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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



V. Methods of Data Fitting

A. Methods of Fitting “Local” Data.

1. There are two main types of data fitting:

a) Local data fitting means that you are just fitting a

few points in the complete population of data points pre-

sented. We will look at three types of local data fitting

in the class: Interpolation, Lagrangian Interpolation, and

Cubic Splines.

b) The second type of data fitting is global data fitting.

Here we fit the entire population of data points to an

assumed analytic function. We will investigate two types

of global data fitting: Fitting data to Gaussian profiles (or

distributions) and to linear equations using the method of

linear least squares.

2. Linear Interpolation.

a) There are times when we may wish to know the value of an

unmeasured datum that lies between two measured data

in a population. The easiest way to do this is to draw a

straight line between the two known data points and fit

the unmeasured point on that straight line.

b) Let’s say that we have two measured data, P1(x1, y1) and

P2(x2, y2), and we wish to determine the y-value of the

data that lies on x, such that, x1 < x < x2.

c) To determine this, we just set up the following ratio:

y − y1

x − x1
=

y2 − y1

x2 − x1
= m . (V-1)
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d) Then solving for y, we get

y = y1 +
y2 − y1

x2 − x1
(x − x1) = y1 + m (x − x1) . (V-2)

e) There may be times when you need a regularly spaced

grid of data points (i.e., xj −xi = constant, where j− i =

1) to pass to another function (such as an integration

routine, see §VI of the notes). You would then need to

interpolate your data to determine your data’s y values at

the regularly spaced x values from your original (uneven)

data. Such is the time when you would need a linear

interpolation procedure.

3. Lagrange Interpolation.

a) Suppose that the data on either side of the unknown point

we are interested in is not following a linear distribution,

but instead, is following a curved path. Then a straight

line is not the best representation of your data.

b) In such cases, it is better to fit to a polynomial instead of

a straight line. This leads us to an interpolation scheme

developed by Lagrange.

c) One can fit an (n − 1)-order polynomial,

fi(x) ' a0+a1x+a2x
2+· · ·+an−1x

n−1, (x ' xi)., (V-3)

to n values of the function f(x) evaluated at points xi.

d) The formula is written as the sum of polynomials

f(x) ' f1λ1(x) + f2λ2(x) + · · · + fnλn(x) , (V-4)

where

λi(x) =
n
∏

j(6=i)=1

x − xj

xi − xj
=

x − x1

xi − x1

x − x2

xi − x2
· · · x − xn

xi − xn
,

(V-5)
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and note that the λ-weights must obey the normalization

rule: ∞
∑

i=1

λi = 1. (V-6)

e) For 3 points, Eq. (V-4) provides a second-degree poly-

nomial, while for eight points, it gives a seventh-order

polynomial. It is easy to see that for 2 points, Lagrange

interpolation just reduces to the linear interpolation de-

scribed above.

f) The Lagrange interpolation has no constraints that the

data be evenly spaced.

g) The difference between the value of the polynomial eval-

uated at some x and that of the actual function is equal

to the remainder :

R ≈ (x − x1)(x − x2) · · · (x − xn)

n!
f (n)(ζ) , (V-7)

where ζ lies somewhere in the interval of interpolation,

but is otherwise undetermined.

h) Lagrangian interpolation is typically used to fit only local

data, though it can be use to fit the data globally. How-

ever, there are better ways to fit nonlinear global data =⇒
polynomial least square fitting (which we are not going to

have time to cover in this class).

4. Interpolation with Cubic Splines.

a) A sophisticated variation of the n = 4 Lagrange interpo-

lation, known as cubic splines sometimes offers superior

fits to nonlinear data.

b) In this method, cubic polynomials are fit to the data

points representing some polynomial function in each in-
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terval, with the constraint that the first and second deriva-

tives of the polynomials be continuous from one interval

to the next.

c) This continuity of slope and curvature makes the spline

fit particularly eye-pleasing.

d) The basic approximation of splines is the representation

of the function f(x) in the subinterval [xi, xi+1] with a

cubic polynomial:

f(x) ' fi(x), for xi ≤ x ≤ xi+1 , (V-8)

fi(x) = fi + f (1)(x − xi) +
1

2
f (2)(x − xi)

2

+
1

6
f (3)(x − xi)

3 , (V-9)

where f (1), f (2), and f (3) are the first-, second-, and third-

derivatives of the function f(x) evaluated at xi.

e) The computational chore is to determine these derivatives

in terms of the N tabulated values of fi.

f) The matching of fi from one interval to the next (at the

nodes) provides the equations:

fi(xi+1) = fi+1(xi+1) , i = 1, ..., N − 1 . (V-10)

g) Also, the first and second derivatives must be continuous

at the nodes:

f
(1)
i−1(xi) = f

(1)
i (xi) , f

(2)
i−1(xi) = f

(2)
i (xi) . (V-11)
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h) Finally, an additional equation is needed to determine all

of the constants. For this, the third derivatives are found

by approximating them from the second derivatives:

f
(3)
i ' f

(2)
i+1 − f

(2)
i

xi+1 − xi
. (V-12)

i) In practice, it is better to use a cubic spline routine sup-

plied by the programming language or math library.

B. Data Fitting: Gaussian Distributions.

1. The most important probability distribution for use in statistical

analysis of data is the Gaussian or normal error distribution.

a) Mathematically, it is an approximation to the binomial

distribution for the special limiting case where the num-

ber of possible different observations, n, become infinitely

large and the probability of success, p, for each is finitely

large so that np � 1.

b) Physically, it is useful because it seems to describe the

distribution of random observations for most experiments.

c) In spectra, it describes the shape of many spectral lines.

2. This type of data fitting can be considered both a “global” and a

“local” data fitting technique, depending on what is being fitted.

In the case of spectra, one often finds either absorption lines and

or emission lines superimposed on a gradually varying continuum.

Often, it is useful just to isolate the individual lines from the

continuum and fit these lines to the proper profile distribution.

More times than not, such lines follow a Gaussian distribution.
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Figure V–1: The Gaussian distribution function.

3. Figure V-1 shows the Gaussian profile and labels the various com-

ponents to this distribution. The Gaussian distribution function

is defined by

PG(x, µ, σ) =
1

σ
√

2π
exp



−1

2

(

x − µ

σ

)2


 . (V-13)

a) It is a continuous function describing the probability that

from a parent distribution with a mean µ and a standard

deviation σ, the value of the random observation would

be x.

b) The probability function is properly defined such that the

probability dPG(x, µ, σ) that the value of a random ob-

servation will fall within the interval dx around x is given

by

dPG(x, µ, σ) = PG(x, µ, σ) dx . (V-14)

c) Gaussian distributions are bell shaped and characterized

by the full-width-at-half-maximum (FWHM), which is gen-
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erally called the half-width Γ =⇒ the range of x between

the values which PG is half the maximum value:

PG

(

µ ± 1

2
Γ, µ, σ

)

=
1

2
PG(µ, µ, σ) , (V-15)

Γ = 2.354σ . (V-16)

d) A tangent drawn along the portion of steepest decent of

the curve intersects the curve at the e−1/2 points x = µ±σ

and intersects the x axis at points x = µ±2σ (see dashed

lines in Figure V-1):

PG(µ ± σ, µ, σ) = e−1/2 PG(µ, µ, σ) . (V-17)

4. The mean and standard deviation of the Gaussian distribution

of Eq. (V-13) are given by the µ and σ parameters respectively.

5. The probable error (P.E.) is defined to be the location on the

Gaussian distribution where half of the observations will fall be-

tween µ± P.E. Mathematically, it can be shown that

P.E. = 0.6745σ = 0.2865Γ . (V-18)

6. The integral probability, AG(x, µ, σ), is defined as the proba-

bility that the value of any random measurement xi will have a

deviation from µ less than zσ, where z is the dimensionless range

z = |x − µ|/σ. It is found with

AG(x, µ, σ) =
∫ µ+zσ

µ−zσ
PG(x, µ, σ) dx =

1√
2π

∫ z

−z
e−

1

2
x2

dx , (V-19)

and normalized such that

AG(z = ∞) = 1 . (V-20)
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7. Note that the smaller σ is, the more “precise” our observations

and/or calculations will be. The standard deviation σ is often

referred to as the best estimate of xi representing the actual value.

8. Gaussian Distributions in Nature: Absorption and Emission

Lines.

a) In many cases in nature and in the laboratory (e.g., stellar

spectra and emission discharge tubes), dark and/or bright

“lines” are seen in the spectra objects emit.

b) Often, the shapes of these lines, in either wavelength, fre-

quency, or energy space, follow a Gaussian shape.

c) If a spectral line has a rest (also called “lab”) wavelength

λ◦, we can describe a line profile, φ(∆λ), such that it is

normalized over the entire profile:

∫ +∞

−∞
φ(∆λ) d∆λ = 1 , (V-21)

where

∆λ = λ − λ◦ (V-22)

and λ represents the wavelength at a specific point along

the profile.

i) In practice (i.e., computer programming), one does

not carry the integration from −∞ to +∞, but in-

stead, just carries the integration across the line

profile (i.e., ±(∆λ)max ≈ 3σ to 5σ).

ii) Also note that

φ(∆λ) d∆λ = −φ(ν) dν , (V-23)

where ν (= c/λ) is the frequency of the line profile.
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d) If an object that is emitting a spectrum is moving with

respect to the observer, the “rest” wavelength (i.e., line

center) gets shifted via the Doppler effect:

∆λ

λ◦
=

λ − λ◦
λ◦

=
vr

c
= z , (V-24)

where here λ is the observed line center, λ◦ is the line

center as measured in the lab, vr is the radial velocity of

the moving object, c is the speed of light in the vacuum,

and z is a parameter called the redshift.

i) If a line is redshifted, λ > λ◦ and vr > 0 =⇒ the

object is moving away from us.

ii) If a line is blueshifted, λ < λ◦ and vr < 0 =⇒ the

object is moving toward us.

iii) Note that Eq. (V-24) is valid only when vr � c

(i.e., the motion is non-relativistic).

e) We also can write a more general expression for the red-

shift,

z =
∆λ

λ◦
=

√

1 + vr/c
√

1 − vr/c
− 1 . (V-25)

where, here, we have included the relativistic (i.e., vr
<
∼ c)

correction for the Doppler Effect.

i) Rewriting this relativistic formula, we can express

velocity as a function of redshift:

vr

c
=

(z + 1)2 − 1

(z + 1)2 + 1
. (V-26)

ii) You will note that there is no way a velocity cal-

culated from the relativistic form of the Doppler

effect can exceed the of light =⇒ the special theory

of relativity is not violated!
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f) If an absorption/emission line has a Gaussian distribu-

tion, its profile function follows the form

φ(∆λ) =
1√

π ∆λG
exp



−∆λ2

∆λ2
G



 (V-27)

i) The parameter ∆λG is referred to as the Gaussian

(or Doppler, see below) width. From a comparison

of Eqs. (V-27) and (V-13), we see immediately that

∆λG =
√

2σ . (V-28)

ii) With this bit of information, we can show that

the line profile half-width is

∆λ1/2 = 1.665∆λG . (V-29)

iii) The Gaussian profile has a peak value of 1/(
√

π ∆λG).

9. Sometimes, line profiles are a conglomerate of other line profiles

just as the total error can be the sum of different individual

random errors.

a) In such cases, we must convolve the individual profiles

together with the convolution integral:

φ(∆λ) =
∫ +∞

−∞
φ1(∆λ − x) φ2(x) dx . (V-30)

b) The convolution of two Gaussian profiles with ∆λG1 and

∆λG2 (at the same λ◦) yields another Gaussian profile

with ∆λ2
G = ∆λ2

G1 + ∆λ2
G2.

10. Spectrographs are a “hardcopy” version of the Fourier trans-

form function =⇒ it breaks white light up into its component

colors.
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a) From this analogy, the spectrograph acts as a convolution

integral, convolving the instrument profile with the profile

from the emission source.

b) Since “good” spectrographs are designed to have Gaus-

sian instrument profiles, the Gaussian from the source is

convolved with the Gaussian of the spectrograph.

i) Spectrographs with ∆λ1/2 < 1 Å (1 Å = 10−10 m)

at UV, visual, or near-IR wavelengths are said to be

high-resolution or high-dispersion spectrographs.

ii) Spectrographs with ∆λ1/2 > 1 Å at UV, visual,

or near-IR wavelengths are said to be low-resolution

or low-dispersion spectrographs.

c) ∆λ1/2 effectively determines whether two spectral lines

separated by ∆λ can be split into individual lines.

i) If ∆λ < ∆λ1/2, the two spectral lines will appear

as one in a spectrum.

ii) If ∆λ > ∆λ1/2, the two spectral lines will appear

as two individual lines.

11. Line profiles emitted from a gas tend to have Gaussian shapes due

to the fact that the atoms and molecules that make up the gas

are randomly moving in the gas =⇒ they are said to be following

a Maxwellian or a Maxwellian-Boltzmann distribution.

a) As individual particles absorb and emit photons, the pho-

tons are shifted via the Doppler effect based on their rel-

ative thermal motion with respect to the observer.

b) As such, Gaussian profiles are often referred to as Doppler

broadening of a spectral line.
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c) Since the particles are following a Maxwellian distribution

in velocity space, they have a Gaussian distribution in

wavelength or frequency space, where the Gaussian (or

Doppler) width is equal to the thermal Doppler width

∆λG = ∆λD = ∆λth = λ◦

√

2kT/mβ

c
(V-31)

where k = 1.38062 × 10−23 J/K is Boltzmann’s constant,

T is the temperature of the gas, c is the speed of light,

and mβ is the mass of the radiating particle.

d) As a result of this, one can determine the temperature of

a gas by measuring the half-width of a line arising from a

gas (after, of course, one has subtracted off the instrument

profile).

e) In practice, life isn’t quite this easy since other line broad-

ening mechanisms may also be involved, some following

the Lorentz (dispersion, damping) profile given by

φ(∆λ) =
∆λL

2π

1

∆λ2 + ∆λ2
L
/4

, (V-32)

with

∆λL =
λ◦
ω◦

γ =





λ2
◦

2πc



 γ , (V-33)

where γ is the damping constant.

i) The Lorentz profile has a peak value of 2/(π∆λL)

and a FWHM of ∆λL.

ii) The convolution of 2 Lorentz profiles with γ1 and

γ2 (and same λ◦) yields another Lorentz profile with

γ = γ1 + γ2.
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iii) Convolution of a Gaussian and Lorentzian (with

same λ◦) yields a Voigt profile. See any book on

radiative transfer for details on the Voigt function.

f) Radiation (natural) broadening of a line results from

an excited state having a finite width or probability dis-

tribution due to the Heisenberg Uncertainty Principle. It

approximately yields a Lorentz profile with a damping

constant

γrad = γi + γj , (V-34)

where γi and γj are the damping constants for the i-th

and j-th levels. These damping constants are determined

either quantum mechanically or by experiment.

g) Collisional broadening caused by the interaction of ra-

diating particles with surrounding matter. The E-fields of

the perturbing particles affect the level thicknesses of the

radiating particle, hence broadening the line. These col-

lisional broadening events give rise to Lorentzian profiles.

There are 4 types of collisional broadening events:

i) Linear Stark effect in a hydrogen-like particle due

to a charged perturber.

ii) Resonance interaction between two identical par-

ticles.

iii) Quadratic Stark effect due to a charged perturber.

iv) Van der Waals interaction between two particles

of different species.



V–14 PHYS-4007/5007: Computational Physics

h) Rotational broadening, is a broadening of a spectral

line due to the rotation of the emitting object. It must

be taken into account if vrot

>
∼ vth, where vth is the thermal

velocity. Rotational broadening follows a Gaussian distri-

bution similar to thermal Doppler broadening, except the

rotation velocity replaces
√

2kT/mβ in Eq. (V-31).

i) Instrument broadening due to attributes of the op-

tical system (i.e., diffraction, filter characteristic, pixel

size, etc.). One determines an instrument profile by tak-

ing a comparison spectrum of an emission lamp with “in-

finitely” sharp lines (that is, the natural broadening dom-

inates atomic broadening mechanisms and the natural

broadening is much less that the instrument profile). Gen-

erally an instrument profile is Gaussian in shape, but

doesn’t necessarily have to be. This determines the dis-

persion of the spectrum (see §V.B.10.b).

j) Beside the above mentioned broadening mechanisms, there

are other processes that can affect a line profile. Magnetic

fields (e.g., Zeeman effect ) and e− interactions with nu-

cleus (i.e., hyperfine structure ) are two such examples.

12. Most of the math-oriented programming languages have func-

tions that will fit data to a Gaussian profile.

C. Data Fitting: The Method of Least Squares.

1. Introduction. Here we will discuss fitting data to a straight

line. See your textbook (§9.4) for a more general discussion of

Least Squares for higher-order equation fits.

a) If the data measurements are a linear function of some

other variable, we can use the method of linear least-

squares fit.
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b) The data will contain errors in their measurement, as

such, we will need to calculate a goodness of fit.

c) Let’s say that y = f(x) in a linear sense, then

y = a1 + a2 x , (V-35)

then, our task is the figure out a1 (i.e., the y-intercept),

a2 (i.e., the slope), and their uncertainties from the data.

Note that some authors use the y = A+Bx notation and

others use y = b + mx notation. These, of course, are all

the same equation with a1 = A = b (i.e., y-intercepts) in

the three equations and a2 = B = m (i.e., the slopes).

d) The method of least-squares also is called linear regres-

sion.

2. The Goodness of Fit: χ2.

a) The chi-squared test also is called the Method of Max-

imum Likelihood. It is the assumption that the observed

set of measurements is more likely to have come from the

parent distribution than some other distribution or ran-

dom event.

b) The χ2 is determined with

χ2 ≡
N
∑

i=1

(

∆yi

σi

)2

=
N
∑

i=1





yi − f(xi)

σi





2

=
N
∑

i=1





1

σ2
i

(yi − a1 − a2xi)
2



 , (V-36)

where N represents the total number of data measure-

ments.

c) The best fit to the assumed functional dependence will
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occur when χ2 is at a minimum:

∂χ2

∂am
= 0, (m = 1,M), (V-37)

where M is the maximum number of terms in our poly-

nomial fit.

d) Since we are only interested in straight lines here, M =

2, so

∂

∂a1
χ2 =

∂

∂a1

N
∑

i=1





1

σ2
i

(yi − a1 − a2xi)
2





= −




N
∑

i=1

2

σ2
i

(yi − a1 − a2xi)



 = 0 (V-38)

∂

∂a2
χ2 =

∂

∂a2

N
∑

i=1





1

σ2
i

(yi − a1 − a2xi)
2





= −




N
∑

i=1

2xi

σ2
i

(yi − a1 − a2xi)



 = 0 . (V-39)

Note that if the uncertainties of each measurement are

the same, we could just label σi = σ and take it outside

the summation sign. At this point, we will not make that

assumption and leave the uncertainty in the summation.

e) These equations can be rearranged to yield a pair of si-

multaneous equations:

N
∑

i=1

yi

σ2
i

=
N
∑

i=1

a1

σ2
i

+
N
∑

i=1

a2
xi

σ2
i

= a1

N
∑

i=1

1

σ2
i

+ a2

N
∑

i=1

xi

σ2
i

(V-40)

N
∑

i=1

xiyi

σ2
i

=
N
∑

i=1

a1
xi

σ2
i

+
N
∑

i=1

a2
x2

i

σ2
i

= a1

N
∑

i=1

xi

σ2
i

+ a2

N
∑

i=1

x2
i

σ2
i

. (V-41)
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f) Solving Eqs. (V-40) and (V-41) for a1 and a2 will give

the coefficients for which χ2, the sum of the square of the

deviations of the data points from the calculated fit, is a

minimum. One way to solve these equations is to use the

method of determinants:

a1 =
1

∆

∣

∣

∣

∣

∣

∣

∑

(yi/σ
2
i )

∑

(xi/σ
2
i )

∑

(xiyi/σ
2
i )

∑

(x2
i /σ

2
i )

∣

∣

∣

∣

∣

∣

=
1

∆





N
∑

i=1

x2
i

σ2
i

N
∑

i=1

yi

σ2
i

−
N
∑

i=1

xi

σ2
i

N
∑

i=1

xiyi

σ2
i





=
SxxSy − SxSxy

∆
(V-42)

a2 =
1

∆

∣

∣

∣

∣

∣

∣

∑

(1/σ2
i )

∑

(yi/σ
2
i )

∑

(xi/σ
2
i )

∑

(xiyi/σ
2
i )

∣

∣

∣

∣

∣

∣

=
1

∆





N
∑

i=1

1

σ2
i

N
∑

i=1

xiyi

σ2
i

−
N
∑

i=1

xi

σ2
i

N
∑

i=1

yi

σ2
i





=
SSxy − SxSy

∆
(V-43)

∆ =

∣

∣

∣

∣

∣

∣

∑

(1/σ2
i )

∑

(xi/σ
2
i )

∑

(xi/σ
2
i )

∑

(x2
i /σ

2
i )

∣

∣

∣

∣

∣

∣

=
N
∑

i=1

1

σ2
i

N
∑

i=1

x2
i

σ2
i

−




N
∑

i=1

xi

σ2
i





2

= SSxx − S2
x (V-44)

3. Combining Statistical and Experimental Errors.

a) In the equations above, yi corresponds to individual mea-

surements each with their own statistical errors =⇒
statistical fluctuations in the collection of finite numbers

over a finitely long interval of time =⇒ σi(yi).

b) Note that there also can be uncertainties in our indepen-

dent variable xi.

i) For example, yi might be displacement measure-

ments and xi the times the measurements are made.
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ii) Since the time measurement also has an uncer-

tainty, σi(xi), we have 2 uncertainties to worry about.

iii) σi(xi) is referred to as the experimental error.

c) As such, the σi’s in Eqs. (V-42) through (V-44) are the

combination of these 2 uncertainties which is found with

σ2
i = σ2

i (xi) + σ2
i (yi) . (V-45)

4. If we known the statistical and experimental errors, or have de-

termined an approximate σ from the sample variance from your

fitted function, the theory of least squares then gives an expres-

sion for the variance or uncertainty in the deduced parameters:

σ2
a1

=
Sxx

∆
, σ2

a2
=

S

∆
. (V-46)

5. A measure of the dependence of the parameters on each other is

given by the correlation coefficient:

ρ(a1, a2) =
cov(a1, a2)

σa1
σa2

, (V-47)

cov(a1, a2) =
−Sx

∆
. (V-48)

a) Here cov(a1, a2) is the covariance of a1 and a2 and vanishes

if a1 and a2 are independent.

b) The correlation coefficient ρ(a1, a2) lies in the range −1 ≤
ρ ≤ 1.

i) Positive ρ indicates that the errors in a1 and a2

are likely to have the same sign.

ii) Negative ρ indicate opposite signs.
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6. The preceding analytic solutions for the parameters are of the

form found in statistics books, but are not optimal for numerical

calculations because subtractive cancellation can make the an-

swers unstable. We can improve the stability of the calculations

by rearranging some terms and introducing the averages of the

measurements (x, y) to the solution:

a1 = y − a2x , a2 =
Sxy

Sxx
, (V-49)

Sxy =
N
∑

i=1

(xi − x)(yi − y)

σ2
i

, Sxx =
N
∑

i=1

(xi − x)2

σ2
i

, (V-50)

x =
1

N

N
∑

i=1

xi , y =
1

N

N
∑

i=1

yi . (V-51)

7. Math oriented programming languages always have least-square

functions or subroutines available, either as a built-in command

or in a math library:

• The books titled Numerical Recipes show how to code your

own subroutine for least squares should you need to do it:

See FIT and LFIT in any of the Numerical Recipes books.

8. Though we won’t do it here, there are least-square methods to

fit non-linear functions.


