Mode,” enter commands in the input box just to the

right of the ‘IDL>’ icon at the bottom of the GUI.

2. Any time something is not clear, don’t hesitate to use the Help

utilities described on the previous page. In the examples below,

the IDL> that is listed is the IDL prompt — you do type this,

IDL presents this to you automatically.

3. This tutorial assumes that you are working in a directory named

idl in your login directory if you are on a Linux machine. To start

IDL, issue the idl command at the Unix/Linux prompt.

Appendix D–4 PHYS-4007/5007: Computational Physics

4. When working in a Microsoft Windows environment, the first

time you run IDL on a machine, you may be asked to select a

WorkSpace directory. You should choose a directory for which

you have permission to write files. You can check to see what

directory you are currently in by typing:

IDL> cd, current=mydir

IDL> print, mydir

make sure you are in the directory you should be working in.

5. It should be kept in mind that this tutorial is only a glimpse

at what you can do with IDL. Once you start using it, you will

want to look at the online, hardcopy documentation, and/or the

optional textbook for this course , Practical IDL Programming by

Gumley, and explore.

6. Getting started. Try typing the following four commands at the

IDL prompt:

IDL> a = 5

IDL> print, a

IDL> a = [2, 3]

IDL> print, a

a) Observe that IDL ‘commands’ are followed by a comma,

before the parameter list.

b) To repeat a command, you can go up and down through

previous commands using the arrow keys (in both Unix

and the Microsoft Windows GUI). When you reach the

command you want to repeat, hit <return> (this is similar

to the keypad editing environment of the Unix tcsh and

bash shells).

Donald G. Luttermoser, ETSU Appendix D–5

c) IDL programs can be stopped using <Ctrl>–C. (Hold down

the control key and hit the letter c).

d) IDL can be aborted immediately using <Ctrl>–\. (All

variables are lost and the state of open files will be uncer-

tain).

7. IDL can be run by typing commands interactively, by creating

programs interactively, by reading programs in from the com-

mand line, or it can be run in batch mode.

8. When you type commands on the command line, each line is

executed immediately when you hit the <return> key. (It is

possible to carry over to the next line using a dollar sign ”$” at

the end of the line).

9. Programs.

a) Here we will be making simple IDL programs that you can

save and run at any time in the future.

i) Under Linux, start an emacs session in either a

separate terminal window (assuming this window

is pointing to your working directory) or in the IDL

terminal by typing

IDL> $emacs myfile.pro &

where the ‘$’ tells IDL this is an operating system

command and the ‘&’ tells the operating system to

put this in background giving you back the IDL>

prompt.

ii) Under the IDL GUI (in Windows), select the ‘File’

pulldown menu at the top left of the IDL GUI and

Appendix D–6 PHYS-4007/5007: Computational Physics

select ‘New IDL Source File’ – this will open an

editing window in the IDL GUI.

b) Enter the following commands into your program – make

sure the last line is end.

a = 25

b = 3

c = a * b

print, a, b, c

end

c) In Linux, save your program in the appropriate directory,

then compile and execute your program with

IDL> .run myfile

which should produce the output

% Compiled module: $MAIN$.

25 3 75

d) In Windows, don’t worry about saving this program and

just compile and execute your program by clicking the

‘green arrow’ button near the top of the GUI. This should

produce the output

% Compiled module: $MAIN$.

25 3 75

10. Variables and arithmetic.

a) You can explicitly type variables, or not. See Type Conver-

sion of the API Reference Guide/Functional List of IDL

Routines/Statements in the Help utility for information

on type conversions.

Donald G. Luttermoser, ETSU Appendix D–7

b) The simplest thing to work with is scalars.

IDL> y = 2.5

IDL> z = x + y

IDL> w = x∧y + sin(z)

IDL> print, x, y, z, w

3 2.50000 5.50000 14.8829

c) Square braces are used to define vectors (1-dimensional

arrays):

IDL> v1 = [1, 2, 0]

IDL> v2 = [1, 0, 0]

IDL> print, ”v1 = ”, v1

v1 = 1 2 0

IDL> print, ”v2 = ”, v2

v2 = 1 0 0

d) Vectors can be component-wise added, multiplied, etc.:

IDL> v3 = v1 + v2

IDL> print, ”v3 = v1 + v2 = ”, v3

v3 = v1 + v2 = 2 2 0

IDL> print, ”v1 * v2 = ”, v1 * v2

v1 * v2 = 1 0 0

IDL> print, ”v1 * sin(v3) = ”, v1 * sin(v3)

v1 * sin(v3) = 0.909297 1.81859 0.00000

e) There are other useful operators, such as min and max:

IDL> min1 = min(v1)

IDL> max1 = max(v1)

IDL> print, ”min(v1), max(v1) = ”, min1, max1

min(v1), max(v1) = 0 2

Appendix D–8 PHYS-4007/5007: Computational Physics

f) Scalars and arrays can be allocated with specific types.

Scalar examples:

IDL> x = float(1.3)

IDL> sx = fix(x)

IDL> lx = long(x)

IDL> bx = byte(x)

IDL> dx = double(x)

IDL> cx = complex(x)

IDL> print, x, sx, lx, bx, dx, cx

1.30000 1 1 1 1.3000000

(1.30000, 0.00000)

g) Array examples:

IDL> a = fltarr(5)

IDL> for i=0, 4 do $

IDL> a[i] = 2*i

IDL> b = complex(a)

IDL> print, ”b = ”, b

b = (0.00000, 0.00000)(2.00000, 0.00000)

(4.00000, 0.00000)(6.00000, 0.00000)

(8.00000, 0.00000)

h) Note that in versions of IDL earlier than Version 5.0, array

variables used parentheses ‘()’ notation instead of square-

bracket ‘[]’ notation. As such, in the above program, the

“for”-loop would have looked like

IDL> a(i) = 2*i

i) IDL Version 5.0 and beyond will accept both the ‘()’ and

the ‘[]’ notation for array elements. You should always fol-

low the square bracket notation for arrays in this course.

Donald G. Luttermoser, ETSU Appendix D–9

11. Matrices.

a) A matrix (which is a 2-dimensional array) may be defined

algorithmically:

IDL> A = dblarr(2, 4)

IDL> for i = 0, 1 do begin

IDL> for j = 0, 3 do a[i, j] = 10 * i + j

IDL> endfor

IDL> print, A

0.0000000 10.000000

1.0000000 11.000000

2.0000000 12.000000

3.0000000 13.000000

Note that as it is printed, the first index corresponds to

the column, and the second index to the row. Another

way to think of it is that the way the data is stored, the

first index varies fastest, and the second varies the slowest.

This agrees with the way the data is printed.

b) A matrix may be constructed explicitly from vectors:

IDL> v1 = [1, 2, 0]

IDL> v2 = [1, 0, 0]

IDL> v3 = [4, 5, 6]

IDL> A = [[v1], [v2], [v3]]

IDL> print, A

1 2 0

1 0 0

4 5 6

c) Create the transpose:

IDL> Atrans = transpose(A)

IDL> print, Atrans

1 1 4

Appendix D–10 PHYS-4007/5007: Computational Physics

2 0 5

0 0 6

d) Take the determinant:

IDL> d = determ(float(A))

% Compiled module: DETERM.

IDL> print, d

–12.0000

e) Invert:

IDL> Ainv = invert(A)

IDL> print, Ainv

0.00000 1.00000 0.00000

0.500000 –0.500000 0.00000

–0.416667 –0.250000 0.166667

f) Multiply vectors by matrices:

IDL> v = [1, 2, 3]

IDL> print, A

1 2 0

1 0 0

4 5 6

IDL> print, v

1 2 3

IDL> print, A ## v

5

1

32

IDL> print, v ## A

15 17 18

g) You can solve a linear system Ax = b for x by Cramer’s

rule (the ‘cramer’ function expects float or double inputs,

Donald G. Luttermoser, ETSU Appendix D–11

requiring an explicit type conversion):

IDL> b = float([1, 2, 16])

IDL> A = float(A)

IDL> x = cramer(A, b)

IDL> print, x

2.00000 –0.500000 1.75000

12. Plots of Y vs. X. Check out the PLOT and the OPLOT com-

mands in file sampleplot.pro to plot and overplot Y vs. X data.

This file can be downloaded from the Course Web Page. Please

note that this is a fairly robust routine that I wrote – plotting

can be quite easy to do in practice.

13. Surface plots.

a) IDL provides an interactive viewer for surface plots, called

XSURFACE. The non-interactive procedure is called SUR-

FACE.

b) To make a surface plot, IDL needs to have the function

evaluated on a regular rectangular grid. There are typi-

cally two steps involved. The first is to form a triangula-

tion using the input (x, y) points to use for interpolation,

and the second is to produce a mesh from that interpola-

tion.

14. Animation. One method of producing animation is to create

a sequence of images and then display them in order. For line

plots, you keep on using OPLOT commands by first undrawing

the line by setting COLOR=0b in the OPLOT command, then by

oplotting it with the normal color and continuing this cycle until

the animation is complete.

Appendix D–12 PHYS-4007/5007: Computational Physics

15. Hardcopy. You can save your plots and other images by ren-

dering them to a postscript file instead of to an X window or

Microsoft Windows. An example is given in sampleplot.pro which

can be downloaded from the Course Web Page. Basically, you set

your plotting area to be a file, then change the graphics device to

be a postscript device, and close that device when you are done:

IDL> set plot, ’PS’

IDL> device, filename=’your filename.ps’

IDL> ...

IDL> ... plot some stuff ...

IDL> ...

IDL> device, /close

16. Why do my graphics get erased?

a) When a window gets covered, then uncovered, someone

has to keep a copy of the obscured part of the image. You

may or may not want to have all the images saved when

they are obscured, by reasons of speed and memory.

b) In any case, this topic is called backing store. It can be

done by IDL, done by the windowing system, or not done.

By default, the X Window system does not have backing

store turned on (however, Microsoft Windows does).

c) In IDL, there is a keyword RETAIN, for specifying which

kind of backing store to use.

RETAIN = 0: implies no backing store,

RETAIN = 1: IDL asks the window system to do it,

RETAIN = 2: IDL does it.

Donald G. Luttermoser, ETSU Appendix D–13

This may be done on a per window basis, e.g.,

window, 0, retain=2, xsize=500, ysize=500

Backing store will now be maintained for this window by

IDL. Note that RETAIN = 2 is the default in the current

versions of IDL.

D. Overview of Plotting Procedure sampleplot.pro.

1. The previously cited procedure (sampleplot.pro) demonstrates the

power that IDL provides you in generating quality publishable

graphics. This code, though a bit complicated, gives an example

on how to write good IDL code.

2. In this procedure, the embedded procedure called SELHCWIDG

brings use a GUI widget that allows the user to select both a

“hardcopy” of the plot and/or an “image” file. The possible

output hardcopy options are

a) Normal postscript file: These files can be sent directly

to a postscript printer using the Unix/Linux lpr command.

The created postscript file will have a file name suffix of

‘.ps’ at the end.

b) Encapsulated postscript file: These files cannot be

sent directly to a postscript printer, but instead, are de-

signed to be imported into a word processing file such as a

LATEX file. The technique for doing this will be described

in the next section of the notes. The created file has ‘.eps’

as the file name suffix.

c) Printer: This option is only available on the Microsoft

version of the code. Instead of making a hardcopy file

that can be sent to a printer, IDL sends the plot to the

default printer directly without creating a file.

Appendix D–14 PHYS-4007/5007: Computational Physics

d) Terminal Only: The plot is only drawn to the terminal

screen and no hardcopy is generated. (This is the default

option.)

3. The user of this plotting procedure, through the embedded SEL-

HCWIDG procedure, can make image files of the following types

(I recommend using the JPEG format since this format is widely

compatible with a large number of software packages):

a) JPG: A JPEG image file which can be imported into a

LATEX file.

b) BMP: A Microsoft bitmap image file which can be im-

ported into a LATEX file.

c) PNG: An image file type designed for web use. These

image files cannot be imported into a LATEX file. This

format is only recognized in the Microsoft version of IDL.

d) TIFF: Short for Tagged Image Format Files, TIFF is a

popular high color-depth image protocol in the industrial

graphics world. TIFF files tend to be much larger than

JPEG or BMP files. As a result, these types of images

are not widely used in the physical sciences.

e) None: No image file is generated. (This is the default

option.)

4. One can also call this procedure from with another procedure

and select the output type through the various keyword settings

in the procedure call. If using the keywords settings, one can

turn off the SELHCWIDG GUI widget input method by setting

the \NOGUI in the procedure call.

