
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Appendix F

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.0



Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.



Appendix F: How Computers ‘See’ Numbers and
Letters

A. Introduction.

1. Computers work with numbers (and any character for that mat-

ter) in binary format: Two bits (= Binary digITs), 0 ≡ off

and 1 ≡ on.

a) There are 2N integers that can be represented with N bits.

b) The sign of the integer is handled with the first bit (0 ≡
positive number), which leaves N −1 bits to represent the

value of the integer.

c) Therefore, N -bit integers will be in the range (absolute

value-wise) of [0 : 2N−1].

i) Hence an 8-bit machine can handle integers in the

range [–128 : 127].

ii) A 16-bit machine can handle integers in the range

[–32,768 : 32,767].

iii) A 32-bit machine can handle integers in the range

[–2,147,483,648 : 2,147,483,647].

iv) Finally, a 64-bit machine can handle integers in

the range [−9.223372... × 1018 : 9.223372... × 1018].

Note I am using ‘real’ notation here due to the

large size of the number, on a computer, such a

number would have no decimal point. Also note

that in computer programming languages, numbers

in scientific notation use the “E” (“D” for double



Appendix F–2 PHYS-4007/5007: Computational Physics

precision – see below) notation: [–9.223372E18 :

9.223372E18].

v) Calculating (or expressing) integers that are smaller

(if negative) or larger (if positive) than the given

chip size would result in an underflow (negative)

or overflow of the computer register (and typically

crash one’s program) =⇒ the bigger the chip, the

better it is for numerical work.

d) Since binary strings of numbers are not easy for people

to work with, a compiler is used to translate the binary

numbers of the machine to either octal (base 8, instead of

base 2), decimal (base 10, what we normally are used to),

or hexadecimal (base 16 numbers).

B. Bits and Bytes.

1. Numbers and character strings are stored on computers in words,

where the word length is often expressed in bytes:

1 byte (1 B) ≡ 8 bits (8 b). (F-1)

a) Conventionally, storage size is measured in bytes (or kilo-

bytes [KB], megabytes [MB], and gigabytes [GB]).

b) However, here “kilo” does not mean 1000, instead it is

equal to

1 KB (1 K) = 210 bytes = 1024 bytes. (F-2)

c) In the past, many machines measure their memory size in

units of 1/2-kilobytes called blocks, or more precisely

512 B = 29 bytes = 512 bytes. (F-3)



Donald G. Luttermoser, ETSU Appendix F–3

d) One byte is the amount of memory required to store a

single character. This adds up to a typical typed page

requiring ∼ 3 KB.

C. The Details of Data Types.

1. As discussed in §I of these notes, there are two basic types of data

that are operated on and stored by computers =⇒ integers and

real numbers. Depending on the programming language one is

using, there are various types of “integers” and “reals.” We will

now outline the details of how computers store and operate on

these data types.

2. Integers are stored as

I = (−1)s × (
N−1
∑

n=1

αn2
n−1), (F-4)

where ‘s’ is the sign bit (0 ≡ positive, 1 ≡ negative) and αn takes

on either a ‘1’ value (the bit is set) or ‘0’ value (the bit is not

set). For example, on an 8-bit machine (N = 8), we can write

–57 as

(sign bit set to 1) ×
[

(1 × 20) + (0 × 21) + (0 × 22)

+(1× 23) + (1 × 24) + (1 × 25) + (0 × 26))
]

= (−) 1 + 0 + 0 + 8 + 16 + 32 + 0 = −57,

or in binary format (where the bits are listed in the opposite-

order of the summation above), that is, the least significant digit

(20) is recorded on the far right side of the binary number (just

as it is in decimal notation):

−57 = 1 011 1001,

where the first bit is the sign bit (1 = negative).

3. Integers can come in a variety of flavors in various programming

languages:



Appendix F–4 PHYS-4007/5007: Computational Physics

a) Logical: 1-bit word, values = [.FALSE. (=0) : .TRUE.

(=1)], maximum value = 1.

b) Short Integer: 8-bit or one-byte word length, range =

[–128 : 127], maximum value = 27 − 1, number of digits

= 3.

c) Character: Like a short integer typically containing the

ASCII code of the character, however, the programmer

in a higher-level language (like Fortran or IDL) uses the

string notation (characters surrounded by single- and/or

double-quotation marks) and the compiler changes these

characters to the short integer ASCII code, then to binary,

to which the machine then operates upon. See §I.E for

useful information dealing with the ASCII character set.

d) Integer: 16-bit or two-byte word length, range = [–32,768

: 32,767], maximum value = 215 − 1, number of digits =

5.

e) Long Integer (sometimes just called ‘Long’ or ‘Double-

Precision Integer’): 32-bit or four-byte word length, range

= [–2,147,483,648 : 2,147,483,647], maximum value = 231−
1, number of digits = 10.

f) Double-Long Integer (sometimes just called ‘Double

Long’ or ’Quad-Precision Integer’): 64-bit or eight-byte

word length, range = [–9.22E18 : 9.22E18], maximum

value = 263 − 1, number of digits = 20. Note that these

types of integers are only found on 64-bit architectures,

and even then, only found in some programming lan-

guages (e.g., Intel Fortran which is based on the old DEC

Fortran compilers).



Donald G. Luttermoser, ETSU Appendix F–5

4. Unlike integers, real numbers are indicated with a decimal points

located in the number.

5. The computer can handle real numbers in two different ways:

Fixed-point (not to be confused with ‘fixed’ or ‘integer’ data

types) and floating-point notation.

a) In fixed-point real notation, the number x is represented

as

xfix = sign × (αn2
n + αn−12

n−1 + · · · + α02
0 +

· · · + α−m2−m) , (F-5)

(note that the textbook uses Ifix for this type of number).

b) The first bit is used to store the sign of the number and

the remaining N − 1 bits are used to store the αi values

such that n + m = N − 2, where N is the total number

of bits used to represent a number. The particular values

for N , m, and n are machine dependent. For instance,

the number 9.875 could be represented in real fixed-point

binary as

0 1001111 =⇒ (sign bit) ×
[

(1 × 23) + (0 × 22)
+(0 × 21) + (1 × 20) + (1 × 2−1) + (1 × 2−2)

+(1× 2−3)
]

= 8 + 0 + 0 + 1 + 0.5 + 0.25 + 0.125

= 9.875

on an 8-bit machine.

c) All fixed-point real numbers have the same absolute error

of 2−m−1 [the term left off the right-hand side of Eq. (I-5)].

d) The correspondingly disadvantage is that small numbers

(those which the first string of α values are zeros) have

large relative errors.



Appendix F–6 PHYS-4007/5007: Computational Physics

e) Relative errors tend to be more important than abso-

lute errors (we cover errors in more detail in §IV of these

notes), fixed-point real numbers are used mainly in spe-

cial applications (like business), but typically not used in

science and engineering.

6. In scientific work, the programming language compilers (like For-

tran and IDL) use floating-point numbers for reals (as such, reals

are often referred to as ‘floats’ in some languages).

a) In floating-point notation, the number x is stored as a

sign, a mantissa, and an exponential field (expfld in Eq.

I-6).

b) The number is reconstituted as

xfloat = (−1)s × mantissa × 2 (expfld – bias) , (F-6)

(note that the book uses a slightly different form for this

equation). The mantissa contains the significant figures

of the number, s is the sign bit (still the first bit of the

binary number), and the actual exponent of the number

has a bias added to it.

• Since we have a sign bit, the mantissa will always be

positive.

• The bias guarantees that the number stored as the expo-

nent field is always positive (of course the actual exponent

can be negative).

• The use of the bias is rather indirect. For example, a

single-precision 32-bit word may use 8-bits for the expo-

nent in Eq. (I-6), and represent it as an integer. This

8-bit integer “exponent” has a range of [0:255]. Num-

bers with actual negative exponents are represented by a

bias equal to 127, a fixed number for a given machine.

Consequently, the exponent has the range [-127:128] even



Donald G. Luttermoser, ETSU Appendix F–7

though the value stored in the exponent in Eq. (I-6) is a

positive number.

• Of the remaining bits, one is use for the sign and the

other 23 for the mantissa, where

mantissa = (m1 × 2−1) + (m2 × 2−2) +

· · · + (m23 × 2−23) , (F-7)

with the mi stored liked the αi in Eq. (I-5).

• As an example, the number 0.5 is stored as

0 0111 1111 1000 0000 0000 0000 0000 000

on a 32-bit machine, where the bias is 0111 11112 = 12710.

c) Typically, the largest possible floating-point number for a

32-bit machine is

0 1111 1111 1111 1111 1111 1111 1111 111 ,

which has the value 1 for all its bits (except the sign)

and adds up to 2128 = 3.4 × 1038. Whereas the smallest

possible floating-point number for a 32-bit machine is

0 0000 0000 1000 0000 0000 0000 0000 000 ,

which has the value 0 for almost all the bits and adds up

to 2−128 = 2.9 × 10−39. As built in by the use of the bias,

the smallest number possible to store is the inverse of the

largest.

7. Just as was the case for integers, reals come in a variety of “fla-

vors” in various programming languages. For example:

a) Single-Precision Real (sometimes called Floats or Real ∗4
numbers): 32-bit = 4-byte word-size numbers, 6-7 deci-

mal places of precision (1 part in 223), and a range =

[1.17549435 × 10−38 : 3.40282347 × 1038].



Appendix F–8 PHYS-4007/5007: Computational Physics

b) Double-Precision Real (sometimes called just Double

Precision or Real ∗8 ): 64-bit (2 32-bit words → 11 bits

used for the exponent, 1 for the sign, and 52 bits for the

mantissa) = 8-byte word-size numbers, about 16 deci-

mal places of precision (1 part in 252), and a range =

[2.2250738585072014×10−308 : 1.7976931348623157×10308 ].

c) Quad-Precision Real (Real ∗16 ): 128-bit (4 32-bit words

→ 15 bits used for the exponent, 1 for the sign, and 112

bits for the mantissa) = 16-byte word-size numbers, about

36 decimal places of precision (1 part in 2112), and a range

= [∼3.362 × 10−4932 : ∼1.189 × 104932].

d) Complex Numbers: Some programming languages (in

particular, Fortran and IDL) have complex data types. A

complex number has the form

z = x + iy , (F-8)

where i ≡
√
−1 and x corresponds to the real part of

the number and y to the imaginary part. These numbers

are stored as two-element arrays (real, imaginary) of real

numbers.


