
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Section I

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.1

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.

I. An Introduction to Scientific Computing

A. Computer Types.

1. With the widespread availability of fast computers at affordable

prices, it has become important to understand the capabilities

and details of numerical modeling.

2. In physics and astronomy, many talk about five different classes

or types of computer hardware. Over time, some of these classes

have become extinct. From most to least expensive they are:

a) Supercomputers: A mainframe with many 64-bit CPU

chips — vector processors. Cray used to be the biggest

maker of supercomputers, but they have now gone out of

business due to the speed and low-cost of the PCs and the

advent of computer clusters. There are still a few Crays

in operation around the country.

b) Computer Clusters: Since the early 21st century, small

“cluster” machines, some with multi-CPU chips (in a sin-

gle box) and others with multi-computers (in a single box

with one or two CPUs) connected via a high speed net-

work, have taken the place of “supercomputers” due to

their much lower cost.

c) Mainframes: These were large computers (large photo-

copier size or larger) which allowed for multi-user use from

remote locations via a network. These machines all had

multi-user operating system running the architecture.

i) Here “multi-user” means many operators using the

machine at the same time.

I–1

I–2 PHYS-4007/5007: Computational Physics

ii) Mainframes in the 1960s and 1970s typically had

32-bit CPU chips.

iii) Machines in the 1970s and 1980s contained 64-bit

CPU chips. The old VAXes (various models, 750,

780, 8600, etc.) and the IBM 360 are two examples

of mainframes.

iv) These machines became extinct by the late 1990s

due to the popularity of multi-user workstations

and fast, cheap PCs (see below).

d) Workstations: A machine that runs a multi-user operat-

ing system like Unix and its variants. They are essentially

scaled down versions of the older mainframe computers.

i) They typically have a 64-bit CPU processor (or

series of processors), though some older machines

(pre-1995) only have 32-bit chips in them.

ii) On these machines, numerous users can operate

the machine remotely (and at the computer con-

sole) at the same time.

iii) Examples of such machines are the Sun worksta-

tions, AlphaStations (originally made by the now

defunct Digital Equipment Company), and Silicon

Graphics workstations.

iv) Note that the PC world has been calling ma-

chines running various flavors of Microsoft Windows

“workstations.” However, these machines are not

workstations from the definition above, since they

Donald G. Luttermoser, ETSU I–3

are not designed for simultaneous, real-time, multi-

users use.

v) Workstations are now virtually extinct due to the

advent of much cheaper fast PCs.

e) Personal Computers (PCs): Typically a 64-bit CPU

processor (or series of processors) running an operating

system (OS) of either some version of Microsoft Windows,

Linux (with X-Windows), or Mac OS (on the MacIntosh’s).

i) Note that there are still many of the older 32-bit

PCs being used by various people.

ii) These machines, both the 32-bit and 64-bit CPUs,

are designed for single-user mode (i.e., one user at

a time).

3. The size of the CPU can be as important as the clock speed of

the CPU in terms of computer speed.

a) Early PCs only had only an 8-bit CPU chip. They evolved

to 16-bit, then 32-bit, and now 64-bit.

b) There are two reasons why the size of the CPU is impor-

tant.

i) The maximum and minimum size of a number is

limited by the chip size.

ii) The amount of precision possible for a number

is also limited by the CPU size (though some com-

pilers are sophisticated enough to increase precision

for a given chip beyond what the chip can normally

provide).

I–4 PHYS-4007/5007: Computational Physics

B. Operating Systems

1. Software designed to control the interface between a user or com-

puter programs and the CPU of a computer is known as an Op-

erating System.

a) A simple definition of an operating system is the suite of

programs that make the hardware usable. The operating

system manages the CPU, disks, and I/O devices.

b) Manipulation of the operating system was typically one

of the hardest aspects of learning to use computers which

is why the “GUI (Graphic User Interface) mentality” has

taken hold of the modern computers — the user no long

needs to talk to the operating system, the GUI does it for

you!

2. Some of the most popular operating system in use today are

Microsoft Windows, Mac OS, and Linux.

a) Since most users now-a-days use Windows machines or

Macs, both with ‘front-end’ GUIs, we will not go into the

details of these operating systems.

b) Many scientists in Astronomy and Physics prefer using

Unix/Linux-based machines to carry out their research.

Note that we will be primarily be using the Linux op-

erating system in this class.

c) Appendix A has a brief review of the history of operat-

ing systems, please review this appendix at your earliest

convenience.

d) In addition, carefully review Section C of this Appendix A

to learn the structure of Unix/Linux and learn some of the

Donald G. Luttermoser, ETSU I–5

more common operating system commands used in these

types of operating systems.

e) Note that one communicates with the Linux operating sys-

tem by opening a Terminal window on the display screen.

Instructions for how to do this will be passed out in class.

C. Programming Languages

1. When scientists need to use computers to help them carry out

their research, they need to decide on the best operating system

to use and the most suitable programming language to use to

carry out this research.

a) Data analysis research will typically require software that

can produce graphics in addition to performing mathe-

matical calculations. In Physics and Astronomy, it is use-

ful for a software package to have functions capable of

fitting data, such as, least-squares routines to fit straight

lines to data and various other curve-fitting routines (e.g.,

CURVEFIT, GUASSFIT, REGRESS, etc.)

b) Numerical modeling will typically require a programming

language that has a rich set of mathematical function rou-

tines such as trigonometry functions (e.g., SIN, COS, TAN,

etc.), logarithms and exponentiation (e.g., LOG, LOG10,

EXP, etc.), integration routines (e.g., QSIMP, INT 2D,

INT 3D, etc.), and matrix manipulation (e.g., CRAMER,

DETERM, INVERT, NORM, etc.).

2. Selection of a programming language for a given task can be a

daunting task. One must weight the availability of the language,

the functions it is capable of, and the speed and debugging ca-

pabilities offered by the compiler.

I–6 PHYS-4007/5007: Computational Physics

a) Different fields of study typically have their favorite pro-

gramming languages.

b) Many mathematicians use Mathematica, Maple, and Math-

lab.

c) In physics and astronomy, most of the large codes are

written in Fortran 77, with the remaining small percent-

age written in either the newer Fortran 90/95/2000, C, or

Python (note that very few are written in C++).

i) Yes, that is correct, the decades old Fortran 77 is

still in wide use in physics and astronomy.

ii) Mainly this is due to the fact that their are numer-

ous libraries of Fortran 77 codes that are available

— Fortran is designed to be a number-crunching

programming language, and finally, few want to

rewrite codes with thousands of subroutines and

hundreds of thousands lines of code.

d) Astronomers who use a lot of NASA space data typically

use the Interactive Data Language (IDL) for their work.

e) Since we don’t have time to cover each and every program-

ming language on the market, we will focus on the three

most commonly used in physics and astronomy: Fortran

77, Python, and IDL.

i) An introduction to programming in these three

languages can be found in the next section (§II)
of these notes.

ii) The details of Fortran 77 and an overview of For-

tran 90/95/2000 can be found in Appendix B of

Donald G. Luttermoser, ETSU I–7

these notes.

iii) The details of Python can be found in Appendix

C.

iv) An introduction to programming in IDL can be

found in Appendix D of these notes.

v) The details of C and an overview of C++ can be

found in Appendix E if students are interested in

learning these programming languages.

f) No matter which programming language you choose, you

need to come up with a style and be consistent throughout

the code.

a) You do this not only to make it easier for other

users to figure out what you are doing, it makes it

easier on you when you go back to a code after you

haven’t looked at in a long time.

b) Always have numerous comments through-

out the code describing what is being done!

c) For my style, I use lower-case letters (except for the

first letter of words at the beginning of a sentence)

for comments and upper-case letters for the coding

itself.

d) Try to use a lot of subroutines (or procedures) and

functions =⇒ make your code as modular as pos-

sible. (The radiative transfer code PANDORA has

over 5000 subroutines in it!)

I–8 PHYS-4007/5007: Computational Physics

D. Data Types

1. There are two basic types of data that are operated on and stored

by computers =⇒ integers and real numbers. Depending on

the programming language one is using, there are various types of

“integers” and “reals.” The details of how computers store and

operate on these data types are given in Appendix F on “How

Computers ‘See’ Numbers and Letters.” You should review this

appendix before reading this subsection of the notes.

2. Integers come in a variety of flavors based upon how many bits

are used to store these numbers.

a) Logical: 1-bit word, values = [.FALSE. (=0) : .TRUE.

(=1)], maximum value = 1.

b) Short Integer: 8-bit or one-byte word length, range =

[–128 : 127], maximum value = 27 − 1, number of digits

= 3.

c) Character: Like a short integer typically containing the

ASCII code of the character. Note that in higher-level

programming languages (like Fortran, Python, and IDL),

characters are stored and operated upon using string no-

tation (characters surrounded by single- and/or double-

quotation marks). The compiler changes these characters

to the short integer ASCII code, then to binary, to which

the machine then operates upon. The next subsection

covers the ASCII character set.

d) Integer: 16-bit or two-byte word length, range = [–32,768

: 32,767], maximum value = 215 − 1, number of digits =

5.

Donald G. Luttermoser, ETSU I–9

e) Long Integer (sometimes just called ‘Long’ or ‘Double-

Precision Integer’): 32-bit or four-byte word length, range

= [–2,147,483,648 : 2,147,483,647], maximum value = 231−
1, number of digits = 10.

3. Like integers, reals come in a variety of precision flavors based

upon how many bits are used to store these numbers.

a) Single-Precision Real (sometimes called Floats or

Real ∗4 numbers): 32-bit = 4-byte word-size numbers, 6-7

decimal places of precision (1 part in 223), and a range =

[1.17549435 × 10−38 : 3.40282347 × 1038].

b) Double-Precision Real (sometimes called just Double

Precision or Real ∗8): 64-bit (2 32-bit words → 11 bits

used for the exponent, 1 for the sign, and 52 bits for the

mantissa) = 8-byte word-size numbers, about 16 deci-

mal places of precision (1 part in 252), and a range =

[2.2250738585072014×10−308 : 1.7976931348623157×10308].

c) Quad-Precision Real (Real ∗16): 128-bit (4 32-bit words

→ 15 bits used for the exponent, 1 for the sign, and 112

bits for the mantissa) = 16-byte word-size numbers, about

36 decimal places of precision (1 part in 2112), and a range

= [∼3.362×10−4932 : ∼1.189×104932]. Currently this pre-

cision is only available in Fortran compilers on some 64-bit

workstations and clusters.

d) Complex Numbers: Some programming languages (in

particular, Fortran and IDL) have complex data types. A

complex number has the form

z = x + iy , (I-1)

where i ≡
√
−1:

I–10 PHYS-4007/5007: Computational Physics

i) x corresponds to the real part of the number.

ii) y corresponds to the imaginary part.

iii) These numbers are stored as two-element arrays

(real, imaginary) of real numbers.

E. Understanding ASCII Format. (IMPORTANT SECTION)

1. English letters and punctuation marks are processed on most

computers as an 8-bit number called ASCII (American Standard

Code for Information Interchange) format (note that the first

“sign” bit is not used in ASCII protocol, hence it is actually a

7-bit number).

a) Each character on the American keyboard (including their

capital representations) has an ASCII numeric-value as-

sociated with it, ranging from 0 to 127 (e.g., ‘0’ (zero) has

an ASCII value of 48, ‘A’ (capital-a) = 65, and ‘a’ = 97,

see Table I-1 for a complete list ASCII numeric values).

b) The first 32 characters in the ASCII-table (0 – 31) are un-

printable control codes and are used to control peripherals

such as printers.

c) I will often refer to “text” (‘*.txt’) files (in the Microsoft

world), that is, those files that can be printed or viewed

with a text editor, such as Notepad, vi, or Emacs, as

‘ASCII’ files (as they are called in the Unix/Linux world).

Note that Microsoft Word is not a text editor (see

below).

2. Note that there is also an extended ASCII table of values which

uses all 8-bits to represent a character corresponding to non-

American keyboard letters ranging in values from 128 to 255.

Donald G. Luttermoser, ETSU I–11

Table I–1: The ASCII Table

Decimal Binary Name
Value Value Symbol Description

0 00000000 NUL Null character
1 00000001 SOH Start of Heading
2 00000010 STX Start of Text
3 00000011 ETX End of Text
4 00000100 EOT End of Transmission
5 00000101 ENQ Enquiry
6 00000110 ACK Acknowledgment
7 00000111 BEL Bell
8 00001000 BS Back Space
9 00001001 HT Horizontal Tab

10 00001010 LF Line Feed
11 00001011 VT Vertical Tab
12 00001100 FF Form Feed
13 00001101 CR Carriage Return
14 00001110 SO Shift Out / X-On
15 00001111 SI Shift In / X-Off
16 00010000 DLE Data Line Escape
17 00010001 DC1 Device Control 1 (oft. XON)
18 00010010 DC2 Device Control 2
19 00010011 DC3 Device Control 3 (oft. XOFF)
20 00010100 DC4 Device Control 4
21 00010101 NAK Negative Acknowledgment
22 00010110 SYN Synchronous Idle
23 00010111 ETB End of Transmit Block
24 00011000 CAN Cancel
25 00011001 EM End of Medium
26 00011010 SUB Substitute
27 00011011 ESC Escape
28 00011100 FS File Separator
29 00011101 GS Group Separator
30 00011110 RS Record Separator
31 00011111 US Unit Separator
32 00100000 Blank space
33 00100001 ! Exclamation mark
34 00100010 ” Double quotes (or speech marks)
35 00100011 # Number symbol
36 00100100 $ Dollar symbol
37 00100101 % Percent symbol
38 00100110 & Ampersand symbol
39 00100111 ’ (closing) Single quote

I–12 PHYS-4007/5007: Computational Physics

Table I–1: The ASCII Table (continued)

Decimal Binary Name
Value Value Symbol Description

40 00101000 (Open parenthesis
41 00101001) Close parenthesis
42 00101010 * Asterisk symbol
43 00101011 + Plus sign
44 00101100 , Comma
45 00101101 – Hyphen
46 00101110 . Period
47 00101111 / Slash or divide symbol
48 00110000 0 Zero
49 00110001 1 One
50 00110010 2 Two
51 00110011 3 Three
52 00110100 4 Four
53 00110101 5 Five
54 00110110 6 Six
55 00110111 7 Seven
56 00111000 8 Eight
57 00111001 9 Nine
58 00111010 : Colon
59 00111011 ; Semicolon
60 00111100 < Less than (or open angled bracket)
61 00111101 = Equals sign
62 00111110 > Greater than (or close angled bracket)
63 00111111 ? Question mark
64 01000000 @ At symbol
65 01000001 A Uppercase A
66 01000010 B Uppercase B
67 01000011 C Uppercase C
68 01000100 D Uppercase D
69 01000101 E Uppercase E
70 01000110 F Uppercase F
71 01000111 G Uppercase G
72 01001000 H Uppercase H
73 01001001 I Uppercase I
74 01001010 J Uppercase J
75 01001011 K Uppercase K
76 01001100 L Uppercase L
77 01001101 M Uppercase M
78 01001110 N Uppercase N
79 01001111 O Uppercase O

Donald G. Luttermoser, ETSU I–13

Table I–1: The ASCII Table (continued)

Decimal Binary Name
Value Value Symbol Description

80 01010000 P Uppercase P
81 01010001 Q Uppercase Q
82 01010010 R Uppercase R
83 01010011 S Uppercase S
84 01010100 T Uppercase T
85 01010101 U Uppercase U
86 01010110 V Uppercase V
87 01010111 W Uppercase W
88 01011000 X Uppercase X
89 01011001 Y Uppercase Y
90 01011010 Z Uppercase Z
91 01011011 [Opening square bracket
92 01011100 \ Backslash
93 01011101] Closing square bracket
94 01011110 ∧ Caret - circumflex
95 01011111 Underscore
96 01100000 ‘ Grave accent (opening single quote)
97 01100001 a Lowercase a
98 01100010 b Lowercase b
99 01100011 c Lowercase c

100 01100100 d Lowercase d
101 01100101 e Lowercase e
102 01100110 f Lowercase f
103 01100111 g Lowercase g
104 01101000 h Lowercase h
105 01101001 i Lowercase i
106 01101010 j Lowercase j
107 01101011 k Lowercase k
108 01101100 l Lowercase l
109 01101101 m Lowercase m
110 01101110 n Lowercase n
111 01101111 o Lowercase o
112 01110000 p Lowercase p
113 01110001 q Lowercase q
114 01110010 r Lowercase r
115 01110011 s Lowercase s
116 01110100 t Lowercase t
117 01110101 u Lowercase u
118 01110110 v Lowercase v
119 01110111 w Lowercase w

I–14 PHYS-4007/5007: Computational Physics

Table I–1: The ASCII Table (continued)

Decimal Binary Name
Value Value Symbol Description
120 01111000 x Lowercase x
121 01111001 y Lowercase y
122 01111010 z Lowercase z
123 01111011 { Opening brace
124 01111100 — Vertical bar
125 01111101 } Closing brace
126 01111110 ∼ Equivalency sign – tilde
127 01111111 Delete

Important Note: Most text editors will not recognize

the extended ASCII table. As such, you should never

use them when writing computer programs or LATEX doc-

uments. If you don’t see the character on a standard American

keyboard, then you should not include that symbol (such as π or

Å) in your program. See http://www.asciitable.com/ to see the

extended ASCII code numeric values.

3. When you are writing code or a LATEX document in a text editor,

do not simply cut and paste from text that you might

see on the web or in a Microsoft Word document.

a) Just because your eye sees a standard American keyboard

character in such a document, it does not mean it is ASCII

text.

b) Even if the editor you are using does print the character

as you see it in the document, it doesn’t mean there is

not unseen control characters included with the character

(i.e., a ‘font’ control character or an ‘underline’ control

character). Only clip and paste from know ASCII files

(e.g., a file opened with the Microsoft Notepad editor to a

file opened with the Emacs editor).

Donald G. Luttermoser, ETSU I–15

c) Once you run a code through a compiler, such as Fortran

or IDL, you may get errors indicating an unrecognized

symbol in your code, then the character you see in the

editor is not an ASCII character.

d) If a symbol you cut and paste (say the Greek π symbol)

from the web shows up in the editor but does not appear

in the final PDF document after compiling through LATEX,

then the character you see in the editor is not an ASCII

character and should not be used. For instance, in LATEX,

you create the pi symbol in the PDF output file by typing

π in your LATEX document (e.g., a file named ‘mydoc-

umet.tex’) — this is how the pi symbol above was created

in this PDF document. See §III for details on document

preparation using LATEX.

e) Finally note that Microsoft Word is a document and word

processing software, not a text editor. Do not write

computer code or LATEX files using Microsoft Word,

instead use a text editor such as Emacs or Notepad.

F. The Inner Workings of a Computer.

1. A computer does mathematics (which is the same thing as run-

ning programs, whether your program is designed to do math

problems or not) via machine language.

a) Machine language is built into the CPU of the machines

— each CPU family of chips has its own specific machine

language or architecture, where machine language manip-

ulates numbers on the “bit” level. Coding is written in

machine language which controls the CPU registers.

i) The old 32-bit Intel Pentium chips used one type

of machine language, primarily based on the CISC

I–16 PHYS-4007/5007: Computational Physics

(Complex Instruction Set Computer). Such a pro-

cessor uses small code sizes carrying out instruc-

tions over multi-clock cycles. In this architecture,

transistors on a chip are used for storing complex

instructions.

ii) Meanwhile the 64-bit chip “workstation-class” ma-

chines used their own machine language based on

the RISC (Reduced Instruction Set Computer) ar-

chitecture. Such a processor uses large code sizes

carrying out instructions over a single clock cycle.

This architecture spends more transistors on mem-

ory registers than the CISC chips.

iii) Newer chip architectures have been developed in

the recent past especially for cluster machines with

multiple CPUs, such as the massive parallel pro-

cessing (MPP) architecture.

b) Operating systems are designed to communicate with the

machine language of the chip. As such, a discussion of

computer hardware should include a discussion of operat-

ing systems which is covered in Appendix A of these notes.

However, first we need to define a few terms about the

inner workings of a computer. (Refer to Chapter 13 in

your textbook.)

i) CPU: The central processing unit is the fastest

part of the computer. The CPU consists of a num-

ber a very high-speed memory units called registers,

containing the instructions sent to the hardware to

do things like fetch, store, and operate on data.

Donald G. Luttermoser, ETSU I–17

ii) FPU: The floating point (or arithmetic) unit is

a piece of hardware designed for the quick operation

of floating-point arithmetic. On machines in the

past, these chips were called math co-processors.

iii) Cache: A small, very fast bit of memory (some-

times called the high-speed buffer) that holds in-

structions, addresses, and data in their passage be-

tween the very fast CPU registers and the slower

main RAM memory. The main memory is also

called dynamic RAM (DRAM), while the cache is

static RAM (SRAM).

iv) Cache and data lines: The data transferred to

and from the cache or CPU are grouped into cache

lines or data lines. The time it takes to bring data

from memory into cache is called latency.

v) RAM: Random access memory or central mem-

ory is in the middle memory hierarchy. This is

where your program resides while it is being pro-

cessed. The contents of RAM is lost upon comple-

tion of the jobs (or the turning off of the machine).

The RAM of your computer is analogous to the

memory centers of your brain.

vi) ROM: Read only memory contains data that

is hard-coded on the chip (typically, non-erasable).

Information on this chip tells the machine its iden-

tity, senses the devices hooked to the motherboard

(called peripherals), and tells the machine where to

find the boot software. The ROM is analogous to

I–18 PHYS-4007/5007: Computational Physics

your DNA.

vii) Pages: Central memory is organized into pages,

which are blocks of memory of fixed length. The

operating system labels and organizes its memory

pages much like we do with the pages of a book =⇒
they are numbered and kept track of in a table of

contents.

viii) Hard disk: Finally, at the bottom of the mem-

ory hierarchy is the permanent storage on magnetic

disks or optical devices. They are slow, but can

store large amounts of data. The coding of the op-

erating system, compilers, and any other documen-

tation, whether in ASCII format or binary format

are stored here.

ix) Backup devices: Since hard disks work very

hard, they are the first thing that is likely to mal-

function on a computer. Once the head crashes on

a disk drive, the data stored there is typically lost

forever. As such, it is good practice to store the

contents of your hard drive (i.e., hard disk) on a

more permanent and safe medium: USB Flash

Drives, CD-ROMs, and writable DVDs.

x) Virtual memory: Virtual memory permits your

program to use more pages of memory than will

physically fit into RAM at one time. Pages not

currently in use are stored in slower memory (typ-

ically hard disks in a region called swap space)

and brought into fast memory only when needed.

Donald G. Luttermoser, ETSU I–19

The amount of memory space needed for a program

to run is limited by the machine’s RAM plus the

swap space size. In Unix, the amount of swap space

available and total can be found with the “swap”

(on some machines called “swapon”) command.

2. The speed of the CPU is determined by the clock chip that is

attached to it. The faster the clock (measured in MHz or GHz),

the faster your CPU.

3. CPU clock speed doesn’t tell the whole story in computer speed.

The speed of the cache and the speed of the bus that talks to the

hard disk (and other peripherals) are also important in “turn-

around-time” in running a program.

