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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



VI. Numerical Differentiation and Integration

A. Derivatives.

1. The derivative of a function is defined by

df(x)

dx
≡ lim

h→0

f(x + h) − f(x)

h
. (VI-1)

a) In computational work, functions and their independent

variables are given by tabulated data and/or derived data.

b) Since there is a subtraction in Eq. (VI-1), subtraction

cancellation can lead to rather large errors in the deter-

mination of a derivative via numerical techniques.

c) The computer’s finite word length can cause the numera-

tor to fluctuate between 0 and the machine precision εm

as the denominator approaches zero.

d) In this section, we will discuss the various techniques used

to calculate derivatives numerically and estimating the

error in the derivative.

2. Method 1: Forward Difference.

a) Write out the function as a Taylor series at a position of

one step forward from the current position:

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) + · · · ,

(VI-2)

where h is the step size as shown in Figure (VI-1).

b) We obtain the forward-difference derivative algorithm by

solving Eq. (VI-1) for f ′(x):

f ′
c(x) ' f(x + h) − f(x)

h
, (VI-3)
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' f ′(x) +
h

2
f ′′(x) + · · · , (VI-4)

where the subscript c denotes the computed expression.

i) The approximation of Eq. (VI-3) has an error pro-

portional to h as shown in Eq. (VI-4).

ii) We can make the approximation error smaller and

smaller by making h smaller and smaller.

iii) We can’t make it too small however, since all

precision will be lost if the subtraction cancellation

error becomes larger than the step size.

c) Consider for example

f(x) = a + bx2 . (VI-5)

the exact derivative is

f ′ = 2bx , (VI-6)

and the computed derivative is

f ′
c(x) ≈ f(x + h)− f(x)

h
= 2bx + bh . (VI-7)

This would only be a good approximation if h � 2x.

3. Method 2: Central Difference.

a) An improved approximation to the derivative starts with

the basic definition Eq. (VI-1). For this technique, instead

of making a step of h forward, we form a central difference

by stepping forward by h/2 and stepping backward by

h/2:

f ′
c(x) ≈ f(x + h/2) − f(x − h/2)

h
≡ Dcf(x, h) .

(VI-8)
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Figure VI–1: Forward difference (solid line) and central difference (dashed line) methods for
numerical integration.

i) The symbol Dc represents center difference.

ii) Carrying out the Taylor series for f(x ± h) gives

f ′
c ' f ′(x) +

1

24
h2f (3)(x) + · · · . (VI-9)

iii) The important difference from Eq. (VI-3) is that

when f(x− h/2) is subtracted from f(x +h/2), all

terms containing an odd power of h in the Taylor

series cancel.

iv) Therefore, the central-difference algorithm be-

comes accurate to one order higher than h =⇒ h2.

v) If (f (3)h2)/24 � (f (2)h)/2, then the error with the

central-difference method should be smaller than

the forward difference.
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b) For the polynomial given in Eq. (VI-5), the central differ-

ence gives the exact answer regardless of the size of h:

f ′
c(x) ≈ f(x + h/2) − f(x − h/2)

h
= 2bx . (VI-10)

4. Errors in Taking Derivatives.

a) One should always try to keep calculation errors, εtot, at

a minimum. This typically occurs when εro ≈ εapprx in Eq.

(IV-33).

b) Because differentiation subtracts 2 numbers that are close

in value, the limit of roundoff error is essentially machine

precision:

f ′(x) ≈ f(x + h) − f(x)

h
≈ εm

h
, (VI-11)

=⇒ εro ≈ εm

h
. (VI-12)

c) The approximation error with the forward-difference al-

gorithm (Eq. VI-4) is an O(h) term, while that with the

central-difference algorithm (Eq. VI-9) is an O(h2) term:

εfd

apprx
≈ f (2)h

2
, (VI-13)

εcd

apprx
≈ f (3)h2

24
. (VI-14)

d) The value of h for which roundoff and approximation er-

rors are equal is therefore

εm

h
≈ εfd

apprx =
f (2)h

2
, (VI-15)

εm

h
≈ εcd

apprx
=

f (3)h2

24
, (VI-16)

=⇒ h2
fd

=
2εm

f (2)
, h3

cd
=

24εm

f (3)
. (VI-17)
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e) As an example, for the ex and cos x functions f ′ ≈ f (2) ≈
f (3) in single precision with εm ≈ 10−7, one would get hfd ≈
0.0005 and hcd ≈ 0.01. This makes the central-difference

algorithm better for calculating derivatives since a larger

h would mean a smaller error =⇒ here the error in the

central-difference method is 20 times smaller than the er-

ror in the forward-difference method.

5. The Method in Calculating Second Derivatives.

a) Taking second derivatives will involve an additional sub-

traction step as compared to the first derivative calcula-

tion leading to a larger subtraction error.

b) We can remedy this with a little algebra in the central-

difference method. Taking the second derivative of Eq.

(VI-8) and then rewriting the first derivatives with a for-

ward and backward difference equation, we get

f (2) ' f ′(x + h/2) − f ′(x − h/2)

h
, (VI-18)

' 1

h2
{[f(x + h/2) − f(x)]−

[f(x) − f(x − h/2)]} . (VI-19)

Note, however, that one must keep the second

derivative formula in this form to minimize can-

cellation error.

B. Integration.

1. The method of numerical integration is sometimes referred to as

numerical quadrature =⇒ summing boxes.

a) The definition of an integral given by Riemann is

∫ b

a
f(x) dx = lim

h→0







(b−a)/h
∑

i=1

f(xi)





 . (VI-20)
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b) If we ignore the limit, the integral just becomes a sum-

mation of boxes or quadrilaterals lying below the curve:

∫ b

a
f(x) dx ≈

N
∑

i=1

f(xi) wi , (VI-21)

where N is the number of points in the interval [a, b] and

f is evaluated at those interval points ‘i’, fi ≡ f(xi). The

wi’s are integration weights which are proportional to h

the distance between points i and i + 1.

c) The different integration schemes presented here will all

make use of Eq. (VI-21).

d) In the simplest integration schemes, the integrand is ap-

proximated by a few terms in the Taylor series expansion

of f and the terms are integrated =⇒ typically, adding

more terms in the series yield higher precision.

e) This is the basis of the Newton-Cotes methods =⇒ the

total interval is divided into equal subintervals with the

integrand evaluated at equally spaced points xi. Two such

Newton-Cotes methods include the:

i) Trapezoid rule (a first-order method).

ii) Simpson rule (a second-order method).

f) More accurate integration methods involve the use of non-

equally spaced intervals =⇒ these are the methods of Gaus-

sian quadrature.

i) Gaussian quadrature methods are typically more

precise than Newton-Cotes methods as long as there

are no singularities (i.e., denominators going to in-

finity, non-continuous functions) in the integrand

or its derivative.
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ii) You are better off to remove such singularities

algebraically before attempting Gaussian quadra-

ture. For example,

∫ 1

−1
|x| f(x) dx =

∫ 0

−1
f(−x) dx +

∫ 1

0
f(x) dx .

(VI-22)

iii) Regions where a function is slowly varying re-

quire fewer integration points, and regions with

rapid variations in the function will have many in-

tegration points in order not to miss any oscillation

— as can be seen for such functions, evenly spaced

integration points will not represent the true inte-

gral accurately.

2. Trapezoid Rule.

a) As an introduction to the numerically integration of a

function, consider the generic integral

I =
∫ b

a
f(x) dx . (VI-23)

b) The most straight forward way to solving such an integral

function is to evaluate f(x) at a few points and fit a simple

curve (e.g., piecewise linear ) through these points.

c) One way to do this is to fit trapezoids of equal width (h)

under the curve represented by f(x) and add up the total

areas of these trapezoids. Let

h =
b − a

N − 1
, (VI-24)

xi = a + (i − 1)h , i = 1, 2, ..., N . (VI-25)

where a and b correspond to the initial and final end-

points and N the total number of points in the interval
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[a, b] (square bracket means we include the endpoints, i.e.,

there are N–2 points in between the endpoints). Note that

the trapezoid rule requires an odd number of points N .

i) Straight lines connect the points and this piecewise

linear function serves as our fitting curve.

ii) The integral of this fitting function is easy to com-

pute since it is the sum of the areas of trapezoids.

The area of a single trapezoid is

Ti =
1

2
(xi+1 − xi)(fi+1 + fi) . (VI-26)

iii) The true integral is estimated as the sum of the

areas of the trapezoids, so

I ≈ IT = T1 + T2 + · · · + TN−1 =
N−1
∑

i=1

Ti . (VI-27)

Notice that the last term in the sum is N − 1 since

there is one fewer panel than grid points.

iv) The general formula simplifies if we take equally

spaced grid points as given by Eq. (VI-25).

v) Then the area for an individual trapezoid (i.e.,

the area of the one trapezoid within that interval)

becomes

Ti =
1

2
h(fi+1 + fi) , (VI-28)

or in our original integral notation,

∫ xi+h

xi

f(x) dx ' h(fi + fi+1)

2
=

1

2
hfi +

1

2
hfi+1 .

(VI-29)

As such, our weights in Eq. (VI-21) for the individ-

ual points are wi = 1
2h.
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d) We now need to add up all of the trapezoids in the subin-

tervals across the entire interval [a, b] =⇒ the trapezoid

rule:

IT (h) =
1

2
hf1 + hf2 + hf3 + · · · + hfN−1 +

1

2
hfN

=
1

2
h(f1 + fN) + h

N−1
∑

i=2

fi (VI-30)

or

∫ b

a
f(x) dx ≈ h

2
f1 + hf2 + hf3 + · · · + hfN−1 +

h

2
fN .

(VI-31)

e) Note that since each internal point gets counted twice, it

has a weight of h, whereas the endpoints get counted just

once and thus have weights of h/2:

wi =

{

h

2
, h, ..., h,

h

2

}

. (VI-32)

f) Our approximation error, also called the truncation

error or the algorithmic error here, for the trapezoid rule

can be written either as

εapprx = I − IT (x, h)

= − 1

12
(b − a)h2f ′′(ζ) (VI-33)

for some value x = ζ that lies in [a, b] or as

εapprx = − 1

12
h2[f ′(b) − f ′(a)] + O(h4) . (VI-34)

g) This error is proportional to h2 and Eq. (VI-34) warns

you that the trapezoidal rule will have difficulties if the

derivative diverges at the end points.
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3. Simpson’s Rule (“Simpson, eh?” – M. Burns).

a) Instead of fitting two adjacent points with trapezoids, we

will now fit three adjacent points with parabolas:

f(x) ≈ αx2 + βx + γ , (VI-35)

for each interval, still keeping the intervals evenly spaced.

b) The area of each section is then the integral of this parabola:

∫ xi+h

xi

(αx2+βx+γ) dx =
αx3

3
+

βx2

2
+ γx

∣

∣

∣

∣

∣

∣

xi+h

xi

. (VI-36)

c) This is equivalent to integrating the Taylor series up to the

quadratic term. Hence the Simpson rule is a second-order

polynomial method.

d) In order to relate the parameters α, β, and γ to the func-

tion, we consider an interval from −1 to +1,

∫ 1

−1
(αx2 + βx + γ) dx =

2α

3
+ 2γ . (VI-37)

i) Note, however, for the function itself,

f(−1) = α − β + γ , α = f(1)+f(−1)
2 − f(0) ,

f(0) = γ , β = f(1)−f(−1)
2 ,

f(1) = α + β + γ , γ = f(0) .
(VI-38)

ii) Using the results of Eq. (VI-38) in Eq. (VI-37)

yields,

∫ 1

−1
(αx2 + βx + γ) dx =

f(−1)

3
+

4f(0)

3
+

f(1)

3
.

(VI-39)
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iii) Because 3 values of the function are needed, we

evaluate the integral over two adjacent intervals

=⇒ evaluate the functions at the two endpoints

and the middle:
∫ xi+h

xi−h
f(x) dx =

∫ xi+h

xi

f(x) dx +
∫ xi

xi−h
f(x) dx

' h

3
fi−1 +

4h

3
fi +

h

3
fi+1 .

(VI-40)

e) Simpson’s rule requires the elementary integration to be

over pairs of intervals =⇒ this requires the number of

intervals to be even, and hence, the number of points N

to be odd.

f) To integrate across the entire range [a, b], we add up con-

tributions from each pair of subintervals, counting all but

the first and last endpoints twice:

∫ b
a f(x) dx ≈ h

3f1 + 4h
3 f2 + 2h

3 f3 + 4h
3 f4 + · · ·

+4h
3 fN−1 + h

3fN .

(VI-41)

i) From this integral, we see that the total set of

weights is

wi =

{

h

3
,
4h

3
,
2h

3
,
4h

3
, ...,

2h

3
,
4h

3
,
h

3

}

. (VI-42)

ii) The sum of your weights provides a useful check

on your integration:

N
∑

i=1

wi = (N − 1) h . (VI-43)

Remember, N must be odd.
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4. Errors in the Newton-Cotes Methods.

a) As we have said above, and as was the case for differ-

entiation, our Newton-Cotes methods are essentially just

Taylor series expansions of a function. We will highlight

here what is derived in more detail in the textbook.

b) The approximation (i.e., truncation or algorithmic) error

εapprx can be estimated by the next higher term in the

Taylor series that is not used in the evaluation of the

integral:

εapprx-t = O




[b − a]3

N2



 f (2) , (VI-44)

εapprx-s = O




[b − a]5

N4



 f (4) , (VI-45)

where the subscripts t and s in the subscripts refer to

trapezoid and Simpson’s rule, respectively.

c) The relative error ε is just these approximation errors

divided by the value of the function:

εt,s =
εapprx-t,s

f
. (VI-46)

d) Assume that after N steps, the relative roundoff error is

random, so

εro ≈
√

N εm , (VI-47)

where εm is the machine precision (∼ 10−7 for single pre-

cision, 10−15 for double precision).

e) Assume that the total error is given by Eq. (IV-33):

εtot = εro + εapprx. (VI-48)

i) We want to determine the value of N that min-

imizes the total error. This will occur when the
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two relative errors are of equal magnitude, which

we approximate even further by assuming that the

two errors are equal:

εro = εt,s =
εapprx-t,s

f
. (VI-49)

ii) Now, let’s make the following assumptions:

f (n)

f
≈ 1 , (VI-50)

b − a = 1 =⇒ h =
1

N
. (VI-51)

f) For the trapezoid rule, Eq. (VI-49) becomes

√
N εm ≈ f (2)(b − a)3

fN2
=

1

N2
, (VI-52)

⇒ N ≈ 1

(εm)2/5
. (VI-53)

i) Then, the optimum numbers of N steps for the

trapezoid rule are

N =
1

h
=







(1/10−7)2/5 = 631 , for single precision,

(1/10−15)2/5 = 106 , for double precision.
(VI-54)

ii) The corresponding errors are

εro ≈
√

N εm =







3 × 10−6 , for single precision,
10−12 , for double precision.

(VI-55)

g) For Simpson’s rule, Eq. (VI-49) becomes

√
N εm ≈ f (4)(b − a)5

fN4
=

1

N4
, (VI-56)

⇒ N ≈ 1

(εm)2/9
. (VI-57)
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i) Then, the optimum numbers of N steps for Simp-

son’s rule are

N =
1

h
=







(1/10−7)2/9 = 36 , for single precision,

(1/10−15)2/9 = 2154 , for double precision.
(VI-58)

ii) The corresponding errors are

εro ≈
√

N εm =







6 × 10−7 , for single precision,

5 × 10−14 , for double precision.
(VI-59)

h) These results are illuminating because they show that

i) Simpson’s rule is an improvement over the trape-

zoid rule.

ii) It is possible to obtain an error close to the ma-

chine precision with Simpson’s rule (and with other

higher-order integration algorithms).

iii) Obtaining the best numerical approximation to

an integral is not obtained by letting N → ∞, but

with a relatively small N ≤ 1000.

5. There are higher order Newton-Cotes methods, the 3rd-degree

“3/8th” method and the 4th-degree Milne method. See Table

5.1 in your textbook on page 61 for the elementary weights that

one would use for these two methods.

6. See Appendix G for detailed information of the Gaussian Quadra-

ture technique of numerical integration.


