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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



IV. Error Analysis and Uncertainties

A. Errors and Uncertainties.

1. Types of Errors.

a) Blunders: (Can control these with sleep! → look for

inconsistencies in data points.)

i) Typographical errors in program or data.

ii) Running wrong program.

iii) Using wrong data file.

iv) Using wrong equations for analysis.

b) Random Errors: (Can’t control these → harder to de-

tect.)

i) Electronic fluctuations due to power surges.

ii) Cosmic ray damage on detectors and/or chips.

iii) Somebody pulled the plug!

c) Systematic Errors: (Very hard to detect.)

i) Faulty calibration of equipment.

ii) Bias from observer or experimenter.

iii) These must be estimated from analysis of exper-

imental conditions and techniques.
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iv) In some cases, corrections can be made to data to

compensate for these errors where type and extent

of error is known.

v) In other cases, the uncertainties resulting from

these errors must be estimated and combined with

uncertainties from statistical fluctuations.

d) Approximation Errors:

i) These arise from simplifying the mathematics so

that the problem can be solved on a computer:

→ infinite series being replaced by a finite sum

ex =
∞
∑

n=0

xn

n!
(IV-1)

≈
N
∑

n=0

xn

n!
= ex + E(x,N) . (IV-2)

ii) In Eq. (IV-2), E(x,N) is the total absolute

error.

iii) This type of error also is called algorithmic error,

the remainder, or truncation error.

iv) To have a small approximation error, N � x in

Eq. (IV-2).

e) Roundoff Errors:

i) Inaccuracies in stated numbers on a computer due

to a finite (typically small) number of bits being

used on a computer to represent numbers.
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ii) The total number of possible “machine” numbers

is much less than the total number of “real” num-

bers (which of course is infinite).

iii) The more calculations a computer does, the larger

the roundoff error.

iv) This error can cause some algorithms to become

unstable.

v) If the roundoff error value > value of the number

being represented =⇒ the result is referred to as

garbage.

vi) For instance, a computer may compute the fol-

lowing as

2

(

1

3

)

−2

3
= 0.6666666−0.6666667 = −0.0000001 6= 0 .

vii) We need to worry about significant figures on

a computer:

• On a 32-bit CPU, single precision is stored in

one word → 4 bytes (REAL∗4 or REAL).

• On a 32-bit CPU, double precision is stored in

two words → 8 bytes (REAL∗8).

• Trailing digits beyond these “bytes” are lost (if

you ask a code to print more digits out, the printed

digits should be considered as garbage ).
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f) What kind of error do we make in representing a real

number in a floating point number system?

i) Absolute Error:

true value - approximate value.

ii) Relative Error:

true value - approximate value

true value
.

Relative error is not defined if the true value is zero.

2. Accuracy versus Precision.

a) Accuracy is how close an experiment comes to the “true”

value.

i) It is a measure of the correctness of the result.

ii) For an experimenter, it is a measure of how skilled

the experimenter is.

iii) For a programmer, it is a measure on how good

they are at programming and the assumptions used

in the algorithm.

b) Precision of an experiment is a measure of how exactly

the result is determined without reference to what the

results means.

i) It is a measure of the precision of the instruments

being used in the experiment.

ii) The precision of an experiment is dependent on

how well we can overcome or analyze random er-

rors.
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iii) In programming, it is a measure of how many bits

are used to store numbers and perform calculations.

3. Uncertainties.

a) The term error signifies a deviation of the result from

some “true” value.

i) However, since we often cannot know the “true”

value of a measurement prior to the experiment, we

can only determine estimates of the errors inherent

to the experiment.

ii) The difference between two measurements is called

the discrepancy between the results.

iii) The discrepancy arises due to the fact that we

can only determine the results to a certain uncer-

tainty.

b) There are two classes of uncertainties:

i) The most prominent type: Those which result from

fluctuations in repeated measurements of data from

which the results are calculated.

ii) The secondary type: Those which result from the

fact that we may not always know the appropriate

theoretical formula for expressing the result.

c) Probable Error: The magnitude of the error which we

estimate we have made in our determination of the results.

i) This does not mean that we expect our results to

be wrong by this amount.
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ii) Instead, it means that if we are wrong in our re-

sults, it probably won’t be wrong by more than the

probable error.

iii) As such, probable error will be synonymous with

uncertainty in a measurement or calculation.

4. Implications for Numerical Computing.

a) Most numbers that we use in floating point computations

must be presumed to be somewhat in error. They may be

rounded from the values we have in mind by:

i) Input conversion errors.

ii) Inexact arithmetic from the limited significance

of the input numbers due to limited RAM sizes of

the computer.

b) How is the value of function f(x) affected by errors in the

argument x?

i) Suppose x has a relative error of ε so that we ac-

tually use the value x(1 + ε).

ii) Then the value of the function is f(x(1 + ε)).

iii) If f is differentiable, the absolute error in the

value of f caused by the error in x can be approx-

imated by

f(x + εx) − f(x) ≈ εxf ′(x) . (IV-3)

iv) The relative error is then

f(x + εx) − f(x)

f(x)
≈ εx

f ′(x)

f(x)
. (IV-4)
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v) As we had above, suppose f(x) = ex, then the ab-

solute error is approximately εxex and the relative

error is εex.

vi) These errors can be serious if x is large. Thus,

even if the routine EXP were perfect, there could

be serious errors in using EXP(X) for ex when x is

large.

vii) Another significant example is cosine x when x

is near π/2. The absolute error is approximately

−εx sin x ≈ −ε · π

2
· 1 .

viii) This is not troublesome, but the relative error

is very much so:

−εx
sin x

cos x
≈ −ε · π

2
· 1

0
.

Very small changes in x near π/2 cause very large

relative changes in cos x =⇒ we say the evaluation

is unstable there. The accurate values

cos 1.57079 = 0.63267949 × 10−5

cos 1.57078 = 1.63267949 × 10−5

demonstrate how a small change in the argument

can have a profound effect on the function value.

c) An important part of computational physics is deriving

solutions to problems in terms of series. When one is

working to high accuracies or if the series converges slowly,

it is necessary to add up a great many terms to sum the

series.
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B. Useful Theorems in Computational Physics.

1. Intermediate Value Theorem. Let f(x) be a continuous func-

tion on the closed interval [a, b]. If for some number α and for

some x1, x2 ∈ [a, b] we have f(x1) ≤ α ≤ f(x2), then there is

some point c ∈ [a, b] such that

α = f(c) . (IV-5)

Here the notation [a, b] means the interval consisting of the real

numbers x such that a ≤ x ≤ b.

2. Rolle’s Theorem. Let f(x) be continuous on the closed, finite

interval [a, b] and differentiable on (a, b). If f(a) = f(b) = 0,

there is a point c ∈ (a, b) such that

f ′(c) = 0 . (IV-6)

Here the notation (a, b) means the interval consisting of the real

numbers x such that a < x < b.

3. Mean-Value Theorem for Integrals. Let g(x) be a non-

negative function integrable on the interval [a, b]. If f(x) is con-

tinuous on [a, b], then there is a point c ∈ [a, b] such that

∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx (IV-7)

(more to come in §VI of the notes).

4. Mean-Value Theorem for Derivatives. Let f(x) be continu-

ous on the finite, closed interval [a, b] and differentiable on (a, b).

Then there is a point c ∈ (a, b) such that

f(b) − f(a)

b − a
= f ′(c) (IV-8)

(more to come in §VI of the notes).
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5. Taylor’s Theorem (with Remainder). Let f(x) have the

continuous derivative of order n + 1 on some interval (a, b) con-

taining the points x and x◦. Set

f(x) = f(x◦) +
f ′(x◦)

1!
(x − x◦) +

f ′′(x◦)

2!
(x − x◦)

2 +

+ · · ·+ f (n)(x◦)

n!
(x − x◦)

n + Rn+1(x) . (IV-9)

Then there is a number c between x and x◦ such that

Rn+1(x) =
f (n+1)(c)

(n + 1)!
(x − x◦)

n+1 . (IV-10)

6. Let f(x) be a continuous function on the finite, closed interval

[a, b]. Then f(x) assumes its maximum and minimum values on

[a, b]; i.e., there are points x1, x2 ∈ [a, b] such that

f(x1) ≤ f(x) ≤ f(x2) (IV-11)

for all x ∈ [a, b].

7. Integration by Parts. Let f(x) and g(x) be real values func-

tions with derivatives continuous on [a, b]. Then

∫ b

a
f ′(t)g(t) dt = f(t)g(t)|t=b

t=a −
∫ b

a
f(t)g′(t) dt . (IV-12)

8. Fundamental Theorem of Integral Calculus. Let f(x) be

continuous on the interval [a, b], and let

F (x) =
∫ x

a
f(t) dt for all x ∈ [a, b] . (IV-13)

Then F (x) is differentiable on (a, b) and

F ′(x) = f(x) . (IV-14)
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C. The Mathematics of Errors and Uncertainties.

1. Subtractive Cancellation.

a) For the following, let the “actual” numbers be represented

by unmarked variables and those on the computer be des-

ignated with a ‘c’ subscript.

b) The representation of a simple subtraction is then

a = b − c =⇒ ac = bc − cc , (IV-15)

ac = b(1 + εb) − c(1 + εc) ,(IV-16)

=⇒ ac

a
= 1 + εb

b

a
− c

a
εc , (IV-17)

where the error of the number/variable is given by

ε =
computer number - actual number

actual number
. (IV-18)

c) From Eq. (IV-17), the average error in a is a weighted

average of the errors in b and c.

d) We can have some cases, however, when the error in a

increases when b ≈ c because we subtract off (and thereby

lose) the most significant parts of both numbers =⇒ this

leaves the least significant parts.

e) If you subtract two large numbers, and end up

with a small one, there will be less significance in

the small one.

i) For example, if a is small, it must mean that b ≈ c

and so

ac

a
= 1 + εa , (IV-19)

εa ≈ b

a
(εb − εc) . (IV-20)
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ii) This shows that even for small relative errors in b

and c, the uncertainty in ac will be large since it is

multiplied by b/a (remember b ≈ c � a).

iii) This subtraction cancellation pokes its ugly head

in the series for e−x.

2. Multiplicative Errors.

a) Error in computer multiplication arises in the following

way:

a = b × c =⇒ ac = bc × cc , (IV-21)

=⇒ ac

a
=

(1 + εb)(1 + εc)

(1 + εa)

≈ 1 + εb + εc . (IV-22)

Since εb and εc can have opposite signs, the error in ac is

sometimes larger and sometimes smaller than the individ-

ual errors in bc and cc.

b) Often, we can estimate an average roundoff error for a

series of multiplications by assuming that the computer’s

representation of a number differs randomly from the ac-

tual number.

c) In these cases, we can use the random walk technique:

i) Let R be the average total distance covered in N

steps each of length r, then

R ≈
√

N r . (IV-23)

ii) Each step of a multiplication has a roundoff error

of length εm, the machine’s precision.
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iii) In the random walk analogy, the average relative

error εro arising after a large number N of multi-

plicative steps is then

εro '
√

N εm . (IV-24)

We will be making use of Eq. (IV-24) many times

in this course.

d) When roundoff errors do not occur randomly, careful anal-

ysis is needed to predict the dependence of the error on

the number of steps N .

i) If there are no cancellations of error, the relative

error may increase like N εm.

ii) Some recursive algorithms where the production

of errors is coherent (e.g., upward recursive Bessel

functions), the error increases like N ! εm.

e) This is something to keep in mind when you hear about

computer calculations requiring hours to complete.

i) A fast computer may complete 1010 floating-point

operations per second. Hence, a program running

for 3 CPU hours performs about 1014 operations.

ii) Then, after 3 hours, we can expect roundoff errors

to have accumulated to a relative importance of

107 εm.

iii) For the error to be smaller than the answer, this

demands that εm < 10−7.
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iv) As such, this long of a calculation with 32-bit

arithmetic (hence inherently possesses only 6 to 7

places of precision) probably contains much noise.

3. Definitions from Statistics and Probability Theory.

a) The mean, µ, of the parent population (i.e., measure-

ments) is defined as the limit of the sum N determinations

xi of the quantity x divided by the number N determina-

tions.

µ ≡ lim
N→∞





1

N

N
∑

i=1

xi



 . (IV-25)

The mean is therefore equivalent to the centroid or aver-

age value of the quantity x.

b) The median, µ1/2, of the parent population is defined as

that value for which, in the limit of an infinite number of

determinations xi of the quantity x, half of the observa-

tions will be less than the median and half will be greater

than the median.

i) In terms of the parent distribution, this means

that the probability, P , is 50% that any measure-

ment xi will be large or smaller than the median:

P (xi ≤ µ1/2) = P (xi ≥ µ1/2) = 50% . (IV-26)

ii) Much computer time is wasted by figuring out

median values. As such, fast sorting routines have

been developed in many programming languages

(e.g., SORT in IDL). Then, the median is just the

element in an array that is at the midway point.
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c) The most probable value, µmax, of the parent popula-

tion is that value for which the parent distribution has

greatest value:

P (µmax) ≥ P (x 6= µmax) . (IV-27)

d) The deviation di of any measurement xi from the mean

µ of the parent distribution is defined as

di = xi − µ . (IV-28)

i) Deviations are generally defined with respect to

the mean for computational purposes.

ii) If µ is the true value of the quantity, then di is

the true error in xi.

iii) The average deviation d for an infinite number of

observations must vanish by virtue of the definition

of the mean (see Eq. IV-25):

lim
N→∞

d = lim
N→∞





1

N

N
∑

i=1

(xi − µ)





= lim
N→∞





1

N

N
∑

n=1
xi



− µ = µ − µ = 0 .

iv) The average deviation α, therefore, is defined

as the average of the magnitudes of the deviations,

which are given by the absolute values of the devi-

ations:

α ≡ lim
N→∞





1

N

N
∑

n=1

|xi − µ|


 . (IV-29)

v) The average deviation is a measure of the disper-

sion of the expected observations about the mean.
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e) The variance σ2 is defined as the limit of the average of

the squares of the deviations of the mean:

σ2 ≡ lim
N→∞





1

N

N
∑

n=1

(xi − µ)2



 = lim
N→∞





1

N

N
∑

n=1

x2
i



− µ2 .

(IV-30)

i) The standard deviation σ is the square root of

the variance.

ii) The standard deviation is thus the root mean

square of the deviations, where we define the root

mean square to be the square root of the mean

or average of the square of an argument.

iii) In computational work, the standard deviation σ

is considered an appropriate measure of the uncer-

tainty of a measurement or a calculation.

4. Errors in Algorithms. An algorithm is often characterized by

its step size h or by the number of steps N it takes to reach its

goal. If the algorithm is “good,” it should give an exact answer

in the limit h → 0 or N → ∞. Here, we present methods for

determining the error in your code.

a) Let’s assume that an algorithm takes a large number of

N steps to get a good answer and that the approximation

error approaches zero like

εapprx '
α

Nβ
. (IV-31)

b) In Eq. (IV-31), α and β are empirical constants that would

change for different algorithms, and may be “constant”

only for N → ∞.
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c) Meanwhile, the roundoff error keeps accumulating as you

take more steps in a random fashion following

εro '
√

N εm , (IV-32)

where εm is the machine precision (see Eq. IV-24).

d) The total error is just the sum of these two errors:

εtot = εapprx + εro , (IV-33)

' α

Nβ
+
√

N εm . (IV-34)

e) Say we have a test problem where an analytic solution ex-

ists. By comparing a computed solution with the analytic

solution, we can deduce the total error εtot.

i) If we then plot log(εtot) against log(N), we can use

the slope of this graph (i.e., the power of N) to

deduce which term in Eq. (IV-34) dominates the

total error =⇒ if the slope = 1/2, roundoff error

dominates, if not, the slope = −β and the approx-

imation error dominates.

ii) Alternatively, we can start at very large values of

N where there should be no approximation error,

and continuously lower N to deduce the slope in

the approximation error.

5. Optimizing with Known Error Behavior. For this section,

we will assume that the approximation error has α = 1, β = 2,

so

εapprx '
1

N2
. (IV-35)

a) The extremum occurs when dεtot/dN = 0, which gives

−2N−3 +
1

2
N−1/2εm = 0 ,
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N−1/2εm = 4N−3 ,

N5/2 =
4

εm
. (IV-36)

b) For single precision on a 32-bit chip processor, εm ' 10−7,

so the minimum total error is reached when

N5/2 ' 4

10−7

N ' 1099

and

εtot ' 1

N2
+
√

N εm

= (8 × 10−7) + (33 × 10−7) ' 4 × 10−6 .

c) This shows for a typical algorithm, most of the error is due

to roundoff. Also, even though that this is the minimum

error, the best we can do is to get some 40 times machine

precision (in single precision).

d) As such, to reduce roundoff error, we should come up with

a code that requires less steps (N) to achieve convergence.

6. Sections 3.10 and 3.11 of your textbook go into further details

on optimizing error behavior and setting up an empirical error

analysis. You should look these sections over in detail.

D. Propagation of Uncertainties.

1. We will demonstrate the propagation of errors with a simple ex-

ample. Suppose we wish to find the volume V of a box of length

L, width W , and height H.

a) We measure L◦, W◦, and H◦ and determine

V◦ = L◦ W◦ H◦ . (IV-37)
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b) How do the uncertainties in L◦, W◦, and H◦ affect the

uncertainty in V◦? Let L, W , H, and V be the actual

(i.e., ‘true’) value, then ∆L = L◦ − L, ∆W = W◦ − W ,

and ∆H = H◦ − H.

c) The error in V is approximately the sum of the products

of the errors in each dimension times the effect that di-

mension has on the final value of V :

∆V ' ∆L

(

∂V

∂L

)

+ ∆W

(

∂V

∂W

)

+ ∆H

(

∂V

∂H

)

, (IV-38)

of for our example,

∆V ' W◦ H◦ ∆L + L◦ H◦ ∆W + L◦ W◦ ∆H . (IV-39)

Dividing this equation by Eq. (IV-37) gives

∆V

V◦
' ∆L

L◦
+

∆W

W◦
+

∆H

H◦
. (IV-40)

2. In general, we do not know the actual errors in the determina-

tion of any of the parameters. The following describes how we

estimate the uncertainties.

a) Let’s define

x = f(u, v, . . .) . (IV-41)

b) Assume the most probable value for x is given by

x = f(u, v, . . .) . (IV-42)

c) Individual results for x (xi) are found by individual mea-

surements of other parameters, that is ui, vi, . . ., giving

xi = f(ui, vi, . . .) . (IV-43)

d) Using Eq. (IV-30), the variance in x is then

σ2
x = lim

N→∞
1

N

∑

(xi − x)2 . (IV-44)
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e) Following Eq. (IV-38), the deviation for measurement in

x is

xi − x ' (ui − u)

(

∂x

∂u

)

+ (vi − v)

(

∂x

∂v

)

+ · · · (IV-45)

f) Combining these two equations gives

σ2
x = lim

N→∞
1

N

∑

[

(ui − u)

(

∂x

∂u

)

+ (vi − v)

(

∂x

∂v

)

+ · · ·
]2

= lim
N→∞

1

N

∑



(ui − u)2
(

∂x

∂u

)2

+ (vi − v)2
(

∂x

∂v

)2

+

2(ui − u)(vi − v)

(

∂x

∂u

) (

∂x

∂v

)

+ · · ·
]

= σ2
u

(

∂x

∂u

)2

+ σ2
v

(

∂x

∂v

)2

+

2σ2
uv

(

∂x

∂u

) (

∂x

∂v

)

+ · · · , (IV-46)

where

σ2
uv ≡ lim

N→∞
1

N

∑

[(ui − u)(vi − v)] . (IV-47)

g) If measurements in u and v are uncorrelated, one should

get as many negative values as positive values for the

terms in the series of Eq. (IV-47). As such, this sum-

mation in Eq. (IV-47) → 0. So

σ2
x = σ2

u

(

∂x

∂u

)2

+ σ2
v

(

∂x

∂v

)2

+ · · · (IV-48)

3. Specific Formulas.

a) Addition and Subtraction. Let x be the weighted sum

of u and v:

x = au ± bv . (IV-49)

i) Then, the partial derivatives are simply the weight-

ing coefficients (which are constant):
(

∂x

∂u

)

= a ,

(

∂x

∂v

)

= ±b . (IV-50)
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ii) Eq. (IV-46) then becomes

σ2
x = a2σ2

u + b2σ2
v + 2abσ2

uv . (IV-51)

b) Multiplication and Division. Now let x be the weighted

product of u and v:

x = ±auv . (IV-52)

i) The partial derivatives of each variable contain the

values of the other variable:
(

∂x

∂u

)

= ±av ,

(

∂x

∂v

)

= ±au . (IV-53)

ii) Eq. (IV-46) yields

σ2
x = a2v2σ2

u + a2u2σ2
v + 2a2uvσ2

uv , (IV-54)

which can be expressed more symmetrically as

σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
+ 2

σ2
uv

uv
. (IV-55)

iii) Similarly, if x is obtained through division,

x = ±au

v
, (IV-56)

the variance for x is given by

σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
− 2

σ2
uv

uv
. (IV-57)

c) Powers. Let x be obtained by raising the variable u to a

power:

x = au±b . (IV-58)

i) The partial derivative of x with respect to u is
(

∂x

∂u

)

= ±abu±b−1 = ±bx

u
. (IV-59)
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ii) Eq. (IV-46) becomes

σx

x
= b

σu

u
. (IV-60)

d) Exponentials. Let x be obtained by raising the natural

base to a power proportional to u:

x = ae±bu . (IV-61)

i) The partial derivative of x with respect to u is

(

∂x

∂u

)

= ±abe±bu = ±bx . (IV-62)

ii) Eq. (IV-46) becomes

σx

x
= bσu . (IV-63)

e) Logarithms. Let x be obtained by taking a log of u:

x = a ln(±bu) . (IV-64)

i) The partial derivative of x with respect to u is

(

∂x

∂u

)

=
a

u
. (IV-65)

ii) Eq. (IV-46) becomes

σx = a
σu

u
, (IV-66)

which is essentially the inverse of Eq. (IV-63).


