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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics I taught by Dr. Donald Luttermoser at East Tennessee State University.



Appendix H: Fourier Analysis and Non-Linear
Oscillations

A. Introduction.

1. This section of the notes covers Fourier Transform Methods

or spectral methods.

a) For some problems, the Fourier transform is simply an ef-

ficient computational tool for accomplishing certain com-

mon manipulation of data.

b) In other cases, we have problems for which the Fourier

transform (or the related power spectrum) is itself of

intrinsic interest.

2. A physical process can be described either in a time domain, by

values of some quantity f as a function of time t, e.g., f(t), or else

in a frequency domain, where the process is specified by giving

its amplitude F (generally a complex number indicating phase

also) as a function of frequency ν or ω = 2πν, where ω is the

angular frequency, e.g., F (ν) or F (ω).

a) In quantum mechanics, the time domain is described by

the wave function Ψ(x, t) as a function of both displace-

ment x and time t, and the frequency domain is described

by the amplitude function A(k), where the independent

variable k is typically a function of energy E which of

course is related to the frequency of the particle.

b) In optics, the time domain is given by the flow of photons

as wave trains and the frequency domain is given by the

spectrum of these photons, amplitude as a function of

frequency.
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B. Fourier Analysis.

1. We will use the example of the Schrödinger equation from quan-

tum mechanics for our description of Fourier analysis. In quan-

tum, one often encounters wave functions that take the form

Ψ(x, t) =
1√
2π

∫ ∞

−∞
A(k) ei(kx−ωt) dk. (H-1)

a) At t = 0, this equation takes on a form that may be

familiar:

Ψ(x, 0) =
1√
2π

∫ ∞

−∞
A(k) eikx dk. (H-2)

b) Eq. (H-2) reveals that the amplitude function A(k) is the

Fourier transform of the wave function Ψ(x, t) at t = 0

=⇒ the amplitude function is related to the wave function

at t = 0 by a Fourier integral.

2. Fourier analysis — the generation and deconstruction of Fourier

series and integrals are the mathematical methods that underlies

the construction of wave packets by superposition.

a) Mathematicians commonly use Fourier analysis to rip func-

tions apart, representing them as sums or integrals of sim-

ple component functions, each which is characterized by

a single frequency.

b) This method can be applied to any function f(x) that

is piecewise continuous — i.e., that has at most a finite

number of finite discontinuities. In quantum mechanics,

wave functions must be continuous, so as such, satisfies

this condition =⇒ prime candidates for Fourier analysis.

c) Whether we represent f(x) via a Fourier series or Fourier

integral depends on whether or not this function is pe-
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riodic =⇒ any function that repeats itself is said to be

periodic.

d) More precisely, if there exists a finite number L such that

f(x + L) = f(x), then f(x) is periodic with period L.

e) We can write any function that is periodic (or that is

defined on a finite interval) as a Fourier series.

f) However if f(x) is non-periodic or is defined on the infinite

interval from −∞ to +∞, we must use a Fourier integral.

3. Fourier Series. Fourier series are not mere mathematical de-

vices; they can be generated in the laboratory (or telescope) =⇒
a spectrometer decomposes an electromagnetic wave into spectral

lines, each with a different frequency and amplitude (intensity).

Thus, a spectrometer decomposes a periodic function in a fashion

analogous to the Fourier series.

a) Suppose we want to write a periodic, piecewise continuous

function f(x) as a series of simple functions. Let L denote

the period of f(x), and choose as the origin of coordinates

the midpoint of the interval defined by this period−L/2 ≤
x ≤ L/2.

b) If we let an and bn denote (real) expansion coefficients, we

can write the Fourier series of this function as

f(x) = a0+
∞
∑

n=1

[

an cos

(

2πn
x

L

)

+ bn sin

(

2πn
x

L

)]

. (H-3)

c) We calculate the coefficients in Eq. (H-3) from the func-

tion f(x) as

a0 =
1

L

∫ L/2

−L/2
f(x) dx (H-4)
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an =
2

L

∫ L/2

−L/2
f(x) cos

(

2πn
x

L

)

dx (n = 1, 2, . . .)

(H-5)

bn =
2

L

∫ L/2

−L/2
f(x) sin

(

2πn
x

L

)

dx (n = 1, 2, . . .)

(H-6)

d) Notice that the summation in Eq. (H-3) contains an infi-

nite number of terms. In practice we retain only a finite

number of terms =⇒ this approximation is called trun-

cation.

i) Truncation is viable only if the sum converges to

whatever accuracy we want before we chop it off.

ii) Truncation is not as extreme an act as it may

seem. If f(x) is normalizable, then the expansion

coefficients in Eq. (H-3) decrease in magnitude with

increasing n, i.e.,

|an| → 0 and |bn| → 0 as n → ∞.

iii) Under these conditions, which are satisfied by

physically admissible wave functions, the sum in

Eq. (H-3) can be truncated at some finite maxi-

mum value n
max

of the index n. (Trial and error is

typically needed to determine the value of n
max

that

is required for the desired accuracy.)

iv) If f(x) is particularly simple, all but a small, fi-

nite number of coefficients may be zero. One should

always check for zero coefficients first before evalu-

ating the integrals in Eqs. (H-4, H-5, H-6).
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4. The Power of Parity. One should pay attention as to whether

one is integrating an odd or an even function. Trigonometric

functions have the well-known parity properties:

sin(−x) = − sin x (odd) (H-7)

cos(−x) = + cosx (even) (H-8)

As such, if f(x) is even or odd, then half of the expansion coef-

ficients in its Fourier series are zero.

a) If f(x) is odd [f(−x) = −f(x)], then


























an = 0 (n = 1, 2, . . .)

f(x) =
∞
∑

n=1

bn sin

(

2πn
x

L

) (H-9)

b) If f(x) is even [f(−x) = +f(x)], then


























bn = 0 (n = 1, 2, . . .)

f(x) =
∞
∑

n=1

an cos

(

2πn
x

L

) (H-10)

c) If f(x) is either an even or and odd function, it is then

said to have definite parity.

5. The Complex Fourier Series: If f(x) does not have a definite

parity, we can expand it in a complex Fourier series.

a) To derive this variant on the Fourier series in Eq. (H-3), we

just combine the coefficients an and bn so as to introduce

the complex exponential function ei2πnx/L; viz.,

f(x) =
∞
∑

n=−∞
cne

i2πnx/L. (H-11)

b) Note carefully that in the complex Fourier series in Eq. (H-

11) the summation runs from −∞ to ∞. The expansion
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coefficients cn for the complex Fourier series are

cn =
1

L

∫ L/2

−L/2
f(x) e−i2πnx/L dx. (H-12)

Exercise: Derive Eqs. (H-11) and (H-12) and thereby determine

the relationship of the coefficients cn of the complex Fourier series

of a function to the coefficients an and bn of the corresponding real

series.

6. Fourier Integrals: Any normalizable function can be expanded

in an infinite number of sine and cosine functions that have in-

finitesimally differing arguments. Such an expansion is called a

Fourier integral.

a) A function f(x) can be represented by a Fourier inte-

gral provided the integral
∫∞
−∞ |f(x)| dx exists =⇒ all wave

functions satisfy this condition for they are normalizable.

b) The Fourier integral has the form

f(x) =
1√
2π

∫ ∞

−∞
g(k)eikx dk, (H-13)

which is the inverse Fourier transform.

c) The function g(k) plays the role analogous to that of the

expansion coefficients cn in the complex series (Eq. H-11).

The relationship of g(k) to f(x) is more clearly exposed

by the inverse of Eq. (H-13),

g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx, (H-14)

which is the famed Fourier transform equation. In math-

ematical parlance, f(x) and g(k) are said to be Fourier

transforms of one another.

d) More precisely, g(k) is the Fourier transform of f(x),

and f(x) is the inverse Fourier transform of g(k).
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e) When convenient, we will use the shorthand notation

A(k) = F [Ψ(x, 0)] and Ψ(x, 0) = F−1 [A(k)] ,

(H-15)

to represent Eqs. (H-14) and (H-13), respectively, in the

realm of quantum mechanics.

f) Many useful relationships follow from the intimate rela-

tionship between f(x) and g(k). For our purposes, the

most important is the Bessel-Parseval relationship:
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|g(k)|2 dk. (H-16)

C. The Time Domain versus the Frequency Domain.

1. In the time domain, h(t), a physical process is described by

some quantity h as a function of time t.

2. In the frequency domain, H(f), the process is specified by

giving its amplitude H (generally a complex number indicating

phase also) as a function of frequency f , where −∞ < f < ∞.

3. Essentially, h(t) and H(f) are two different representations of

the same function related by the transform equations,

H(f) =
∫ ∞

−∞
h(t) e2πift dt (H-17)

h(t) =
∫ ∞

−∞
H(f) e−2πift df . (H-18)

a) If t is measured in seconds, then f is measured in Hz (=

1/s).

b) If h is a function of position x in meters, then H is a

function of wavenumber k in cycles per meter.

4. Sometimes, angular frequency (in radians/second) is used instead

of frequency, where ω = 2πf . Then Eqs. (H-17) and (H-18) are
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rewritten as

H(ω) =
∫ ∞

−∞
h(t) eiωt dt (H-19)

h(t) =
1

2π

∫ ∞

−∞
H(ω) e−iωt dω . (H-20)

a) To introduce symmetry between these two equations, of-

ten the 1/2π coefficient is split between the two integrals,

introducing a 1/
√

2π coefficient to each equation (as done

in Eqs. H-1, H-2, H-13, H-14).

b) For this section, we will follow the f notation.

5. As we have seen, the following statements about these functions

can be made:

If ... then ...

h(t) is real H(−f) = H∗(f)
h(t) is imaginary H(−f) = −H∗(f)

h(t) is even H(−f) = H(f) [i.e., even]

h(t) is odd H(−f) = −H(f) [i.e., odd]
h(t) is real and even H(f) is real and even

h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even H(f) is imaginary and even

h(t) is imaginary and odd H(f) is real and odd

These symmetries will be useful in order to develop computa-

tional efficiency in coding.

6. Useful scalings and shifting equations:

h(t) ⇐⇒ H(f) “no scaling” (H-21)

h(at) ⇐⇒ 1

|a|H(f/a) “time scaling” (H-22)

1

|b|h(t/b) ⇐⇒ H(bf) “frequency scaling” (H-23)

h(t − t◦) ⇐⇒ H(f)e2πift◦ “time shifting” (H-24)

h(t)e−2πif◦t ⇐⇒ H(f − f◦) “freq. shifting.” (H-25)
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D. Fourier Transform of Discretely Sampled Data.

1. In the most common situations, function h(t) is sampled (i.e.,

measurements taken) at evenly spaced intervals in time.

a) Let τ denote the time interval between consecutive sam-

ples such that

hn = h(nτ) , n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (H-26)

Often, τ is called the sampling interval.

b) The reciprocal of the time interval is called the sampling

rate. If τ is measured in seconds, then the sampling rate

is measured in Hz (cycles per second).

2. Sampling Theorem and Aliasing.

a) For any sampling interval, there is a special frequency, fc,

called the Nyquist critical frequency, given by

fc ≡
1

2τ
. (H-27)

i) If a sine wave of the Nyquist critical frequency is

sampled at its positive peak value, then the next

sample will be at the negative trough value, the

sample after that at the positive peak again, and

so on.

ii) Expressed otherwise: Critical sampling of a sine

wave is two sample points per cycle.

iii) One frequently chooses to measure time in units

of the sampling interval τ . In this case the Nyquist

critical frequency is just the constant 1/2.
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b) The Nyquist critical frequency is important for two dis-

tinct reasons, the first good, the second bad.

i) The sampling theorem: If a continuous function

h(t), sampled at interval τ , happens to be band-

width limited to frequencies smaller than fc, then

the function h(t) is completely determined by its

sample hn. Explicitly

h(t) = τ
+∞
∑

n=−∞
hn

sin[2πfc(t − nτ)]

π(t − nτ)
. (H-28)

ii) Sampling a continuous function that is not band-

width limited to less than the Nyquist critical fre-

quency will miss information outside then range of

−fc < f < fc =⇒ this is called aliasing. Any fre-

quency component outside of the frequency range

(−fc, fc) is aliased (i.e., falsely translated) into that

range by the very act of discrete sampling. The ef-

fects of this are shown in Figure (H-1).

3. Discrete Fourier Transform.

a) Suppose we have N consecutive sampled values

hk ≡ h(tk) , tk ≡ kτ , k = 0, 1, 2, . . . , N − 1 . (H-29)

For description purposes, let’s assume that h(t) is an even

function.

b) Now determine estimates of the frequency from −fc to

+fc at the distinct points defined by

fn ≡ n

Nτ
, n = −N

2
, . . . ,

N

2
. (H-30)

The extreme values of n correspond to the lower and upper

limits of the Nyquist critical frequency range.



Donald G. Luttermoser, ETSU Appendix H–11

Figure H–1: The continuous function h(t) shown in the top figure is sampled every τ seconds.
The actual Fourier transform of this function, H(f), is shown in the middle figure. If we ignore
the points outside the Nyquist critical frequency (delineated by the vertical lines), an aliased (and
incorrect) Fourier transform is computed as shown in the bottom figure.

t
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f
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Appendix H–12 PHYS-4007/5007: Computational Physics

c) The discrete values for H(f) are now determined with

H(fn) =
∫ ∞

−∞
h(t)e2πifntdt ≈

N−1
∑

k=0

hke
2πifntkτ = τ

N−1
∑

k=0

hke
2πikn/N .

(H-31)

d) The summation shown in Eq. (H-31) is called the discrete

Fourier transform of the N points hk. If we define Hn

with then have

Hn ≡
N−1
∑

k=0

hke
2πikn/N , (H-32)

Eq. (H-31) can then be written as

H(fn) = τHn , (H-33)

where fn is given by Eq. (H-30).

i) Remember that N is a measure of the period of

the function H(f). Therefore H−n = HN−n, with

n = 1, 2, . . ..

ii) To simplify the calculation, one generally lets the

n in Hn vary from 0 to N−1 (one complete period).

Then n and k (in hk) vary exactly over the same

range.

iii) When this convention is followed, you must re-

member that zero frequency corresponds to n = 0,

positive frequencies 0 < f < fc correspond to val-

ues 1 ≤ n ≤ N/2 − 1, while negative frequencies

−fc < f < 0 correspond to N/2 + 1 ≤ n ≤ N − 1.

The value N/2 corresponds to both f = fc and

f = −fc.

e) The discrete inverse Fourier transform then takes the form

hk =
1

N

N−1
∑

n=0

Hne
−2πikn/N . (H-34)
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f) Finally, in analogy to Eq. (H-16), we can write the discrete

form of Parseval’s theorem as

N−1
∑

k=0

|hk|2 =
1

N

N−1
∑

n=0

|Hn|2. (H-35)

E. Fast Fourier Transform (FFT).

1. We can ask the question, how much time is required to compute

a function of the form

Hn =
N−1
∑

k=0

W nkhk , (H-36)

where the vector of hk’s is multiplied by a matrix whose (n, k)th

is the constant W to the power n × k with W given by

W ≡ e2πi/N , (H-37)

hence a Fourier series expression.

a) This matrix multiplication requires N2 complex multipli-

cations plus a smaller number of operations to generate

the required powers of W .

b) As such, discrete Fourier transforms appear then to be a

O(N2) process.

2. We can speed the calculations up to order O(N log2 N) opera-

tions with an algorithm called the Fast Fourier Transform or

(FFT) for short.

a) The difference between N log2 N and N2 calculations is

immense.

b) With N = 106, this corresponds to 0.03 seconds and 20

minutes on a 1 GHz processor, respectively.
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3. FFTs were first developed for computational coding in the mid-

1960s by J.W. Cooley and J.W. Tukey. The earliest “discoveries”

of the FFT was made by Danielson and Lanczos in 1942. The

Danielson-Lanczos Lemma is as follows:

a) A discrete Fourier transform of length N can be rewrit-

ten as the sum of two discrete Fourier transforms each of

length N/2.

b) One is formed from the even-numbered points of the orig-

inal N , the other from the odd-numbered points. The

mathematical proof is

Fk =
N−1
∑

j=0

e2πijk/Nfj

=
N/2−1
∑

j=0

e2πik(2j)/Nf2j +
N/2−1
∑

j=0

e2πik(2j+1)/Nf2j+1

=
N/2−1
∑

j=0

e2πikj)/(N/2)f2j + W k
N/2−1
∑

j=0

e2πikj/(N/2)f2j+1

= F e
k + W kF o

k . (H-38)

c) Note that k in the equations above varies from 0 to n, not

just to N/2. Never the less, the transforms F e
k (the ‘even’

sum) and F o
k (the ‘odd’ sum) are periodic in k with length

N/2. As such, each is repeated through 2 cycles to obtain

Fk

d) For this to be the most effective, N should be an integer

multiple of 2. If it is not, one should pad the vectors with

zeros until the next power of 2 is reached.

4. Virtually all mathematics software packages have FFTs built into

the software or available in a math library. FFTs are most often

used in the convolution and deconvolution of spectral data.


