
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Appendix E

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.0

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.

Appendix E. Scientific Computing Using C

A. Tutorial Introduction to C

1. Here is everyone’s first C program: It print the words “hello,

world!” on the screen.

/*--

hello.c

j.g.c. 31/1/93

from K&R

---*/

#include <stdio.h>

int main(void)

{

printf("hello, world!\n");

return 0;

}

a) A “C” program = functions (executable code) + variables

(data).

b) Every program must have a function called main, execu-

tion starts there. main may call other functions. These

functions can be taken from one of the following sources:

i) As written by the programmer in the same file as

main.

ii) As written by the programmer in separate file(s).

iii) Called from predefined libraries.

c) C has no concept of a Program as in Fortran, just func-

tions.

d) The C view is that main is called by the operating system;

the operating system may pass arguments to main, as well

as receive return values (e.g., return 0;); however, above,

we choose to make main take no arguments – (void).

Appendix E–2 PHYS-4007/5007: Computational Physics

e) /* ... */ is a comment and is ignored by the compiler;

the C standard says that comments cannot be nested.

Also, comments must be terminated explicitly, i.e., new-

line does not terminate them — this is a common source
of compiler errors, and, for the unwary, can be very dif-

ficult to trace. For your own sanity the header comment

should include:

i) Name of the program — to correspond to the file-

name.

ii) Authors name — even if copied!

iii) Date.

iv) Brief indication of function and purpose of the

program, e.g., assignment number, or project, and

what it does.

f) Program layout is very important; I suggest two spaces
indentation for each block; I suggest that you avoid tabs

- certainly, avoid having the program pressed up against

the right margin, with all the white space on the left hand
side.

g) The #include <stdio.h> is a directive to the C preproces-

sor to include the contents of a file called stdio.h; stdio.h

contrains declarations of STanDard Input-Output func-
tions; include means that the full contents of the file

stdio.h are inserted where the #include directive appears;

only then is the program passed to the C-compiler proper.
#include is C’s way of importing.

h) In the definition of a function, () encloses the argument

list; in this case main expects no arguments; (void) explic-

itly denotes has no arguments.

Donald G. Luttermoser, ETSU Appendix E–3

i) { ... } enclose the statements in a function.

j) printf is a library function for printing output on the users

screen — in this case the string of characters between

quotes; \n is C notation for newline; printf will not insert
a newline by itself.

k) \n represents a single character — neccessary, since typing

the <return> key in the middle of a string is not really
practical! Other control characters are: \t = tab, \a =

alert bell, \” = double quote, \r = carriage return, \\ =

backslash itself!

l) return 0; in C, programs can return values to the operating
system; in UNIX, ’0’ signifies that the program terminated

normally; other values indicate error conditions. This is

useful if you intend putting your program in a UNIX shell
script; likewise DOS ’.bat’ files.

B. Variables and Arithmetic.

1. Convert degrees Fahrenheit to degrees Celsius:

TC =
5

9
(TF − 32) .

Then, print a list as follows:

0 -17

20 -6

40 4
60 15

300 148

/*--

ftoc.c - Fahr. to Celsius table

j.g.c.

3/10/89

Copied from K&R p.9

--*/

#include <stdio.h>

int main(void)

Appendix E–4 PHYS-4007/5007: Computational Physics

{

int fahr, celsius;

int lower, upper, step;

lower = 0; /* lower limit of table - fahr.*/

upper = 300; /*upper limit*/

step = 20; /*step size*/

fahr = lower;

while(fahr <= upper){

celsius = 5 * (fahr-32) / 9;

printf("%d\t%d\n", fahr, celsius);

fahr = fahr + step;

}

return 0;

}

2. Dissection:

a) All variables must be declared. Usually at the beginning

of their function.

b) Built-in types in C:

int: integer, can be 16-bits, or 32-bits

float: floating point
char: single text character, really it is a small integer

taking on values in [0...255].

short: short integer; possibly 8 bits, maybe 16.
long : long integer - 32 bits.

double: double precision floating point — more significant

digits, larger exponent.

c) Assignment statement: upper = 300;

d) While loop:

while(fahr <= upper){

/* executable statements — body in here */

}

Operation of while:

Donald G. Luttermoser, ETSU Appendix E–5

i) Condition is tested.

ii) If condition is true — body is executed.

iii) Go back to 1.

iv) However, if condition is false — execution con-
tinues at the statement following the loop.

3. Note the textual layout style used: as mentioned earlier, my sug-
gestion is to indent each block by 2 characters — the Kernighan

& Ritchie (K&R) book on C (The C Programming Language —

considered by many to be the C bible) use the next tab, but with
that you very quickly get to the right-hand side of the page; on

the other hand, we have to be able see what is part of a block

and what isn’t.

4. For me it is essential that the closing brace lines up with while.

5. Integer arithmetic causes truncation: hence 5/9 → 0.

6. printf:

a) Has multiple arguments; the first is always a string con-
stant — then, this may contain codes (e.g., ’%d’) to say

how subsequent arguments are to be printed.

b) %d: print the second argument as a decimal integer.

c) printf is not part of the C language — but it’s in the

standard library, which is available with all C compilers.

d) Field widths can be specified, e.g., %6d.

e) Uses right justification, unless specified otherwise.

Appendix E–6 PHYS-4007/5007: Computational Physics

7. In ftoc.c, we have a problem with integer arithmetic: not really

satisfactory — truncation — e.g., 5/9 = 0! Therefore, we need a

floating point version of ftoc.c:

/*--

ftoc1.c - Fahr. to Celsius table, floating point version

j.g.c.

3/10/89

Copied from K&R p.12

--*/

#include <stdio.h>

int main(void)

{

float fahr, celsius;

int lower, upper, step;

lower = 0; /* lower limit of table - fahr.*/

upper = 300; /*upper limit*/

step = 20; /*step size*/

fahr = lower;

while(fahr <= upper){

celsius = (5.0/9.0) * (fahr-32.0);

printf("%3.0f %6.1f\n", fahr, celsius);

fahr = fahr + step;

}

return 0;

}

8. Dissection:

a) Mixing of operands is allowed in C, e.g., fahr = lower;

while(fahr <= upper); but this does not mean that there is
no type checking; in the examples given, the ints are con-

verted to floats before the operation is done. In general,

you should be very careful with this feature. Actually, it
might be better to make type conversion explicit, this can

be done with a type cast, thus:

fahr = (float)lower;

b) f conversion specification in printf:

i) %3.0f: 3 characters wide, no decimal point, no

fraction digits.

Donald G. Luttermoser, ETSU Appendix E–7

ii) %6.1f: 6 characters wide, decimal point, plus 1

fractional digit.

c) Other conversions:

i) %d: print as decimal integer — no width specified.

ii) %6d: decimal integer at least 6 chars wide.

iii) %f: floating point — no width spec.

iv) %6f: float — 6 chars wide.

v) %.2f: 2 chars after decimal point, width uncon-

strained.

vi) %x: hexadecimal.

vii) %o: octal.

viii) %s: char string.

ix) %%: for % itself!

C. The for Statement

1. Another version of ftoc.c: ftoc2.c:

/*--

ftoc2.c - Fahr. to Celsius table, demo of for statement.

j.g.c.

3/10/89

Copied from K&R p.13

--*/

#include <stdio.h>

int main(void)

{

int fahr;

for(fahr=0;fahr<=300;fahr=fahr+20){

Appendix E–8 PHYS-4007/5007: Computational Physics

printf("%d %6.1f\n",fahr,(5.0/9.0)*(fahr-32));

}

return 0;

}

2. Major differences:

a) In printf(), celsius is replaced by a complex expression that

evaluates to celsius; this should be nothing new to those
who have used Fortran; the general rule is:

A variable of some type can be replaced

by an arbitrarily complicated expression that

evaluates to a value of that type.

b) for statement and loop: There are three statements con-

tained within the ’(.)’ in a for statement:

i) fahr = 0: initialization.

ii) fahr <= 300: loop continuation control; evaluate

the condition — if true execute the body — other-
wise jump out.

iii) fahr = fahr + 20: increment; do this AFTER the

first and subsequent loops — BEFORE evaluation

of control condition.

iv) The for(...) body may be a single statement or a

block { ... } .

D. Symbolic Constants and the Preprocessor.

1. The general form of a symbolic definition is:

#define <symbolic-name> <replacement-text>.

Donald G. Luttermoser, ETSU Appendix E–9

2. The C preprocessor replaces all occurrences of <symbolic-name>

with <replacement-text> — just like an editor global-replace com-

mand.

3. Final version — ftoc3.c:

/*--

ftoc3.c - Fahr. to Celsius table, demo of Symbolic

constants

j.g.c.

3/10/89

Copied from K&R p.15

--*/

#include <stdio.h>

#define LOWER 0 /*lower limit of table*/

#define UPPER 300

#define STEP 20

int main(void)

{

int fahr;

float celsius;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP){

celsius = (5.0/9.0) * (fahr-32);

printf("%3d %6.1f\n", fahr, celsius);

}

return 0;

}

4. Dissection:

a) The preprocessor is an extremely important part of C.

When you compile a C program, two things happen: First,
the preprocessor runs through the file, second, actual com-

pilation. Therefore, in the example given above, all oc-

currences of the string ”LOWER” get replaced with ”0”;
the compiler never sees the ”LOWER”; and, LOWER is

not a variable.

b) Adopt a convention to use upper-case for symbolic con-

stants; be very careful what else you use upper case for.

Appendix E–10 PHYS-4007/5007: Computational Physics

c) There is no ‘;’ after the ‘#define’ statement,

d) Nor does a #define statement contain an ’=’.

E. Character Input and Output.

1. There is a standard input-output library which deals primarily

with streams of characters, or text-streams ; cf. UNIX files.

a) A text stream = a sequence of characters divided into

lines.

b) A line = zero or more characters followed by a newline

character.

2. The standard input-output library MUST make each input-output

stream conform to this model — no matter what is in the physical

file.

3. c = getchar() /* read next input char from the standard input

stream, i.e., usually the keyboard */

4. putchar(c) /* put/print char ’c’ on the screen — standard output

stream */

5. There are equivalent functions for files.

6. Buffered and Echoed Input.

a) On most computers, input from the keyboard is echoed

and buffered.

b) Echoed input. When you type a character on the key-

board, the computer input-output system immediately

Donald G. Luttermoser, ETSU Appendix E–11

echoes it to the screen / terminal; immediately means BE-

FORE it is presented to the reading program (see buffered

below). (Incidentally, this means that the terminal, it-

self, does not display the typed character — just what is

echoed from the host computer.)

c) Buffered input. While the user is typing, the com-

puter stores all the typed characters in a buffer (array)

and presents the array (line) of characters to the reading

program ONLY AFTER A CARRIAGE RETURN (En-

ter) has been typed.

7. Terminal input-output and I-O Redirection

a) C (and UNIX) has a fairly unified view of text input-

output. Reading from the keyboard is like reading from

a file device called stdin. However, there are special stdin

routines that hide that fact, e.g., getchar() below is exactly

equivalent to getc(stdin). Likewise, putchar(c) is equiva-

lent to putc(c, stdout), where stdout is the standard-output

device, i.e., the screen.

b) Incidentally, putc(c, stdprn) is a handy way of writing to a

PC printer, as is putc(c, stdaux) — to the auxiliary (com-

munications) port, where stdprn is the standard printer

device, and stdaux is the standard auxiliary device. BUT

THESE ARE NOT STANDARD C / UNIX.

c) So, when we talk about file I-O below, we include ter-

minal I/O. All the programs below can be tested using

the terminal. (Note: <Ctrl> z is EOF (end-of-file) for a

keyboard).

Appendix E–12 PHYS-4007/5007: Computational Physics

d) If you want to test the programs using files, you can use

input-output redirection.

i) First, you must get the compiler to compile to an

.exe file, say cio.exe.

ii) Second, create a text file, say test.dat. Then, en-

ter at the Unix prompt

cio < test.dat

which tells cio to read from test.dat =⇒ the < redi-

rects the program to read from the file instead of

the keyboard.

iii) If you want to send the output to a file, say

testout.dat, use

cio < test.dat > testout.dat.

8. File Copying. Make a program with the following algorithm:

read a char

while(char is not an eof char)

output the char just read

read a char

/*---

cio1.c - copy input to output, version 1.

j.g.c.

3/10/89

copied from K&R p.16.

---*/

#include <stdio.h>

int main(void)

{

int c;

c = getchar();

while(c != EOF){

Donald G. Luttermoser, ETSU Appendix E–13

putchar(c);

c = getchar();

}

return 0;

}

Dissection:

a) “!=” denotes not equal to.

b) int c instead of char c! =⇒ getchar() must be able to

indicate errors, e.g., when there is no more input — end-
of-file (EOF); EOF is defined in stdio.h using # define;

normally, it requires more bits than a plain character.

9. Another version, using a common C cliche:

/*---

cio2.c - copy input to output, version 2.

demo of C file reading cliche/idiom

j.g.c.

3/10/89

copied from K&R p.17.

---*/

#include <stdio.h>

int main(void)

{

int c;

while((c=getchar()) != EOF)

putchar(c);

return 0;

}

Dissection:

a) while((c=getchar()) != EOF): This is quite a common id-

iom/cliche in C; it is made possible because assignment

statements in C have a value; the value is the last value
assigned. Experienced C programmers will all understand

what it does. However, do NOT take this as general per-

mission to write dense, cryptic code.

b) Note the importance of brackets.

Appendix E–14 PHYS-4007/5007: Computational Physics

10. Character Counting. Objective: count the characters in the

input stream, stop at EOF.

/*--

ctch1.c - counts input chars; version 1

j.g.c.

3/10/89.

copied from K&R p.18.

---*/

#include <stdio.h>

int main(void)

{

long nc;

nc=0;

while(getchar() != EOF)

++nc;

printf("%ld\n", nc);

return 0;

}

Dissection:

a) ++ operator: increment by one; – –: decrement by one.

Note: As single statements, ++nc and nc++ are equiva-

lent, but give different values in expressions, e.g.,

int i, n;

n = 6;

i = ++n; /* POST-increment gives i == 7, and
n == 7; the increment is done BEFORE

the assignment */

wheras,

n = 6;
i = n++; /* POST-increment gives i == 6, and

n == 7 */

b) long (integer) is at least 32 bits long.

c) %ld tells printf to expect a long.

Donald G. Luttermoser, ETSU Appendix E–15

11. Line Counting.

/*---*/

#include <stdio.h>

/* count lines in input*/

int main(void)

{

int c, nl;

nl = 0;

while((c=getchar()) != EOF)

if(c == ’\n’)

++nl;

printf("%d\n", nl);

return 0;

}

/*--*/

Dissection:

a) if statement:

tests condition in (...)

if true executes statement or group { ... } following,

otherwise (false) skip them.

b) == means is-equal to. CAUTION: = in place of == can

be syntactically correct and so not trapped by compiler

— a nasty hard-to-find error results!

c) Character constants, e.g., ’\n’ represents an integer value
equal to the value of the character in the machine’s charac-

ter set; In ASCII: ’\n’ == 10 decimal; ’A’ == 65 decimal.

12. Word Counting. Word = any sequence of chars that does not

contain a white-space char. i.e., blank, tab, newline.

/*---*/

#include <stdio.h>

#define IN 1 /*inside a word*/

#define OUT 0 /*outside a word*/

/* count words, lines and chars in input*/

Appendix E–16 PHYS-4007/5007: Computational Physics

int main(void)

{

int c, nl, nw, nc, state;

state = OUT;

nl = nw = nc = 0;

while((c=getchar()) != EOF){

++nc;

if(c == ’\n’)

++nl;

if(c==’ ’ || c==’\n’ || c==’\t’)

state = OUT;

else if(state == OUT){

state = IN;

++nw;

}

}

printf("%d %d %d\n", nl, nw, nc);

return 0;

}

/*---*/

Dissection:

a) nl = nw = nc = 0; recall: an assignment has a value, i.e.,

nc = 0; has the value ’0’.

b) || means OR, && means AND

c) Expressions with || and && are evaluated left to right —

evaluation is stopped as soon as the result is known. e.g.,

int i=1, j=2, k=3;

if (i==1 || j==3 || k==3) { ... }

the evaluation of the condition can, and does, stop as soon
as j==3 evaluates to FALSE (why?)

d) if(expression)

statement1

else
statement2.

As usual statement can be a group in brackets { ... }

Donald G. Luttermoser, ETSU Appendix E–17

13. Arrays. Below is a program to count the occurrences of each nu-

meric digit, of white-spaces and of all other characters (together)

— without using 12 named counters!

/*---*/

#include <stdio.h>

/*counts digits, white-spaces, others*/

int main(void)

{

int c, i, nwhite, nother;

int ndigit[10];

nwhite = nother = 0;

for(i=0; i<10; i++)

ndigit[i] = 0;

while((c=getchar()) != EOF)

if(c>=’0’ && c<=’9’)

++ndigit[c-’0’];

else if(c==’ ’ || c==’\n’ || c==’\t’)

++nwhite;

else

++nother;

printf("digits =");

for(i=0; i<10; ++i)

printf(" %d", ndigit[i]);

printf(", white space = %d, other = %d\n",

nwhite, nother);

return 0;

}

Dissection:

a) int ndigit[10]; an array of 10 ints.

b) The for(...) loops must go 0, 1, ... 9, since, in C, array

subscripts must start at 0.

c) The test if(c>=’0’ && ... : && denotes logical AND.

d) c–’0’ assumes that ’0’,’1’...’9’ have consecutive, increasing

values.

e) c–’0’ is an integer expression =⇒ it’s OK for a subscript.

Appendix E–18 PHYS-4007/5007: Computational Physics

f) if(condition1)

statement1

else if(condition2)

statement2
........

else

statement

This is the model for a multiway decision; you can have

any number of

else if (cond)

stmt

groups between first if and final else; the final else catches

anything that didn’t satisfy any of the previous condi-

tions.

g) Indenting style: Again, please note that we don’t want to

run off the right-hand edge of the paper.

F. Functions.

1. We have already encountered functions that have been written

for us, e.g., printf, getchar, putchar.

2. Here is a program that reads ints and floats and does some arith-

metic with them. We’ll use it as a case-study of many of the

aspects of functions.

/*---

math1.c

j.g.c. 6/1/96

demo of functions -- in same file

--*/

#include <stdio.h>

int getInt(void)

{

int i;

Donald G. Luttermoser, ETSU Appendix E–19

scanf("%d", &i);

return i;

}

float getFloat(void)

{

float f;

scanf("%f", &f);

return f;

}

float addf(float a, float b)

{

float c;

c = a + b;

return c;

}

int main()

{

float x, y, z, w;

int i, j, k;

printf("enter first int:");

i = getInt();

printf("enter second int:");

j = getInt();

k = i + j;

printf("%d + %d = %d\n", i, j, k);

printf("enter first float:"); x = getFloat();

printf("enter second float:"); y = getFloat();

z = x + y;

printf("%f + %f = %f\n", x, y, z);

w = addf(x, y);

printf("%f + %f = %f\n", x, y, w);

printf("%f + %f = %f\n", x, y, addf(x, y));

return 0;

}

Dissection:

a) A function definition consists of:

Appendix E–20 PHYS-4007/5007: Computational Physics

return-type function-name(parameter list if any)

{

definitions of internal variables (locals);

statements
}

b) The functions may be all in the same file, along with main,

or may be spread across many files.

c) The variables a, b, c are local to addf; they are invisible

elsewhere.

d) a, b, c are called parameters, or formal parameters, or,

colloquially, formals.

e) In the call: addf(x, y), x, y are called arguments, or actual

parameters, or colloquially actuals.

f) return <expression> returns a value to main and passes
control back to main.

g) Unless the function returns a value (some don’t) return

is not essential, but if the function declaration indicates

that the function returns a value, then there must be an
appropriate return statement.

h) The calling function can ignore the returned value.

3. Here is another version with different layout; here we’ve kept

main at the beginning, and functions at the end; consequently,

we’ve had to declare functions getInt, etc. before they are called.

/*---

math2.c

j.g.c. 6/1/96

demo of functions -- in same file

-- now with functions *after* main(), and with

declarations.

--*/

#include <stdio.h>

Donald G. Luttermoser, ETSU Appendix E–21

/*-- must declare functions before calls --*/

int getInt(void);

float getFloat(void);

float addf(float a, float b);

int main()

{

float x, y, z, w;

int i, j, k;

printf("enter first int:");

i = getInt();

printf("enter second int:");

j = getInt();

k = i + j;

printf("%d + %d = %d\n", i, j, k);

printf("enter first float:"); x = getFloat();

printf("enter second float:"); y = getFloat();

z = x + y;

printf("%f + %f = %f\n", x, y, z);

w = addf(x, y);

printf("%f + %f = %f\n", x, y, w);

/*- function call can replace variable

addf returns a float value -*/

printf("%f + %f = %f\n", x, y, addf(x,y));

/*- you can ’mix’ types -- if the function has been

declared, and if types are compatible; here it

is possible to ’coerce’ ’i’ to float; essentially

the compiler inserts a ’cast’ -- (float)i; usually

it is best for the programmer to do this explicitly

-*/

printf("%d + %f = %f\n", i, y, addf(i,y));

return 0;

}

int getInt(void)

{

int i;

scanf("%d", &i);

Appendix E–22 PHYS-4007/5007: Computational Physics

return i;

}

float getFloat(void)

{

float f;

scanf("%f", &f);

return f;

}

float addf(float a, float b)

{

return a + b;

}

Dissection:

a) int getInt(void); declares the type of getInt(); in C par-
lance, it is called the prototype for getInt.

b) getInt has type: void –> int.

c) addf has type: float, float –> float.

d) Parameter names in prototypes are neither significant nor
neccessary. But, can provide good documentation.

e) Prototypes and the way functions are declared are the

biggest change between ANSI C and the earlier versions.
Easier for compiler to check errors.

4. Normally, it is a good idea to split a program into modules, e.g.,
the arithmetic functions we’ve written may be tested an stable,

whilst the main program is subject to change; it’s nonsensical to

have to re-compile the functions each time, so we’ll put them in
a separate file funs.c.

5. Actually, there are bigger and better reasons for such modularity,
but we’ll come to them later. Thus, math3.c:

Donald G. Luttermoser, ETSU Appendix E–23

/*---

math3.c

j.g.c. 7/1/96

demo of functions -- in *separate* file / module

funs.c

and with declarations in

funs.h

--*/

#include <stdio.h>

#include "funs.h"

int main()

{

float x, y, z, w;

int i, j, k;

printf("enter first int:");

i = getInt();

printf("enter second int:");

j = getInt();

k = i + j;

printf("%d + %d = %d\n", i, j, k);

printf("enter first float:"); x = getFloat();

printf("enter second float:"); y = getFloat();

z = x + y;

printf("%f + %f = %f\n", x, y, z);

w = addf(x,y);

printf("%f + %f = %f\n", x, y, w);

printf("%f + %f = %f\n", x, y, addf(x,y));

return 0;

}

and, funs.c:

/*--

funs.c

j.g.c. 7/1/96

demo of functions in separate file

called by math3.c

--*/

#include "funs.h"

int getInt(void)

Appendix E–24 PHYS-4007/5007: Computational Physics

{

int i;

scanf("%d", &i);

return i;

}

float getFloat(void)

{

float f;

scanf("%f", &f);

return f;

}

float addf(float a, float b)

{

return a + b;

}

and, we need funs.h:

/*--

funs.h

j.g.c. 7/1/96

demo of functions in separate file

called by math3.c

--*/

#include <stdio.h>

int getInt(void);

float getFloat(void);

float addf(float a, float b);

Dissection:

a) When using a library or external module, you must get
into the habit of producing a header (*.h) file that con-

tains declarations of the functions; and, declarations of

other things required by the functions, e.g., symbolic con-
stants.

b) If you do not include declarations, the compiler reverts to

pre-ANSI habits: it assumes, implicitly, that all functions

return an int, and that actual and formal arguments agree;

Donald G. Luttermoser, ETSU Appendix E–25

in this pre-ANSI mode, the line in math2.c above,

printf(”%d + %f = %f \n”, i, y, addf(i,y));

would fail miserably. Fortunately, gcc (GNU C compiler)

seems to issue warnings in such cases; other compilers may

not be so helpful; gcc -Wall is better. (Note that on all
Unixes except Linux, the standard C compiler executable

is ran with the ‘cc’ command. On Linux, the standard is

the GNU C compiler which is ran with the ‘gcc’ command.)

c) The prototypes of standard library functions are contained

in header files, e.g., stdio.h is just an ordinary text file

containing prototypes of printf, etc.; (in addition, stdio.h

contains #defines).

d) ’.h’ files are not compiled — they get compiled as part of

any file in which they are included (recall, CPP – the C

PreProcessor executes all ’#’ commands before the com-
piler proper.

e) When you have separate modules (or compilation units),

obviously, the compilation & linking procedure must be

modified. The separate units can be compiled to object,
as before:

gcc -c math3.c # yields math3.o

gcc -c funs.c # –> funs.o

f) Now link

gcc -o math math3.o funs.o # yields executable math

g) Actually, you can do all this in one line

gcc -o math math3.c funs.c

6. Raise an integer m to a positive integer power n: power(m, n):

/*--

tstpow - tester for power

Appendix E–26 PHYS-4007/5007: Computational Physics

j.g.c.

3/10/89

copied from K&R p. 24,25.

---*/

#include <stdio.h>

int power(int m, int n);

int main(void)

{

int i;

for(i=0; i<10; ++i){

printf("%d %d %d\n", i, power(2,i), power(-3,i));

}

return 0;

}

/*---

power - raise base to n-th power; n not negative.

j.g.c. 3/10/89

copied from K&R p.25

---*/

int power(int base, int n)

{

int i, p;

p = 1;

for(i=1 ;i<=n; ++i)

p = p * base;

return p;

}

G. Parameters — Pass by Value.

1. Call by value means that the arguments are copied into tempo-

rary storage for the function; essentially, the formal parameters

are local variables that get created, then initialised to the value

of the arguments; thus, above, in the call power(2, i), first a local

int called base is created, and initialised to value ’2’; likewise, a

local ’n’ gets created and initialised to the value that ’i’ has.

2. Contrast: Subroutine/function parameters in Fortran, where the

subroutine/function has access to the original argument variable

— pass by reference.

Donald G. Luttermoser, ETSU Appendix E–27

3. We have no explicit call by reference in C (must be done using

pointers). But, conversely, in C, arrays are passed by reference,

and you cannot pass them by value!

4. Another version of power to demonstrate call by value:

/*---

power - raise base to n-th power, n non-neg., ver.2

to show use of call by value

---*/

int power(int base, int n)

{

int p;

for (p=1; n>0; --n)

p = p * base;

return p;

}

Dissection: Note that parameter ’n’ can be modified, without
affecting the argument; ’n’ is local, and, like all local variables,

temporary.

H. Character Arrays.

1. To read a set of lines, find and print the longest. Pseudo-code:

while(there is another line)

if(it is longer than he current longest)

save it

save its length

print the longest line.

2. Solution: Break into functions — following the pseudo-code spec-

ification: (1) getline: fetch the next line, work out its length, (2)

copy: use for saving a line — cannot assign strings in C.

/*--

lil.c - find and print longest line

j.g.c.

4/10/89.

Copied from K&R p29.

Appendix E–28 PHYS-4007/5007: Computational Physics

---*/

#include <stdio.h>

#define MAXLINE 1000 /*size of buffer for line*/

int getline(char line[],int maxline);

void copy(char to[],char from[]);

int main(void)

{

int len; /*current line length*/

int max; /*max. length so far*/

char line[MAXLINE]; /*current input line*/

char longest[MAXLINE]; /*buffer for longest line*/

max=0;

while((len=getline(line,MAXLINE))>0)

if(len>max){

max=len;

copy(longest,line);

}

if(max>0) /*there was at least one line*/

printf("%s,longest);

return 0;

}

/*---

getline - read a line into s, RETURN length

---*/

int getline(char s[],int lim)

{

int c,i;

for(i=0;(i<lim-1)&&((c=getchar())!=EOF)&&(c!=’\n’);++i)

s[i]=c;

if(c==’\n’){

s[i]=c;

++i;

}

s[i]=’\0’;

return i;

}

/*--

copy - copy "from" into "to".

---*/

void copy(char to[],char from[])

{

int i;

Donald G. Luttermoser, ETSU Appendix E–29

i=0;

while((to[i]=from[i])!=’\0’)

++i;

}

Dissection:

a) It is not neccessary to declare the length of ’s’ in getline;

storage has already been allocated in main.

b) void copy(..) states explicitly that copy does not return a

value — allows compiler to check inconsistent usage.

c) Null terminated strings; convention in C;

”hello\n” stored as —
h e l l o \n \0 — 7 chars.

d) NB. the issue of buffer overflow is ignored, like many of

these programs, we have not provided full ’bullet-proofing’,

I. External Variables and Scope.

1. Local variables, e.g., ’line[]’, ’longest[]’ in ’main()’ are private or

LOCAL to main.

2. The ’i’ in copy is unrelated to ’i’ in getline; i.e., it has LOCAL

SCOPE.

3. Such variables are also called AUTOMATIC — they only come

into existence when the function is called, they disappear when

the function is exited.

4. Contrast STATIC — still local, but values are retained from call

to call. (Side-issue: STATIC, when applied to external variables

or functions, also has another effect (see K&R Chap. 4.6) namely,

Appendix E–30 PHYS-4007/5007: Computational Physics

that their names are invisible outside the file in which they are

declared.

5. Automatic assumed unless:

static int c; /* c declared static */

6. Declaration:

auto int c; /* equivalent to int c; */

=⇒ hardly ever used — since defaults to auto.

7. External Variables:

a) Similar to variables in a Fortran COMMON block.

b) They are globally accessible. [GLOBAL SCOPE]

c) Remain in existence permanently. Their LIFETIME (or

DURATION or SPAN) is for the duration of the execution

of the program. =⇒ Scope and lifetime are important

issues in programming languages.

d) Thus, externals/globals can be used to communicate data

between functions; but, there are all sorts of reasons why

you should never use them — mostly to do with reduction

of coupling between software units.

e) Rules of use of externals.

i) An external variable must be DEFINED, exactly

once, OUTSIDE any function.

ii) It must be DECLARED in each function that ac-

cesses it; and the declaration must announce that

it is external:

Donald G. Luttermoser, ETSU Appendix E–31

extern int max;

Example E–1. lil.c rewritten to use external variables.

/*--

lil1.c - find and print longest line, version 2

to demo extern variables.

j.g.c.

4/10/89.

Copied from K&R p32.

---*/

#include <stdio.h>

#define MAXLINE 1000 /*size of buffer for line*/

/* external definitions follow N.B. outside any function*/

int max; /*max. length so far*/

char line[MAXLINE]; /*current input line*/

char longest[MAXLINE]; /*buffer for longest line*/

int getline(void);

void copy(void);

int main(void)

{

int len; /*current line length*/

extern int max;

extern char longest[];

max=0;

while((len=getline())>0)

if(len>max){

max=len;

copy();

}

if(max>0) /*there was at least one line*/

printf("%s,longest);

return 0;

}

/*---

getline - read a line into external line, RETURN length

---*/

int getline(void)

{

int c,i;

extern char line[];

Appendix E–32 PHYS-4007/5007: Computational Physics

for(i=0;(i<MAXLINE-1)

&&((c=getchar())!=EOF)&&(c!=’\n’);++i)

line[i]=c;

if(c==’\n’){

line[i]=c;

++i;

}

line[i]=’\0’;

return i;

}

/*--

copy - copy extern line into extern longest.

---*/

void copy(void)

{

int i;

extern char line[],longest[];

i=0;

while((longest[i]=line[i])!=’\0’)

++i;

}

Dissection:

i) Externals max, line[], longest[] are DEFINED out-

side any function.

ii) Externals are DECLARED before they are used

in a function.

iii) Exception to 2: if definition appears in the source

file before use, then extern need not be stated ex-
plicitly; but it is much better for documentation to

state it explicitly.

iv) As they are typed, ’getline’ and ’copy’ could be
placed in separate files from ’main’; the LINKER

would connect the external functions.

v) The external data could likewise be defined in a

separate file, which could be compiled and linked

Donald G. Luttermoser, ETSU Appendix E–33

(even though it only contains data).

vi) Empty argument list must use explicit ’void’. If

you defined the function ’copy’ as

copy(){

....

}

the compiler would assume pre-ANSI C; the major

difference with pre-ANSI was much more relaxed
argument/parameter consistency checking. In fact

there was no consistency checking =⇒ the called

function just assumed that the caller had passed

the correct argument types; so, you had all sorts of
nasties, like integers being interpreted as floating-

point!

vii) External variables are against most of the prin-
ciples of software engineering: modularity, informa-

tion hiding, lack of coupling.

f) I recommend that you adopt the following standard: all
uses of globals / extern must be accompanied with a jus-

tification, contained in a comment, /*..*/, placed nearby;

it is surprising how, with a little thought they can be

completely avoided; and, you really appreciate it when it
comes to testing.

J. Definition, Declaration.

1. We will adopt the same convention as K&R for the use of these

terms.

2. DEFINITION: the variable is created (or function body given)

Appendix E–34 PHYS-4007/5007: Computational Physics

— including allocation of storage.

3. DECLARATION: The properties of the variable (or function)

are announced to the program — but no storage allocated.

K. Creation of Executables.

1. Basics: Compiling and Linking.

a) Source programs like hello.c, math3.c etc. are not directly

executable. There are a number of stages in creation of

the executable, and executing it.

b) The first stage of creating an executable is to compile

hello.c into object code.

gcc –c hello.c

Doing this, and puts the hello object code into a file

’hello.o’. This object code is essentially machine code,

with code to initialize main, a call to printf, and code to

return 0. But the code for ’printf’ is not present.

c) The second stage is to link the machine code in hello.o

with appropriate object code for printf:

gcc –o hello hello.o

This produces the executable file hello (no extension).

d) Even though we use gcc (or cc), gcc actually invokes

a command called ld to do the linking-loading (loading

refers to loading of external code).

e) Here, the extraction of the code for printf from a library

is kept implicit; however, a library is nothing more than

an object file, with appropriate indexes to each function.

Donald G. Luttermoser, ETSU Appendix E–35

f) Finally, to execute hello, you type

hello

at the Unix prompt. This reads the contents of hello into

memory, and starts execution at an appropriate start ad-

dress.

g) The situation may be made more clear-cut if we look

at the two module program math3.c, funs.c, introduced

above. Recall,

gcc –c math3.c # yields math3.o
gcc –c funs.c # → funs.o

gcc –o math math3.o funs.o # yields executable math

However, you can do all this in one line

gcc –o math math3.c funs.c

This process is diagrammed in Figure B-1.

2. Other Libaries.

a) Not all system functions are in the default libraries that

are searched by gcc/ld. For example, math functions like

sqrt — take math4.c, if you try to link using:

gcc –ansi –pedantic –Wall –Wstrict–prototypes –o math \

math4.c funs.c

The linker will complain that the call to sqrt is unresolved.

To correct this, you must explicitly mention the (m)aths

library; thus,

gcc –ansi –pedantic –Wall –Wstrict–prototypes –o math \

math4.c funs.c –lm
/*---

math4.c

j.g.c. 7/1/96

extension of math3.c, but showing use of ’math library’

Appendix E–36 PHYS-4007/5007: Computational Physics

+----------+

| library |

| |

+----------+

compiler |

+---------+ gcc -c +--------+ |

| math3.c +----------------------->| math.o | |

| | | | |

+---------+ +--------+ |

| |

+---------+ gcc -c +--------+ | |

| funs.c +--------->| funs.o| | |

| | | | | |

+---------+ +--------+ | |

| | |

| | |

V V V

+--------------------------------+

| linker |

| |

+--------------------------------+

|

V

executable: math

Figure E–1: Compiling and Linking

Donald G. Luttermoser, ETSU Appendix E–37

function -- ’sqrt’

i.e. need: (1) #include <math.h>

(2) put -lm in linker command

--*/

#include <stdio.h>

#include <math.h>

#include "funs.h"

int main()

{

float x, y, z, w, v;

int i, j, k;

printf("enter first float:"); x = getFloat();

printf("enter second float:"); y = getFloat();

w = addf(x, y);

printf("%f + %f = %f\n", x, y, w);

/* make sure we have a non-negative number! */

w = fabs(w);

v = sqrt(w);

printf("square-root of %f is %f\n", w, v);

return 0;

}

b) Also, libraries exist to carry out a variety of X-Window

functions.

3. Static vs. Shared Libraries. The code for addf, getInt, and

getFloat is linked statically, i.e., the object code for each of the

functions is copied into the file math. For common functions like

printf, this can become wasteful; hence shared libraries, in which

the linker inserts just a pointer to shared code that held in the

operating system, or maybe somewhere on disk.

4. Make.

a) When you get to more complicated systems of multi-module

programs, make can become useful.

Appendix E–38 PHYS-4007/5007: Computational Physics

b) Here is a makefile for math4.c:
makefile for math4

j.g.c. 7/1/96

#

here we define a ’macro’ CC as gcc, the GNU

C-compiler

CC=gcc -ansi -pedantic -Wall -Wstrict-prototypes

how to create ’math’ (the executable):

(1) math4.o, and funs.o must be up to date

math: math4.o funs.o

#

(2) create prog by linking math4.o, funs.o

note: *must* use TAB here, spaces no good

(CC) -o math math4.o funs.o -lm

specify what funs.o depends on

don’t forget the TAB for the cc command!

funs.o: funs.c funs.h

(CC) -c funs.c

dependencies for math4.o

math4.o: math4.c

(CC) -c math4.c

clean-up directory of .o(bject) files

invoke as: make clean

i.e. a separate shell command, typically

after you’re finished developing \& executable ’math’ is OK

note that the ’rm’ command is on the line

after the ’clean’ target, and, as usual, TABbed

clean:

rm -f funs.o math4.o

Donald G. Luttermoser, ETSU Appendix E–39

c) The standard practice is to name this file Makefile, then

invoking

make

causes math to be made: all programs compiled and linked.

Make takes are of dependencies, e.g., if math4.o and funs.o
already exist, make will not recompile them. On the other

hand, if they exist, but if, say, math4.c has changed since

the last compilation to math4.o, then make will recompile
math4.c (but not func.c).

d) In the example above,

make clean

will delete all the ‘.o’ files.

e) If you want to call the makefile something else, i.e., math4.m,
maybe you want to keep many make files in one directory

— though advanced make users have other solutions to

that problem — then you can invoke make.m as

make –f make.m

f) Make is very much part of UNIX, and is used for very
much more than just C programs.

g) Another point, because of its fiddly syntax, nobody ever

creates a makefile from scratch; find a template makefile

(one that works!) that is close to what you require and
change bits to suit. Be careful with the places where the

TAB syntax matters.

5. Warnings for gcc and cc.

a) As I have said earlier, gcc and cc, without warnings switched

on, is positively dangerous.

b) I have suggested the following for either gcc or cc:

Appendix E–40 PHYS-4007/5007: Computational Physics

gcc –ansi –pedantic –Wall –Wstrict–prototypes

The following list explains the various switches on GNU

cc (e.g., gcc):

-pedantic: issue warnings for non-ANSI standard C

-pedantic-errors: issue errors for non-ANSI standard C

-Wall: enable a host of warning messages

-Wpointer-arith: warn of dependency on "size_of" function or void

-Wcast-qual: warn of pointer cast that removes type qualifier

-Wcast-align: warn of pointer cast that increases alignment

-Wwrite-strings: make string constants type "const char[]" and warn

about non-const char

* mix

-Wconversion: warn when prototype causes different type conversion

-Waggregate-return: warn of functions returning structures

-Wstrict-prototypes: warn if argument types missing

-Wmissing-prototypes: warn if global function has no prototype

-Wredundant-decls: warn of multiple declarations in same scope

-Wnested-externs: warn of externs within functions

-Winline: warn if function cannot be inlined

-Werror: make all warnings errors

-ansi: ANSI standard C

c) It is recommended that the following be used with gcc:

–ansi
–pedantic

–Wall

–Wpointer-arith
–Wcast-qual

–Wwrite-strings

–Wconversion

–Wno-strict-prototypes
–Wmissing-prototypes

–Wnested-externs

–Winline
–Wno-error

d) Jamie Blustein <jamie@csd.uwo.ca> has notes about us-

ing gcc at http://www.csd.uwo.ca/∼jamie/.Refs/.Footnotes/gcc.

html

Donald G. Luttermoser, ETSU Appendix E–41

L. Interactions with the Operating System.

1. Since Unix and C are closely related (indeed, Unix is written in

C), C was built to allow easy access to the operating system.

2. The function int system (const char *s) (which resides in <stdlib.h>)

allows a C program to pass a string to the operating system to

be processed. For instance,

system (”date”);

causes the Unix program date to be run; it prints the date and

time of day on the standard output. system returns a system-

dependent integer status from the command executed. In the

Unix system, the status returned is the value returned by exit.

3. The function void exit (int status) (also in <stdlib.h>) causes nor-

mal program termination. Open files are flushed, open streams

are closed, and control is returned to the environment. How sta-

tus is returned to the environment is implementation-dependent,

but zero is taken as successful termination. The values EXIT SUC-

CESS and EXIT FAILURE may also be used. Note that if one used

exit to terminate a program, one would not use return in these

cases.

4. The function *getenv (const char *name) (in <stdlib.h>) returns

the environment string associated with name, or NULL if no string

exists.

5. There are various time functions defined in <time.h> to return

time information from the operating system — see Appendix B10

in Kernigham & Ritchie.

Appendix E–42 PHYS-4007/5007: Computational Physics

6. The function int remove (const char *filename) (<stdio.h>) re-

moves the named file. It returns non-zero if the attempt fails.

This is the function called by the Unix command rm.

7. The function int rename (const char *oldname const char *new-

name) (<stdio.h>) changes the name of a file. It returns non-

zero if the attempt fails. This is the function called by the Unix

command mv.

8. The following commands can give useful information about the

processes that are running on the machine. They are all in

<stdio.h>.

a) int getpid () and int getppid () returns the process’s ID and

the parent’s process ID.

b) int chdir (char *pathname) sets the process’s current work-

ing directory to the directory stored in pathname. The

process must have execute permission from the directory

to succeed. chdir () returns 0 if successful, –1 if not.

c) int nice (int delta) adds delta to a process’s current priority

value. Only a super-user may specify a delta that leads to

a negative priority value. Legal priority values lie between

–20 and +19, the lower the value, the larger amount of

time the CPU spends on the process. If a delta is speci-

fied that takes a priority value beyond a user’s limit, the

priority value is truncated to the limit. If nice () succeeds,

it returns a new nice value; otherwise, it returns –1. Note

that this can cause problems, since a nice value of –1 is

legal.

d) int getuid () and int getgid () returns the user ’s and the

user’s group ID.

