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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.



Appendix G: Numerical Integration Using Gaussian
Quadrature

A. Gaussian Quadrature.

1. Often, one cannot choose an evenly spaced interval of grid points

to do a numerical integration. From Eq. (VI-21) we have
∫

b

a
f(x) dx ≈ w1f(x1) + · · · + wNf(xN) . (G-1)

One then can ask the question, is there an optimal choice for the

grid points (or nodes) xi and the weights wi to solve this integral ?

2. This question leads us to formulate a new class of integration

formulas, known collectively as Gaussian quadrature.

a) In this class, we will use only the most common formula,

namely Gauss-Legendre quadrature.

i) There are many other kinds of Gaussian quadra-

ture that treat specific types of integrands, such as

the Gauss-Laguerre formularization which is opti-

mal for integrals of the form
∫∞
0

e−xf(x) dx.

ii) The derivation of the other Gaussian formulas

(see Table 5.2 in your textbook) is similar to our

analysis of Gauss-Legendre quadrature.

b) The theory of Gaussian integration is based on the follow-

ing theorem.

i) Let q(x) be a polynomial of degree N such that
∫

b

a
q(x)ρ(x)xk dx = 0 , (G-2)

where k = 1, 2, ..., N − 1 and ρ(x) is a specified

weight function.
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ii) Call x1, x2, ..., xN the roots of the polynomial q(x).

Using these roots as grid points plus a set of weights

w1, w2, . . . , wN we construct an integration formula

of the form
∫

b

a
f(x)ρ(x) dx ≈ w1f(x1)+· · ·+wNf(xN ) . (G-3)

iii) There is a set of w’s for which the integral for-

mula will be exact if f(x) is a polynomial of degree

< 2N .

c) The weights can be determined from the Three-Point

Gaussian-Legendre Rule. For example, consider the

interval [−1, 1] with ρ(x) = 1. This gives us a Gaussian-

Legendre formula. For integrals in the interval [a, b], it is

easy to transform them as

∫

b

a
f(x) dx =

b − a

2

∫

1

−1
f(z) dz (G-4)

using the change of variable x = 1

2
[b + a + (b − a)z].

i) The first step is to find polynomial q(x). We want

a three-point rule so that q(x) is a cubic:

q(x) = c0 + c1x + c2x
2 + c3x

3 . (G-5)

ii) From the theorem of Eq. (C-2), we know that

∫

1

−1
q(x) dx =

∫

1

−1
xq(x) dx =

∫

1

−1
x2q(x) dx = 0 .

(G-6)
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iii) Plugging in and doing each integral we get the

equations

2c0 +
2

3
c2 =

2

3
c1 +

2

3
c3 =

2

3
c0 +

2

5
c2 = 0 . (G-7)

iv) The general solution is c0 = 0, c1 = −a, c2 =

0, c3 = 5a/3, where a is some constant. This arbi-

trary constant cancels out in the second step.

v) Using this in Eq. (IX-64) gives a polynomial so-

lution of

q(x) =
5

2
x3 −

3

2
x . (G-8)

Notice that this is just the Legendre polynomial

P3(x).

vi) Next we need to find the roots of q(x) = P3(x).

This cubic is easy to factor. The roots are x1 =

−
√

3/5, x2 = 0, and x3 =
√

3/5. Using the grid

points in Eq. (C-5) gives

∫

1

−1
f(x) dx ≈ w1f(

√

3/5) + w2f(0) + w3f(−
√

3/5) .

(G-9)

vii) Finally, to find the weights. The above formula

must be exact for f(x) = 1, x, ..., x5. We can use

this to work out values of w1, w2, and w3. It turns

out to be sufficient to consider just f(x) = 1, x, and

x2 which produces 3 equations:

2 = w1 + w2 + w3

0 = −
√

3/5w1 +
√

3/5w3

2

3
=

3

5
w1 +

3

5
w3 . (G-10)
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viii) This linear system of equations is easy to solve

giving w1 = 5/9, w2 = 8/9, w3 = 5/9.

ix) An alternative way of finding the weights is to

use the identity

wi =
2

(1 − x2
i ){(d/dx)PN(xi)}2

, (G-11)

where N = 3 in our example. This formula may be

derived from the recurrence relation for Legendre

polynomials.

d) There are various advantages and disadvantages in using

Gaussian integration.

i) Advantage: A very high-order accuracy is obtained

for just a few points — often this method yields

excellent results using fewer than 10 points.

ii) Disadvantages: (1) The node points and weights

must be computed or obtained from tables. This

step is nontrivial if you want to use many node

points. Using more than N = 20 points is rarely

worth it since badly behaved functions will spoil the

results in any case. (2) Unlike Newton-Cotes inte-

gration, the method does not lead itself to iteration

nor is it easy to estimate the error.

3. You will typically never have to write your own Gaussian quadra-

ture subroutines since they are included in math libraries and

built into some programming languages (e.g., the IDL functions

INT 2D( ) and INT 3D( ); the QGAUS subroutine in Numerical

Recipes).


