
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Section II

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.1



Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



II. Choosing a Programming Language

A. Which is the Best Programming Language for Your Work?

1. You have come up with a scientific idea which will require nu-

merical work using a computer. One needs to ask oneself, which

programming language will work best for the project?

a) Projects involving data reduction and analysis typically

need software with graphics capabilities. Examples of

such graphics languages include IDL, Mathlab, Origin, GNU-

plot, SuperMongo, and Mathematica.

b) Projects involving a lot of ‘number-crunching’ typically

require a programming language that is capable of car-

rying out math functions in scientific notation with as

much precision as possible. In physics and astronomy,

the most commonly used number-crunching programming

languages include the various flavors of Fortran, C, and

more recently, Python.

i) As noted in the last section, the decades old For-

tran 77 is still widely use in physics and astronomy.

ii) Over the past few years, Python has been growing

in popularity in scientific programming.

c) In this class, we will focus on two programming languages:

Fortran and Python. From time to time we will discuss

the IDL programming language since some of you may

encounter this software during your graduate and profes-

sional career.

d) Any coding introduced in these notes will be written in

either of these three programming languages. Appendices



II–2 PHYS-4007/5007: Computational Physics

B, C, and D should be studied carefully so you fully un-

derstand what is being written in these code segments.

2. Most programming languages have analogous elements in their

programming style, which can be reduced to 8 sections as shown

in Table II-1.

B. The Fortran Programming Language.

1. Fortran was first developed in 1957 by IBM and was the first

high-level programming language.

a) Its name is derived from “FORmula TRANslation.”

b) Fortran has evolved considerably since 1957 =⇒ Fortran

I → Fortran II → Fortran III → Fortran 66 (Fortran IV)

→ Fortran 77 (Fortran V) → Fortran 90 → Fortran 95 →

Fortran 2003 → Fortran 2008. Note that each new version

typically can compile code all the back to Fortran 77.

c) Fortran is a sequential programming language — there

is a logical flow to the coding: the first line of the code

is operated upon first, the 2nd line, second, through the

last line, last.

d) Most large number-crunching codes in science are written

in Fortran 77 which came on the market in 1978.

2. Fortran has a number of features that make it useful to the sci-

entific community:

a) Portability: Portability means that it is easy to move

from one machine to another. While no large program

can move from one machine to another totally without

difficulty, problems are usually minor, provided the For-

tran 77 standard has been strictly adhered to.



Donald G. Luttermoser, ETSU II–3

Table II–1: Analogous Elements in Fortran, Python, and IDL

Fortran Python IDL

Program Structure

program f (no main program structure) (no main program structure)
function f(x) def f(x) function f, x
subroutine f(x) def f(x) pro f, x

Operations

x∗∗y x∗∗y x∧y
x = y x = y x = y

do 2 k=1,kmax,1 for k in range(kmax): for k=0,kmax-1,1 do
do 2 k=kmax,1,-1 for k in range(kmax, 0, -1): for k=kmax-1,0,-1 do

Data Type Declarations

real∗8 x, y x = float(i) x = 0.0d0 & y = 0.0d0
integer i, j i = int(x) i = 0 & j = 0
real∗8 y(100,100) y = float(zeros((100,100))) y = dblarr(100,100)

integer ii(100,100) ii = zeros((100,100)) ii = intarr(100,100)
data mn/0.0/ mn = 0.0 defsysv, ’ !mn’, 0.0, /read only

character jan jan = ’ ’ jan = ’ ’ (NULL string)

Input and Output to Screen
read(∗, ∗) x1 x1 = float(raw input()) read, x1

write(∗, ∗) ’Enter radius:’ print ’Enter radius:’ print, ’Enter radius:’
write(∗, ∗) ’radius = ’, radius print ’radius = ’, radius print, ’radius = ’, radius

Input and Output to Files
open(7,file=’x.dat’,status=’new’) f = open(’x.dat’, ’w’); openw, 7, ’x,dat’

write(7,’(f10.2)’) Din f.write(str(Din)) printf, 7, Din, format=’(f10.2)’
read(7,100) Dout Dout = float(f.readline()) readf, 7, Dout

Control Structure: if

if (den .eq. 0) then if (den == 0) { if den eq 0 then begin
write(∗, ∗) ’Trouble’ printf(“Trouble”); print, ’Trouble’

endif } endif

Control Structure: if ... else
if (den .eq. 0) then if den == 0: if den eq 0 then begin

x = 0 x = 0 x = 0

else else: endif else begin
x = x1/den x = x1/den x = x1/den

endelse



II–4 PHYS-4007/5007: Computational Physics

Table II–1: Analogous Elements in Fortran, Python, and IDL (cont.)

Fortran Python IDL

Control Structure: for
do 2 k=1, kmax, 1 for k in range(kmax): for k=0, kmax-1, 1 do begin

term = r ∗ term term = r ∗ term term = r ∗ term
2 continue continue endfor

Switch/Case
goto (1,2), choice (no such control case choice of

1 series = first statements) 1: series = first
2 series = second 2: series = second

else:
endcase

b) Availability: Fortran is probably more widely used than

any other programming language in the physics and as-

tronomy community. Compilers are typically available for

all machine types and operating systems likely to be en-

countered in a university.

c) Efficiency: Partly because of its simple, static use of

store, and the un-complicated nature of its constructions,

and partly because of a massive investment in compiler

development, numerically intensive programs written in

Fortran are generally faster than those in any other high-

level language. The technique of optimization, by which

a compiler alters the machine code it generates (without

changing the end result!) to speed the calculation is well

developed in Fortran.

d) Fortran Libraries: Very considerable effort has gone,

over many years, into the production of libraries of rou-

tines that may be called from Fortran programs. Chief

amongst these are libraries of numerical-analysis routines



Donald G. Luttermoser, ETSU II–5

(such as BLAS, LAPACK, and NAG libraries) and rou-

tines to do graph plotting (such as the GINO and the now

defunct DI-3000 libraries).

3. Fortran is designed to be modular :

a) One has a main program that drives the code and calls

subroutines and functions.

b) A good Fortran code typically has a short main program

which call many subroutines.

c) Subroutines and functions can call other subroutines and

functions.

C. Running Fortran in Linux.

1. To write a Fortran code under Linux, use the following recipe:

a) Change directories to whatever subdirectory you want as

your working directory.

b) Let’s say we wish to create a code called atlas.f (or we

already had one by that name). Issue the command (at

the Unix prompt):

emacs atlas.f

c) This will bring up the emacs editor window and start writ-

ing your code. When done, click the “Save” button (fol-

lowed by the “Exit” button if you don’t need to make any

more modifications).

d) Besides the atlas.f file, let’s say that we also have a second

file which contains some operating system specific com-

mands (like the GETNODE() function that is available on

some Fortran compilers) called atlasunix.f.



II–6 PHYS-4007/5007: Computational Physics

2. The Linux operating system uses the latest GNU Fortran compiler

called gfortran. Read the ‘man’ pages (e.g., man gfortran) for a

listing of compiler options. This Fortran compiler can create ex-

ecutable programs from files written in either Fortran 77, Fortran

90, and Fortran 95.

3. Compiling and linking the codes are performed with one com-

mand (again at the Unix/Linux prompt):

gfortran –o atexe atlas.f atlasunix.f

a) Here the “–o” flag tells the linking software to save the

executable code in a file called atexe (if ‘–o’ was not in-

cluded, the executable would be saved in a file named

a.out).

b) Note that the gfortran compiler will issue floating point

overflows and underflows warnings (see Appendix B) by

default. It is important to pay attention to these warnings

since if they occur, the numeric values calculated from

your code may not be accurate.

D. The Python Programming Language.

1. The Python is an object-oriented programming language, like

C++, though it also supports a structured programming style

(i.e., a sequential list commands like Fortran).

a) Python was conceived in the late 1980s.

b) Its implementation was started in December 1989 by Guido

van Rossum at CWI in the Netherlands as a successor to

the ABC language capable of exception handling and in-

terfacing with the Amoeba operating system.

c) Van Rossum is Python’s principal author, and continues

as a “central role” in deciding the direction of Python.



Donald G. Luttermoser, ETSU II–7

d) Python 2.0 was released in October 2000, and included

many major new features, including a full garbage collec-

tor and support for Unicode.

i) With this release the development process was changed

and became more transparent and community-backed.

ii) Python 2.7 was the last edition of version 2 of

Python.

iii) The python command in Unix/Linux will typically

run the Python 2.7 compiler.

e) Python 3.0 (also called Python 3000 or py3k), a major,

backwards-incompatible release, was released in Decem-

ber 2008 after a long period of testing.

i) Many of its major features have been backported

to the backwards-compatible Python 2.6 and 2.7.

ii) The python3 command in Unix/Linux will typically

run the latest edition of the Python 3 compiler.

2. An important goal of the Python developers is making Python fun

to use. This is reflected in the origin of the name which comes

from Monty Python.

3. Note that the Python programming language has been installed

in Ubuntu Linux on the machines in Brown Hall 264. Let’s assume

that you have created a Python code using Emacs and have saved

it to a file by the name of myscript.py (note that Python code

files should have a filename suffix of ‘.py’).

a) Assuming the code in written using the Python 2 archi-

tecture, one would just issue the following command from



II–8 PHYS-4007/5007: Computational Physics

the Unix/Linux prompt in a terminal window to run this

code:

python myscript.py

b) If the code in written using the Python 3 architecture,

one would issue the following command from Unix/Linux

prompt in a terminal window to run this code:

python3 myscript.py

4. Unlike Fortran, Python just runs the code like a Unix script, it

does not create an executable file. As such, Python is actually

an interpreter type of software package similar to IDL and not a

compiler type of programming language.

5. For further information about programming in Python, see Ap-

pendix C or the notes at the official Python website at

https://www.python.org/doc/

E. The IDL Programming Language.

1. An Overview of IDL.

a) IDL stands for Interactive Data Language.

b) It is a general-purpose scientific computing package which

supports interactive reduction, analysis, and visualization

of scientific data and images.

i) Supported means of graphical display of data in-

clude graphing, surface plotting, contouring, vol-

ume visualization and animation.

ii) IDL uses a command-driven/programming-like in-

terface and displays graphics using X Windows in

the Unix environment.



Donald G. Luttermoser, ETSU II–9

iii) In the PC environment, IDL has a GUI interface,

though one can still issue IDL commands from a

command prompt text-box in the IDL GUI widget.

iv) Optimized for the workstation environment, IDL

integrates a responsive array oriented language with

numerous data analysis methods and an extensive

variety of two and three dimensional displays into

a powerful tool for researchers.

v) Data input and output is simple.

c) Users can create complex visualizations in hours instead

of weeks with the aid of IDL’s high level capabilities and

interactive environment.

d) Graphics output can be sent to a number of devices, in-

cluding: X, CGM, HP-GL, Tektronix Graphics Termi-

nals, PostScript, Macintosh display, and Microsoft Win-

dows. As well, the user can store plots in most of the

web image file types, such as, bmp (with the IDL pro-

cedures READ BMP & WRITE BMP), jpeg (READ JPEG

& WRITE JPEG), tiff (TIFF READ & TIFF WRITE), and

others.

e) IDL is useful in physics, astronomy, image and signal pro-

cessing, mapping, medical imaging, statistics, and other

technical disciplines requiring visualization of large amounts

of data.

2. The History of IDL.

a) IDL is a product of Research Systems, Inc., founded in

1977 by David Stern. The origins of IDL were developed



II–10 PHYS-4007/5007: Computational Physics

at the Laboratory for Atmospheric and Space Physics

(LASP) at the University of Colorado. Stern was one

of the people involved in efforts to make computers easier

to use for the physicists and astronomers at the Lab.

b) The first program in the evolutionary chain to IDL was

named Rufus (named after Stern’s dog). Rufus was a

very simple vector oriented calculator that ran on a PDP-

12 (an early DEC mainframe). It accepted 2 letter codes

that specified the following:

i) An arithmetic operation.

ii) The input registers to serve as operands.

iii) The destination register.

c) The next version was the Mars Mariner Spectrum Editor

which was a version of Rufus for the PDP-8 computer.

d) The next program in this line was named SOL, and it

also ran on a PDP-8. Unlike its predecessors, SOL was

a real computer language with a real syntax (no more 2

letter codes). It was an APL influenced array oriented

language with some primitive graphics capabilities. The

resemblance to IDL was there, but very faintly.

e) In 1977, Stern left LASP to start Research Systems Inc.

(RSI) with the intention of building on the ideas contained

in SOL. The initial result of this endeavor was PDP-11

IDL, which was much more capable than SOL.

i) Graphics was usually done on Tektronix terminals

and outboard raster graphics displays.



Donald G. Luttermoser, ETSU II–11

ii) The VAX/VMS version of IDL was released in

1981 (version 1.0). This version, which was written

in VAX-11 MACRO and FORTRAN, took advan-

tage of the VAX virtual memory and 32-bit address

space, and was a huge step beyond the PDP-11 ver-

sion.

f) In 1987, Stern decided that Unix workstations were the

direction in which IDL should progress, but porting the

current VAX IDL to Unix didn’t make much sense because

of its MACRO and FORTRAN implementation. IDL for

Unix on the Sun 3 was written, taking advantage of the

re-write to extend and improve the language. The Unix

version (called version 2.0) was written in C and once it

was completed was ported back to the VAX/VMS envi-

ronment.

g) In the mid-1990s, IDL was ported to PC-class systems

running Microsoft Windows and Mac OS.

h) Version 5.0 of IDL was the first version to be written in

C++. This version came out in the late-1990’s. Even

though IDL is written in C++ in subsequent versions, the

coding in IDL retains a Fortran style due to the fact that

astronomers and physicists were the primary users of this

software.

i) IDL was originally sold by Research Systems, Inc. (RSI),

which was bought out by Kodak in 2000, and then by

ITT Industries in 2004. All of RSI’s software, including

IDL is now sold through Exelis Visual Information Solutions

which was formerly known as ITT Visual Information Solu-

tions. Finally in the mid-2010s, Harris Geospatial Solutions

bought the rights to IDL.



II–12 PHYS-4007/5007: Computational Physics

j) IDL is continually expanded upon with new versions com-

ing out on the order of once a year.

i) Many of the NASA space telescope centers have

used IDL for data reduction and analysis.

ii) Specifically the International Ultraviolet Explorer

(IUE), the Hubble Space Telescope (HST), the So-

lar and Heliospheric Observatory (SOHO), and the

Far-Ultraviolet Explorer (FUSE) to name only a

few.

iii) A significant number of hospitals and medical re-

search labs also use IDL due to its rich graphics

capabilities.

3. For a tutorial on programming in IDL, see Appendix D in these

class notes. To use IDL with any of the Unix/Linux operating

systems (assuming that it is installed on a machine), one

brings up a terminal window and enters either of the two following

commands at the Unix/Linux prompt:

idl

where this brings up an IDL > prompt in place of the Unix prompt

in the terminal window, or

idlde

where this brings up a new GUI window placing you in the IDL

environment with a variety of useful control buttons to assist a

user in creating and running IDL code.



Donald G. Luttermoser, ETSU II–13

F. The C Programming Language.

1. C, like Fortran 77, is referred to as a sequential programming

language =⇒ the flow of the operations carried out by the com-

puter line by line from the beginning of the main program to the

end of it.

2. Like Fortran, C is considered a higher-level language, but it has

some lower-level language functionality =⇒ it can access the

operating system much easier and more efficiently than Fortran

77/90.

a) A “C” program = functions (executable code) + variables

(data).

b) Every program must have a function called main, execu-

tion starts there. main may call other functions.

c) C has no concept of a Program as in Fortran, just func-

tions.

d) The C view is that main is called by the operating system;

the operating system may pass arguments to main, as well

as receive return values (e.g., return 0;); however, above,

we choose to make main take no arguments – (void).

e) /* ... */ is a comment and is ignored by the compiler;

the C standard says that comments cannot be nested.

Also, comments must be terminated explicitly, i.e., new-

line does not terminate them — this is a common source

of compiler errors, and, for the unwary, can be very dif-

ficult to trace. It’s a good idea for every C program to

have a header comment containing:

i) Name of the program — to correspond to the file-

name.



II–14 PHYS-4007/5007: Computational Physics

ii) Authors name.

iii) Date.

iv) Brief indication of function and purpose of the

program, e.g., assignment number, or project, and

what it does.

3. Appendix E of these course notes contains some details and a tu-

torial in programming with the C language. One thing to note is

that C is not designed to be a “number-crunching” programming

language. It has very limited mathematical operators and one

must load additional math libraries at compile time to do any

math beyond simple arithmetic. If you are going to be crunching

numbers, then Fortran is typically the programming language of

choice.


