
PHYS-4007/5007: Computational Physics
Course Lecture Notes

Section VII

Dr. Donald G. Luttermoser

East Tennessee State University

Version 7.1

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.

VII. Matrices and Solutions to Linear Equations

A. Introduction: Setting Up the Problem.

1. There may be times when you have a system of N linear equations

with N unknowns:

a11x1 + a12x2 + · · · + a1NxN = b1 (VII-1)

a21x1 + a22x2 + · · · + a2NxN = b2 (VII-2)
... =

...

aN1x1 + aN2x2 + · · · + aNNxN = bN (VII-3)

a) In many cases, the a and b values are known, so your

problem is to solve for all of the x values.

b) To solve this problem, we must set the problem up as a

matrix equation:

















a11 a12 · · · a1N

a21 a22 · · · a2N
...

...

aN1 aN2 · · · aNN

































x1

x2
...

xN

















=

















b1

b2
...

bN

















(VII-4)

AX = B . (VII-5)

c) The solution for the X vector is then found by inverting

the A matrix:

A−1AX = A−1B (VII-6)

X = A−1B . (VII-7)

2. Before discussing the techniques for carrying out such an inver-

sion, we need to go over some basic linear algebra and discuss

various types of matrices that one might encounter in physics.

VII–2 PHYS-4007/5007: Computational Physics

3. Also, since matrices play a big role in quantum mechanics, we

will use the formalism that is used in QM to describe vectors

and matrices.

B. Linear Algebra.

1. In classical mechanics, vectors are typically defined in Cartesian

coordinates as

α = αx
∧

x + αy

∧

y + αz
∧

z. (VII-8)

Note that one also can use the i, j, k notation for the unit vectors.

a) Vectors are added via the component method such that

α ± β = (αx ± βx)
∧

x + (αy ± βy)
∧

y + (αz ± βx)
∧

z. (VII-9)

b) However in quantum mechanics, often we will have more

than 3 coordinates to worry about — indeed, sometimes

there may be an infinite number of coordinates!

c) As such, we will introduce a new notation (the so-called

bra-and-ket notation) to describe vectors:

α ≡ |α〉 (ket),

α∗ ≡ 〈α| (bra).
(VII-10)

Note that the ∗ in the “bra” definition means take the

complex conjugate (multiply all i =
√
−1 terms by -1) in

vector α.

2. A vector space consists of a set of vectors (|α〉, |β〉, |γ〉, ...),

together with a set of (real or complex) scalars (a, b, c, ...),

which are subject to 2 operations:

a) Vector addition: The sum of any 2 vectors is another

vector:

|α〉 + |β〉 = |γ〉. (VII-11)

Donald G. Luttermoser, ETSU VII–3

i) Vector addition is commutative:

|α〉 + |β〉 = |β〉 + |α〉. (VII-12)

ii) Vector addition is associative:

|α〉 + (|β〉 + |γ〉) = (|α〉 + |β〉) + |γ〉. (VII-13)

iii) There exists a zero (or null) vector, |0〉, with

the property that

|α〉 + |0〉 = |α〉, (VII-14)

for every vector |α〉.

iv) For every vector |α〉 there is an associated in-

verse vector (| − α〉) such that

|α〉 + | − α〉 = |0〉. (VII-15)

b) Scalar multiplication: The product of any scalar with

any vector is another vector:

a|α〉 = |γ〉. (VII-16)

i) Scalar multiplication is distributive with respect

to vector addition:

a(|α〉 + |β〉) = a|α〉 + a|β〉, (VII-17)

and with respect to scalar addition:

(a + b)|α〉 = a|α〉 + b|α〉. (VII-18)

ii) It is also associative:

a(b|α〉) = (ab)|α〉. (VII-19)

VII–4 PHYS-4007/5007: Computational Physics

iii) Multiplications by the null and unit vector are

0|α〉 = |0〉; 1|α〉 = |α〉. (VII-20)

(Note that | − α〉 = (−1)|α〉.)

c) A linear combination of the vectors |α〉, |β〉, |γ〉, ... is

an expression of the form

a|α〉 + b|β〉 + c|γ〉 + · · · . (VII-21)

i) A vector |λ〉 is said to be linearly independent

of the set |α〉, |β〉, |γ〉, ... if it cannot be written as

a linear combination of them (e.g., unit vectors
∧

x,
∧

y, and
∧

z).

ii) A collection of vectors is said to span the space if

every vector can be written as a linear combination

of the members of this set.

iii) A set of linearly independent vectors that spans

the space is called a basis =⇒ ∧

x,
∧

y, and
∧

z (or

i, j, k) define the Cartesian basis, which is a 3-D

orthogonal basis.

iv) The number of vectors in any basis is called the

dimension of the space. Here we will introduce

the finite bases (analogous to unit vectors),

|e1〉, |e2〉, ..., |en〉, (VII-22)

of any given vector:

|α〉 = a1|e1〉 + a2|e2〉 + · · · + an|en〉, (VII-23)

which is uniquely represented by the (ordered) n-

tuple of its components:

|α〉 ↔ (a1, a2, ..., an). (VII-24)

Donald G. Luttermoser, ETSU VII–5

v) It is often easier to work with components than

with the abstract vectors themselves. Use whatever

method to which you are most comfortable.

3. In 3 dimensions, we encounter 2 kinds of vector products: the dot

product and the cross product. The latter does not generalize in

any natural way to n-dimensional vector spaces, but the former

does and is called the inner product.

a) The inner product of 2 vectors (|α〉 and |β〉) is a com-

plex number (which we write as 〈α|β〉), with the following

properties:

〈β|α〉 = 〈α|β〉∗ (VII-25)

〈α|α〉 ≥ 0 (VII-26)

〈α|α〉 = 0 ⇔ |α〉 = |0〉 (VII-27)

〈α|(b|β〉 + c|γ〉) = b〈α|β〉 + c〈α|γ〉 (VII-28)

〈α|β〉 =
N
∑

n=1

α∗
nβn. (VII-29)

b) A vector space with an inner product is called an inner

product space.

c) Because the inner product of any vector with itself is a

non-negative number (Eq. VII-26), its square root is real

— we call this the norm (think of this as the length) of

the vector:

‖α‖ ≡
√

〈α|α〉. (VII-30)

d) A unit vector, whose norm is 1, is said to be normalized.

e) Two vectors whose inner product is zero are called or-

thogonal =⇒ a collection of mutually orthogonal nor-

malized vectors,

〈αi|αj〉 = δij, (VII-31)

VII–6 PHYS-4007/5007: Computational Physics

is called an orthonormal set, where δij is the Kro-

necker delta.

f) Components of vectors can be written as

ai = 〈ei|α〉. (VII-32)

g) For vectors that are co-linear and proportional to each

other, the Schwartz inequality can be applied to these

vectors:

|〈α|β〉|2 ≤ 〈α|α〉〈β|β〉 (VII-33)

and we can define the (complex) angle between |α〉 and

|β〉 by the formula

cos θ =

√

√

√

√

√

〈α|β〉〈β|α〉
〈α|α〉〈β|β〉 . (VII-34)

4. A linear transformation (T̂ , the hat on an operator from this

point forward will imply that the operator is a linear transfor-

mation — don’t confuse it with the hat of a unit vector) takes

each vector in a vector space and “transforms” it into some other

vector (|α〉 → |α′〉 = T̂ |α〉), with the proviso that the operator is

linear

T̂ (a|α〉 + b|β〉) = a(T̂ |α〉) + b(T̂ |β〉). (VII-35)

a) We can write the linear transformation of basis vectors as

T̂ |ej〉 =
n
∑

i=1

Tij|ei〉, (j = 1, 2, ..., n). (VII-36)

This is also the definition of a tensor, as such, the oper-

ator T̂ is also a tensor.

b) If |α〉 is an arbitrary vector:

|α〉 = a1|e1〉 + · · · + an|en〉 =
n
∑

j=1

aj|ej〉, (VII-37)

Donald G. Luttermoser, ETSU VII–7

then

T̂ |α〉 =
n
∑

j=1

aj(T̂ |ej〉) =
n
∑

j=1

n
∑

i=1

ajTij|ei〉 =
n
∑

i=1





n
∑

j=1

Tijaj



 |ei〉.

(VII-38)

T̂ takes a vector with components a1, a2, ..., an into a vec-

tor with components

a′
i =

n
∑

j=1

Tijaj. (VII-39)

c) If the basis is orthonormal, it follows from Eq. (VII-36)

that

Tij = 〈ei|T̂ |ej〉, (VII-40)

or in matrix notation

T =

















T11 T12 · · · T1n

T21 T22 · · · T2n
...

...
...

Tn1 Tn2 · · · Tnn

















. (VII-41)

d) The sum of 2 linear transformations is

(Ŝ + T̂)|α〉 = Ŝ|α〉 + T̂ |α〉, (VII-42)

or, again, in matrix notation,

U = S + T ⇔ Uij = Sij + Tij. (VII-43)

e) The product of 2 linear transformations (ŜT̂) is the net

effect of performing them in succession — first T̂ , the Ŝ.

In matrix notation:

U = ST ⇔ Uik =
n
∑

j=1

SijTjk; (VII-44)

this is the standard rule for matrix multiplication — to

find the ik th element of the product, you look at the i th

row of S and the k th column of T, multiply corresponding

entries, and add.

VII–8 PHYS-4007/5007: Computational Physics

f) The transpose of a matrix (T̃) is the same set of elements

in T, but with the rows and columns interchanged:

T̃ =

















T11 T21 · · · Tn1

T12 T22 · · · Tn2
...

...
...

T1n T2n · · · Tnn

















. (VII-45)

Note that the transpose of a column matrix is a row ma-

trix!

g) A square matrix is symmetric if it is equal to its trans-

pose (reflection in the main diagonal — upper left to lower

right — leaves it unchanged); it is antisymmetric if this

operation reverses the sign:

SYMMETRIC: T̃ = T; ANTISYMMETRIC: T̃ = −T.

(VII-46)

h) The (complex) conjugate (T∗) is obtained by taking the

complex conjugate of every element:

T∗ =

















T ∗
11 T ∗

12 · · · T ∗
1n

T ∗
21 T ∗

22 · · · T ∗
2n

...
...

...

T ∗
n1 T ∗

n2 · · · T ∗
nn

















; a∗ =

















a∗
1

a∗
2
...

a∗
n

















. (VII-47)

i) A matrix is real if all its elements are real and imaginary

if they are all imaginary:

REAL: T∗ = T; IMAGINARY: T∗ = −T. (VII-48)

j) A square matrix is Hermitian (or self-adjoint as defined

by T† ≡ T̃∗) if it is equal to its Hermitian conjugate; if

Hermitian conjugation introduces a minus sign, the ma-

trix is skew Hermitian (or anti-Hermitian):

HERMITIAN: T† = T; SKEW HERMITIAN: T† = −T.

(VII-49)

Donald G. Luttermoser, ETSU VII–9

k) With this notation, the inner product of 2 vectors (with

respect to an orthonormal basis), can be written in matrix

form:

〈α|β〉 = a†b. (VII-50)

l) Matrix multiplication is not, in general, commutative (ST

6= TS) — the difference between 2 orderings is called the

commutator:

[S,T] ≡ ST − TS. (VII-51)

It can also be shown that one can write the following

commutator relation:

[ÂB̂, Ĉ] = Â [B̂, Ĉ] + [Â, Ĉ] B̂. (VII-52)

m) The transpose of a product is the product of the transpose

in reverse order :

(
∼

ST) = T̃S̃, (VII-53)

and the same goes for Hermitian conjugates:

(ST)† = T†S†. (VII-54)

n) The unit matrix is defined by

1 =

















1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1

















. (VII-55)

In other words,

1ij = δij. (VII-56)

o) The inverse of a matrix (written T−1) is defined by

T−1T = TT−1 = 1. (VII-57)

VII–10 PHYS-4007/5007: Computational Physics

i) A matrix has an inverse if and only if its deter-

minant is nonzero; in fact

T−1 =
1

detT
C̃, (VII-58)

where C is the matrix of cofactors.

ii) The cofactor of element Tij is (−1)i+j times the

determinant of the submatrix obtained from T by

erasing the ith row by the jth column.

iii) As an example for taking the inverse of a matrix,

let’s assume that T is a 3x3 matrix of form

T =











T11 T12 T13

T21 T22 T23

T31 T32 T33











. (VII-59)

Its determinant is then

det T = |T| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

T11 T12 T13

T21 T22 T23

T31 T32 T33

∣

∣

∣

∣

∣

∣

∣

∣

∣

= T11

∣

∣

∣

∣

∣

∣

T22 T23

T32 T33

∣

∣

∣

∣

∣

∣

− T12

∣

∣

∣

∣

∣

∣

T21 T23

T31 T33

∣

∣

∣

∣

∣

∣

+T13

∣

∣

∣

∣

∣

∣

T21 T22

T31 T32

∣

∣

∣

∣

∣

∣

= T11 (T22T33 − T23T32) − T12 (T21T33 − T23T31)

+T13 (T21T32 − T22T31) . (VII-60)

Donald G. Luttermoser, ETSU VII–11

iv) For this 3x3 matrix, the matrix of cofactors is

given by

C =





























∣

∣

∣

∣

∣

∣

T22 T23

T32 T33

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T21 T23

T31 T33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T21 T22

T31 T32

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T12 T13

T32 T33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T11 T13

T31 T33

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T11 T12

T31 T32

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T12 T13

T22 T23

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T11 T13

T21 T23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T11 T12

T21 T22

∣

∣

∣

∣

∣

∣





























.

(VII-61)

v) The transpose of this cofactor matrix is then (see

Eq. VII-45)

C̃ =





























∣

∣

∣

∣

∣

∣

T22 T32

T23 T33

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T12 T32

T13 T33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T12 T22

T13 T23

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T21 T31

T23 T33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T11 T31

T13 T33

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T11 T21

T13 T23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T21 T31

T22 T32

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

T11 T31

T12 T32

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T11 T21

T12 T22

∣

∣

∣

∣

∣

∣





























.

(VII-62)

vi) A matrix without an inverse is said to be singu-

lar.

vii) The inverse of a product (assuming it exists) is

the product of the inverses in reverse order :

(ST)−1 = T−1S−1. (VII-63)

p) A matrix is unitary if its inverse is equal to its Hermitian

conjugate:

UNITARY: U† = U−1. (VII-64)

q) The trace of a matrix is the sum of the diagonal elements:

Tr(T) ≡
m
∑

i=1

Tii, (VII-65)

VII–12 PHYS-4007/5007: Computational Physics

and has the property

Tr(T1T2) = Tr(T2T1). (VII-66)

5. A vector under a linear transformation that obeys the following

equation:

T̂ |α〉 = λ|α〉, (VII-67)

is called an eigenvector of the transformation, and the (com-

plex) number λ is called the eigenvalue.

a) Notice that any (nonzero) multiple of an eigenvector is

still an eigenvector with the same eigenvalue.

b) In matrix form, the eigenvector equation takes the form:

Ta = λa (VII-68)

(for nonzero a), or

(T − λ1)a = 0. (VII-69)

(here 0 is the zero matrix, whose elements are all zero.)

c) If the matrix (T - λ1) had an inverse, we could multiply

both sides of Eq. (VII-69) by (T - λ1)−1, and conclude

that a = 0. But by assumption, a is not zero, so the

matrix (T - λ1) must in fact be singular, which means

that its determinant vanishes:

det(T−λ1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(T11 − λ) T12 · · · T1n

T21 (T22 − λ) · · · T2n
...

...
...

Tn1 Tn2 · · · (Tnn − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(VII-70)

d) Expansion of the determinant yields an algebraic equation

for λ:

Cnλ
n + Cn−1λ

n−1 + · · · + C1λ + C0 = 0, (VII-71)

Donald G. Luttermoser, ETSU VII–13

where the coefficients Ci depend on the elements of T.

This is called the characteristic equation for the matrix

— its solutions determine the eigenvalues. Note that it is

an nth-order equation, so it has n (complex) roots.

i) Some of these root may be duplicates, so all we

can say for certain is that an n x n matrix has at

least one and at most n distinct eigenvalues.

ii) In the cases where duplicates exist, such states

are said to be degenerate.

iii) To construct the corresponding eigenvectors, it is

generally easiest simply to plug each λ back into Eq.

(VII-68) and solve (by hand) for the components of

a (see Examples VII-2 and VII-3).

6. In many physical problems involving matrices in both classical

mechanics and quantum mechanics it is desirable to carry out a

(real) orthogonal similarity transformation or a unitary transfor-

mation to reduce the matrix to its diagonal form (i.e., all non-

diagonal elements equal to zero).

a) If eigenvectors span the space, we are free to use them as

a basis

T̂ |f1〉 = λ1|f1〉
T̂ |f2〉 = λ2|f2〉

· · ·
T̂ |fn〉 = λn|fn〉

b) The matrix representing T̂ takes on a very simple form in

this basis, with the eigenvalues strung out along the main

VII–14 PHYS-4007/5007: Computational Physics

diagonal and all other elements zero:

T =

















λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn

















. (VII-72)

c) The (normalized) eigenvectors are equally simple:

a(1) =























1

0

0
...

0























,a(2) =























0

1

0
...

0























, . . . ,a(n) =























0

0

0
...

1























.

(VII-73)

d) A matrix that can be brought to diagonal form (Eq.

VII-72) by change of basis is said to be diagonalizable.

e) In a geometrical sense, diagonalizing a matrix is equiva-

lent to rotating the bases of a matrix about some point

in the space until all of the off-diagonal elements go to

zero. If D is the diagonalized matrix of matrix M, the

operation that diagonalizes M is

D = SMS−1 , (VII-74)

where matrix S is called a similarity transformation. Note

that the inverse of the similarity matrix can be con-

structed by using the eigenvectors (in the old basis) as

the columns of S−1:

(

S−1
)

ij
=
(

a(j)
)

i
. (VII-75)

f) There is great advantage in bringing a matrix to diagonal

form — it is much easier to work with. Unfortunately,

Donald G. Luttermoser, ETSU VII–15

not every matrix can be diagonalized — the eigenvec-

tors have to span the space for a matrix to be

diagonalizable.

7. The Hermitian conjugate of a linear transformation (called a

Hermitian transformation) is that transformation T̂ † which,

when applied to the first member of an inner product, gives the

same result as if T̂ itself had been applied to the second vector:

〈T̂ †α|β〉 = 〈α|T̂ β〉 (VII-76)

(for all vectors |α〉 and |β〉).
a) Note that the notation used in Eq. (VII-76) is commonly

used but incorrect: T̂ β〉 actually means T̂ |β〉 and 〈T̂ †α|β〉
means the inner product of the vector T̂ †|α〉.

b) Note that we can also write

〈α|T̂ β〉 = a†Tb = (T†a)†b = 〈T̂ †α|β〉. (VII-77)

c) In quantum mechanics, a fundamental role is played by

Hermitian transformations (T̂ † = T̂). The eigenvectors

and eigenvalues of a Hermitian transformation have 3 cru-

cial properties:

i) The eigenvalues of a Hermitian transforma-

tion are real.

ii) The eigenvectors of a Hermitian transfor-

mation belonging to distinct eigenvalues are

orthogonal.

iii) The eigenvectors of a Hermitian transfor-

mation span the space.

VII–16 PHYS-4007/5007: Computational Physics

Example VII–1. Given the following two matrices:

A =











−1 1 i

2 0 3
2i −2i 2











, B =











2 0 −i

0 1 0
i 3 2











,

compute (a) A + B, (b) AB, (c) [A, B], (d) Ã, (e) A∗, (f) A†, (g) Tr(B),

(h) det(B), and (i) B−1. Check that BB−1 = 1. Does A have an inverse?

Solution (a): Sum the respective elements of the matrix:

A + B =











−1 1 i

2 0 3

2i −2i 2











+











2 0 −i

0 1 0

i 3 2











=











1 1 0

2 1 3

3i (3 − 2i) 4











.

Solution (b): Multiply rows of A by columns of B:

AB =











(−2 + 0 − 1) (0 + 1 + 3i) (i + 0 + 2i)
(4 + 0 + 3i) (0 + 0 + 9) (−2i + 0 + 6)

(4i + 0 + 2i) (0 − 2i + 6) (2 + 0 + 4)











=











−3 (1 + 3i) 3i
(4 + 3i) 9 (6 − 2i)

6i (6 − 2i) 6











.

Solution (c): [A, B] = AB – BA, we already have AB,

BA =











(−2 + 0 + 2) (2 + 0 − 2) (2i + 0 − 2i)

(0 + 2 + 0) (0 + 0 + 0) (0 + 3 + 0)
(−i + 6 + 4i) (i + 0 − 4i) (−1 + 9 + 4)











=











0 0 0
2 0 3

(6 + 3i) −3i 12











;

[A,B] =











−3 (1 + 3i) 3i
(4 + 3i) 9 (6 − 2i)

6i (6 − 2i) 6











−











0 0 0
2 0 3

(6 + 3i) −3i 12











Donald G. Luttermoser, ETSU VII–17

=











−3 (1 + 3i) 3i

(2 + 3i) 9 (3 − 2i)
(−6 + 3i) (6 + i) −6











.

Solution (d): Transpose of A — flip A about the diagonal:

Ã =











−1 2 2i

1 0 −2i
i 3 2











.

Solution (e): Complex conjugate of A — multiply each i term by –1 in

A:

A∗ =











−1 1 −i
2 0 3

−2i 2i 2











.

Solution (f): Hermitian of A:

A† ≡ Ã∗ =











−1 2 −2i

1 0 2i
−i 3 2











.

Solution (g): Trace of B:

Tr(B) =
3
∑

i=1

Bii = 2 + 1 + 2 = 5.

Solution (h): Determinant of B:

det(B) = 2(2 − 0) − 0(0 − 0) − i(0 − i) = 4 − 0 − 1 = 3.

Solution (i): Inverse of B:

B−1 =
1

det(B)
C̃,

VII–18 PHYS-4007/5007: Computational Physics

where

C =





























∣

∣

∣

∣

∣

∣

1 0

3 2

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

0 0

i 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1

i 3

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

0 −i

3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 −i

i 2

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

2 0

i 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −i

1 0

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

2 −i

0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 0

0 1

∣

∣

∣

∣

∣

∣





























=











2 0 −i

−3i 3 −6

i 0 2











,

then

B−1 =
1

3











2 −3i i

0 3 0

−i −6 2











.

BB−1 =
1

3











(4 + 0 − 1) (−6i + 0 + 6i) (2i + 0 − 2i)
(0 + 0 + 0) (0 + 3 + 0) (0 + 0 + 0)

(2i + 0 − 2i) (3 + 9 − 12) (−1 + 0 + 4)











=
1

3











3 0 0

0 3 0

0 0 3











=











1 0 0

0 1 0

0 0 1











.
√

If det(A) 6= 0, then A has an inverse:

det(A) = −1(0 + 6i) − 1(4 − 6i) + i(−4i − 0) = −6i − 4 + 6i + 4 = 0.

As such, A does not have an inverse.

Example VII–2. Find the eigenvalues and normalized eigenvectors of

the following matrix:

M =





1 1

0 1



 .

Can this matrix be diagonalized?

Solution:

0 = det(M − λ1) =

∣

∣

∣

∣

∣

∣

(1 − λ) 1

0 (1 − λ)

∣

∣

∣

∣

∣

∣

= (1 − λ)2

Donald G. Luttermoser, ETSU VII–19

λ = 1 (only one eigenvalue).

From Eq. (VII-68) we get





1 1
0 1









a1

a2



 = 1 ·




a1

a2



 .

We get two equations from this eigenvector equation:

a1 + a2 = a1

a2 = a2 .

The second equation tells us nothing, but the first equation shows us that

a2 = 0. We still need to figure out the value for a1. We can do this by

normalizing our eigenvector a = |α〉:

1 = 〈α|α〉 =
2
∑

i=1

|ai|2

= |a1|2 + |a2|2 = |a1|2

or a1 = 1. Hence our normalized eigenvector,

|α〉 = a =





a1

a2



 ,

is

a =





1

0



 .

Since these eigenvectors do not span the space (as described on page

VII-4, §A.2.c.ii.), this matrix cannot be diagonalized.

Example VII–3. Find the eigenvalues and eigenvectors of the following

matrix:

M =











2 0 −2
−2i i 2i

1 0 −1











.

VII–20 PHYS-4007/5007: Computational Physics

Solution:

The characteristic equation is

|M − λ1| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2 − λ) 0 −2

−2i (i − λ) 2i

1 0 (−1 − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (2 − λ)

∣

∣

∣

∣

∣

∣

(i − λ) 2i

0 (−1 − λ)

∣

∣

∣

∣

∣

∣

− 0 − 2

∣

∣

∣

∣

∣

∣

−2i (i − λ)

1 0

∣

∣

∣

∣

∣

∣

= (2 − λ)[(i − λ)(−1 − λ) − 0] − 2[0 − (i − λ)]

= (2 − λ)(−i − iλ + λ + λ2) + 2i − 2λ)

= −2i − 2iλ + 2λ + 2λ2 + iλ + iλ2 − λ2 − λ3 + 2i − 2λ

= −λ3 + (1 + i)λ2 − iλ = 0 .

To find the roots to this characteristic equation, factor out a λ and use

the quadratic formula solution equation:

0 = −λ3 + (1 + i)λ − iλ

= [−λ2 + (1 + i)λ − i]λ

λ1 = 0

λ2,3 =
−(1 + i) ±

√

(1 + i)2 − 4i

−2

=
−(1 + i) ±

√

(1 + 2i − 1) − 4i

−2

=
−(1 + i) ±

√
−2i

−2
.

However note that (1 − i)2 = −2i. As such, the equation above becomes

λ2,3 =
−(1 + i) ±

√

(1 − i)2

−2

=
−(1 + i) ± (1 − i)

−2

λ2 =
−(1 + i) − (1 − i)

−2
=

−2

−2
= 1

λ3 =
−(1 + i) + (1 − i)

−2
=

−2i

−2
= i ,

Donald G. Luttermoser, ETSU VII–21

so the roots of λ (i.e., the eigenvalues) are 0, 1, and i. Now, let’s call the

components of the first eigenvector |α〉 (a1, a2, a3) which corresponds to

eigenvalue λ1 = 0. The eigenvector equation becomes










2 0 −2
−2i i 2i

1 0 −1





















a1

a2

a3











= 0











a1

a2

a3











=











0
0

0











,

which yield 3 equations:

2a1 − 2a3 = 0

−2ia1 + ia2 + 2ia3 = 0

a1 − a3 = 0 .

The first equation gives a3 = a1, the second gives a2 = 0, and the third is

redundant with the first equation. We can find the values for a1 and a3

by normalizing:

1 = 〈α|α〉 =
3
∑

i=1

|ai|2

= |a1|2 + |a2|2 + |a3|2 = |a1|2 + |a1|2

= 2 |a1|2 ,

or a1 = a3 = (1/
√

2) =
√

2/2. Hence our eigenvector for λ1 is

|α〉 = a =

√
2

2











1

0

1











, for λ1 = 0 .

For the second eigenvector, let’s call it |β〉 = b, we have










2 0 −2

−2i i 2i
1 0 −1





















b1

b2

b3











= 1











b1

b2

b3











=











b1

b2

b3











,

which yield the equations:

2b1 − 2b3 = b1

−2ib1 + ib2 + 2ib3 = b2

b1 − b3 = b3 ,

VII–22 PHYS-4007/5007: Computational Physics

with the solutions b3 = (1/2)b1 and b2 = [(1 − i)/2]b1. Normalizing gives

1 = 〈β|β〉 =
3
∑

i=1

|bi|2

= |b1|2 + |b2|2 + |b3|2

= |b1|2 +

(

1 + i

2

) (

1 − i

2

)

|b1|2 +
1

4
|b1|2

= |b1|2 +

(

1 + i − i + 1

4

)

|b1|2 +
1

4
|b1|2

=
4

4
|b1|2 +

2

4
|b1|2 +

1

4
|b1|2

=
7

4
|b1|2 ,

or b1 = (2/
√

7). So b2 = [(1 − i)/
√

7] and b3 = (1/
√

7) giving our final

eigenvector for λ2 as

|β〉 = b =

√
7

7











2
(1 − i)

1











, for λ2 = 1 .

Finally, the third eigenvector (call it |γ〉 = c) is










2 0 −2

−2i i 2i
1 0 −1





















c1

c2

c3











= i











c1

c2

c3











=











ic1

ic2

ic3











,

which gives the equations:

2c1 − 2c3 = ic1

−2ic1 + ic2 + 2ic3 = ic2

c1 − c3 = ic3 ,

with the solutions c3 = c1 = 0, with c2 undetermined. Once again, we can

normalize our eigenvector to determine this undetermined c2 coefficient:

1 = 〈γ|γ〉 =
3
∑

i=1

|ci|2

= |c1|2 + |c2|2 + |c3|2 = |c2|2 ,

Donald G. Luttermoser, ETSU VII–23

or c2 = 1, which gives our third eigenvector:

|γ〉 = c =











0

1

0











, for λ3 = i .

C. Computational Linear Algebra.

1. Here, we will be solving the set of equations as described in Eqs.

(VII-1,2,3).

a) However for the present, let N = number of unknowns

and M = number of equations.

b) If N = M , there’s a good chance we can obtain a unique

solution.

i) However, if one or more of the M equations is a

linear combination of the others =⇒ row degen-

eracy occurs =⇒ we will not be able to obtain a

unique solution.

ii) Or, if all equations contain variables in exactly the

same linear combination =⇒ column degeneracy

occurs =⇒ no unique solution can be found.

iii) For square (N = M) matrices, row degeneracy

implies column degeneracy and vise versa.

iv) If a set of equations are degenerate, the matrix

is said to be singular.

VII–24 PHYS-4007/5007: Computational Physics

c) Numerically, other things can go wrong:

i) If some equations are close to being a linear com-

bination of the other equations in the set, roundoff

errors may render them linear dependent at some

stage of the calculations.

ii) Accumulated roundoff errors in the solution can

swamp the true solution =⇒ this can occur if N

is too large =⇒ direct substitution of the so-

lution back into the original equations can

verify this.

d) Linear sets with 2 < N <∼ 50 can be routinely solved in

single precision without resorting to sophisticated meth-

ods =⇒ in double precision, N → 200 without worrying

about roundoff error.

e) As we have discussed, solution to a set of linear equations

involve inverting matrices. To write the most efficient ma-

trix inverter, one needs to know how numbers are stored.

Assuming we have matrix

A =

















a11 a12 · · · a1N

a21 a22 · · · a2N
...

...

aM1 aM2 · · · aMN

















.

i) Column storage (which IDL calls “row-major stor-

age”):

a11, a21, ..., aM1, a12, a22, ..., aM2, ..., a1N , a2N , ..., aMN .

=⇒ Fortran and IDL use this method.

Donald G. Luttermoser, ETSU VII–25

ii) Row storage (which IDL calls “column-major

storage”):

a11, a12, ..., a1N , a21, a22, ..., a2N , ..., aM1, aM2, ..., aMN .

=⇒ C and C++ use this method.

iii) The techniques we will be discussing here are de-

signed with column storage in mind.

2. The basic process of solving linear systems of equations is to

eliminate variables until you have a single equation with a single

unknown.

3. For nonlinear problems, an iterative scheme is developed that

solves a linearized version of the equations.

4. Equations that do not depend upon time are called autonomous

systems, that is

f (x, t) = f(x) . (VII-78)

a) If initial conditions are of the form xi(t) = xi(0) for

all i (1 ≤ i ≤ N) and t, the solution points in the

N -dimensional space of the variables are called steady

state.

b) If we start at steady state, we stay there forever.

c) Locating steady states for linear equations (or ODE’s) is

important since they are used in stability analysis prob-

lems.

d) It is easy to see that x∗ = [x∗
1, ..., x

∗
N] is a steady state if

and only if

f(x∗) = 0 , (VII-79)

VII–26 PHYS-4007/5007: Computational Physics

or

fi(x
∗
1, ..., x

∗
N) = 0, for all i, (VII-80)

since this implies that dx∗/dt = 0.

e) Hence, locating steady states reduces to the problem of

solving N equations in the N unknowns x∗
i .

f) This problem is also called “finding roots of f(x).”

5. We shall now discuss the various numerical techniques used in

solving sets of linear equations.

D. Gaussian Elimination

1. The problem of solving fi({xj}) = 0 is divided into two important

classes:

a) Techniques used for linear equations such as Gaussian

elimination and matrix inversion.

b) Techniques used for nonlinear equations such as New-

ton’s Method.

c) With Gaussian elimination, we set up the N linear equa-

tions with N unknowns in the form of Eqs. (VII-1,2,3):

a11x1 + a12x2 + · · · + a1NxN − b1 = 0

a21x1 + a22x2 + · · · + a2NxN − b2 = 0
...

...
...

...
...

aN1x1 + aN2x2 + · · · + aNNxN − bN = 0
(VII-81)

or it matrix form

A x − b = 0, (VII-82)

Donald G. Luttermoser, ETSU VII–27

where

A =











a11 a12 · · ·
a21 a22 · · ·
...

... . . .











; x =











x1

x2
...











; b =











b1

b2
...











.

(VII-83)

d) One can then go through a process of eliminating variables

by adding or subtracting one equation to or from the other

equations.

Example VII–4. Take the equations

2x1 + x2 = 4

4x1 − x2 = 2.

We want to eliminate x1 from the second equation — we

multiply the first equation by 2 and subtract the first

equation from the second equation giving

−3x2 = −6, or x2 = 2.

This step is known as forward elimination. For larger sets

of equations, the forward elimination procedure eliminates

x1 from the second equation, then eliminates x1 and x2

from the third equation, and so on. The last equation will

only contain the variable xN , which can then be solved.

We then carry out a back-substitution, xN is then plugged

back into the N − 1 equation to solve for xN−1. In the

example above, substitute x2 = 2 into the first equation

giving

2x1 + 2 = 4 or x1 = 1.

e) This method of solving systems of linear equations is called

Gaussian elimination. A portion of a Fortran 77 code

VII–28 PHYS-4007/5007: Computational Physics

that might perform such a Gaussian elimination would be

written as

∗ Forward elimination

DO K = 1, N-1 % Go to column (k) operate

DO I = K+1, N % on the rows (i) below column k.

COEFF = A(I,K) / A(K,K)

DO J = K+1, N

A(I,J) = A(I,J) - COEFF * A(K,J)

ENDDO

A(I,K) = COEFF

B(I) = B(I) - COEFF * B(K)

ENDDO

ENDDO

Then the back-substitution is performed via

∗ Back-substitution

X(N) = B(N) / A(N,N) % Start from bottom and work

DO I = N-1, 1, -1 % work upward. (Note: This loop

SUM = B(I) % goes from n-1 to 1 in steps of -1.)

DO J = I+1, N % Skip lower triangular part.

SUM = SUM - A(I,J)*X(J)

ENDDO

X(I) = SUM/A(I,I)

ENDDO

f) Gaussian elimination is a simple procedure, yet it has its

pitfalls. Consider the set of equations

εx1 + x2 + x3 = 5

x1 + x2 = 3

x1 + x3 = 4

In the limit ε → 0, the solution is x1 = 1, x2 = 2, x3 = 3.

For these equations, the forward elimination step would

start by multiplying the first equation by (1/ε) and sub-

Donald G. Luttermoser, ETSU VII–29

tracting it from the second and third equations, giving

εx1 + x2 + x3 = 5

+ (1 − 1/ε)x2 − (1/ε)x3 = 3 − 5/ε

−(1/ε)x2 + (1 − 1/ε)x3 = 4 − 5/ε

i) Of course, if ε = 0 we have big problems, since the

(1/ε) factors blow up.

ii) Even if ε 6= 0, but is small, we are going to have

serious roundoff problems. In this case, 1/ε � 1,

so the equations above become

εx1 + x2 + x3 = 5
−(1/ε)x2 − (1/ε)x3 = −5/ε

−(1/ε)x2 − (1/ε)x3 = −5/ε

At this point it is clear that we may not proceed

since the second and third equations are now iden-

tical =⇒ 3 unknowns with only 2 equations.

g) Fortunately, there is a simple fix; we can just interchange

the order of the equations before doing the forward elim-

ination:
x1 + x2 = 3
εx1 + x2 + x3 = 5

x1 + x3 = 4

i) The next step of forward elimination gives

x1 + x2 = 3

(1 − ε)x2 + x3 = 5 − 3ε

−x2 + x3 = 4 − 3

ii) Roundoff eliminates the ε terms giving

x1 + x2 = 3
x2 + x3 = 5

−x2 + x3 = 1

VII–30 PHYS-4007/5007: Computational Physics

iii) The second step of forward elimination removes

x2 from the third equation using the second equa-

tion,

x1 + x2 = 3

x2 + x3 = 5
2x3 = 6

iv) You can easily substitute back giving x1 = 1, x2 =

2, x3 = 3.

h) Algorithms that rearrange the equations when they spot

small diagonal elements are said to pivot. The price of

pivoting is just a little extra bookkeeping in the program,

but it is essential to use pivoting in all but the smallest

matrices.

i) Even with pivoting, one cannot guarantee being safe from

roundoff problems when dealing with very large matrices.

The program below performs Gaussian elimination with

pivoting.

subroutine ge(aa,bb,n,np,x)

* Perform Gaussian elimination to solve aa*x = bb

* Matrix aa is physically np by np but only n by n is used (n <= np)

parameter(nmax = 100)

real aa(np,np),bb(np),x(np)

real a(nmax,nmax), b(nmax)

integer index(nmax)

real scale(nmax)

*

if(np .gt. nmax) then

print *, ’ERROR - Matrix is too large for ge routine’

stop

end if

*

do i=1,n

b(i) = bb(i) ! Copy vector

do j=1,n

a(i,j) = aa(i,j) ! Copy matrix

end do

end do

*

Donald G. Luttermoser, ETSU VII–31

* !!!!! Forward elimination !!!!!

*

do i=1,n

index(i) = i

scalemax = 0.

do j=1,N

scalemax = amax1(scalemax,abs(a(i,j)))

end do

scale(i) = scalemax

end do

*

do k=1,N-1

ratiomax = 0.

do i=k,n

ratio = abs(a(index(i),k))/scale(index(i))

if(ratio .gt. ratiomax) then

j=i

ratiomax = ratio

end if

end do

indexk = index(j)

index(j) = index(k)

index(k) = indexk

do i=k+1,n

coeff = a(index(i),k)/a(indexk,k)

do j=k+1,n

a(index(i),j) = a(index(i),j) - coeff*a(indexk,j)

end do

a(index(i),k) = coeff

b(index(i)) = b(index(i)) - a(index(i),k)*b(indexk)

end do

end do

*

* !!!!! Back substitution !!!!!

*

x(n) = b(index(n))/a(index(n),n)

do i=n-1,1,-1

sum = b(index(i))

do j=i+1,n

sum = sum - a(index(i),j)*x(j)

end do

x(i) = sum/a(index(i),i)

end do

*

return

end

2. Working with Matrices.

a) It is easy to obtain determinants of a matrix using Gaus-

sian elimination. After completing forward elimination,

VII–32 PHYS-4007/5007: Computational Physics

one simply computes the product of the coefficients of the

diagonal elements. Take the equations in Example VII-4,

the matrix is

A =





2 1

4 −1



 .

With forward elimination, these equations become

2x1 + x2 = 4

−3x2 = −6

The products of the coefficients of the diagonal elements

of this matrix is (2)(−3) = −6, which is the determinant

of A above. However, it should be noted that this method

is slightly more complicated when pivoting is used. If the

number of points is odd, the determinant is the negative

of the product of the coefficients of the diagonal elements.

b) Matrix Inverse and Gaussian Elimination.

i) Recall the linear equation in Eq. (VII-82),

A x − b = 0, (VII-84)

where we solved for the vector x by Gaussian elim-

ination. Note, however, that we could also have

solved it with a little matrix algebra:

x = A−1b, (VII-85)

where A−1 is the matrix inverse of A.

ii) It shouldn’t surprise you that the inverse of a ma-

trix is computed by repeated applications of Gaus-

sian elimination (or a variant called LU decompo-

sition).

Donald G. Luttermoser, ETSU VII–33

iii) As we have already discussed, the inverse of a

matrix is defined by

AA−1 = I, (VII-86)

where I is the identity matrix :

I =

















1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
... . . .

















. (VII-87)

iv) Defining the column vectors

e1 =

















1

0

0
...

















; e2 =

















0

1

0
...

















; · · · ; eN =

















...

0
0

1

















,

(VII-88)

we may write the identity matrix as a row vector

of column vectors,

I = [e1 e2 · · · eN] . (VII-89)

v) If we solve the linear set of equations,

Ax1 = e1, (VII-90)

the solution vector x1 is the first column of the

inverse matrix A−1.

vi) If we proceed this way with the other e’s, we will

compute all of the columns of A−1. In other words,

our matrix inverse equation (Eq. VII-86) is solved

by writing it as

A [x1 x2 · · · xN] = [e1 e2 · · · eN] . (VII-91)

VII–34 PHYS-4007/5007: Computational Physics

vii) After computing the x’s, we build A−1 as

A−1 = [x1 x2 · · · xN] . (VII-92)

viii) It is usually not necessary to write your own

routines to do matrix inverse since virtually all pro-

gramming languages has routines that will do this

for you. For instance, Matlab has the built in func-

tion inv(A), IDL has INVERT(A), Fortran uses the

Numerical Recipes LUDCMP subroutine which can

be freely downloaded (LINPACK also has inverting

matrices routines), and C has similar routines to

Fortran.

ix) A handy formula to remember involves the in-

verse of a 2 x 2 matrix:

A−1 =
1

a11a22 − a12a21





a22 −a12

−a21 a11



 . (VII-93)

For larger matrices the formulas quickly become

very messy.

c) Singular and Ill-Conditioned Matrices.

i) A matrix that has no inverse is said to be singu-

lar, e.g.,

A =





1 1

2 2



 .

And remember, a singular matrix has a determi-

nant of zero.

ii) Sometime a matrix is not singular but is so close

to being singular that roundoff errors may push it

over the edge. A trivial example would be




1 + ε 1

2 2



 ,

Donald G. Luttermoser, ETSU VII–35

where ε � 1.

iii) The condition of a matrix indicates how close it

is from being singular; a matrix is said to be ill-

conditioned if it is almost singular.

iv) Formally, the condition criterion is defined as

the normalized distance between a matrix and the

nearest singular matrix. All of the programming

languages mentioned above also have the ability of

returning this normalized distance with either the

inverse function or a separate function.

E. LU Decomposition.

1. Suppose we are able to write a matrix as the product of 2 matri-

ces,

L · U = A, (VII-94)

where L is lower triangular (has elements only on the diagonal

and below) and U is upper triangular (has elements only on the

diagonal and above).

2. In the case of a 3 x 3 matrix A, we would have










α11 0 0

α21 α22 0

α31 α32 α33











·











β11 β12 β13

0 β22 β23

0 0 β33











=











a11 a12 a13

a21 a22 a23

a31 a32 a33











. (VII-95)

a) We can use a decomposition such as Eq. (VII-94) to solve

the linear set

A · x = (L · U) · x = L · (U · x) = b (VII-96)

by first solving for the vector y such that

L · y = b (VII-97)

VII–36 PHYS-4007/5007: Computational Physics

and then solving

U · x = y . (VII-98)

b) The advantage to this method is that the solution of a

triangular set of equations is quite trivial. Thus Eq. (VII-

97) can be solved by forward-substitution as follows,

y1 =
b1

α11
(VII-99)

yi =
1

αii



bi −
i−1
∑

j=1

αijyj



 i = 2, 3, ..., N.

c) Then Eq. (VII-98) can then be solved by back-substituting

exactly as in

xN =
yN

βNN

(VII-100)

xi =
1

βii



yi −
N
∑

j=i+1

βijxj



 i = N − 1, N − 2, ..., 1.

d) Equations (VII-99) and (VII-100) total (for each right-

hand side b) N2 executions of an inner loop containing

one multiply and one add. If we have N right-hand sides

which are the unit column vectors (which is the case when

we are inverting a matrix), then taking into account the

leading zeros reduces the total execution count of Eq.

(VII-99) from 1
2
N3 to 1

6
N3, while Eq. (VII-100) is un-

changed.

e) Notice that, once we have the LU decomposition of A, we

can solve with as many right-hand sides as we then care

to, one at a time. This is a distinct advantage over the

Gaussian elimination scheme described earlier.

Donald G. Luttermoser, ETSU VII–37

3. Performing the LU Decomposition.

a) How do we solve for L and U given A? First, we write out

the i, jth component of Eqs. (VII-94) and (VII-95). That

component is always the sum beginning with

αi1β1j + · · · = aij.

b) The number of terms in the sum depends, however, on

whether i or j is the smaller number. We have, in fact,

the 3 cases:

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij

(VII-101)

i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij

(VII-102)

i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij

(VII-103)

c) Eqs. (VII-101)–(VII-103) total N2 equations for the N2 +

N unknown α’s and β’s (the diagonal being represented

twice).

d) Since the number of unknowns is greater than the number

of equations, we are invited to specify N of the unknowns

arbitrarily and then try to solve for the others. In fact, it

is always possible to take

αii ≡ 1 i = 1, ..., N. (VII-104)

e) Often, the Crout algorithm is used to solve the set of

N2 + N equations (e.g., Eqs. VII-101:103) for all the α’s

and β’s. This is done by just arranging the equations in

a certain order.

i) Set αii = 1, i = 1, ..., N in Eq. (VII-104).

VII–38 PHYS-4007/5007: Computational Physics

ii) For each j = 1, 2, 3, ..., N do these 2 procedures:

First, for i = 1, 2, ..., j, use Eqs. (VII-101), (VII-

102), and (VII-103) to solve for βij, namely

βij = aij −
i−1
∑

k=1

αikβkj. (VII-105)

(When i = 1 in Eq. (VII-28), the summation term

is taken to mean zero.)

iii) Second, for i = j + 1, j + 2, ..., N , use Eq. (VII-

103) to solve for αij, namely,

αij =
1

βjj



aij −
j−1
∑

k=1

αikβkj



 . (VII-106)

Be sure to do both procedures before going on to

the next j.

iv) In brief, Crout’s method fills in the combined ma-

trix of α’s and β’s,










β11 β12 β13

α21 β22 β23

α31 α32 β33











by columns from left to right, and within each col-

umn from top to bottom.

f) Pivoting is absolutely essential for the stability of Crout’s

method. Partial pivoting (interchange of rows) can be

implemented efficiently, and this is enough to make the

method stable. The Numerical Recipe’s subroutine LUD-

CMP is an LU decomposition routine using Crout’s method

with partial pivoting. I recommend its use whenever you

need to solve a linear set of equations.

Donald G. Luttermoser, ETSU VII–39

k
1

k
2

k
3m

1
m

2

x
1

x
2

L
w

L
1

L
2

L
3

Figure VII–1: A two-mass coupled harmonic oscillator with the origin set at the position of the left
wall (i.e., Case A).

F. Coupled Harmonic Oscillators.

1. A canonical example of a system of linear equations is the case

of a coupled harmonic oscillator as shown in Figure VII-1. Each

spring has an unstretched length of L1, L2, and L3 in this example

and a spring constant of k1, k2, and k3. In between each spring is

an object of mass m1 and m2. Finally, the distance between the

non-moving wall is Lw.

2. The equation of motion for block i is

dxi

dt
= vi;

dvi

dt
=

Fi

mi

, (VII-107)

where Fi is the net force on block i.

3. At the steady state, the velocities vi, are zero and the net forces,

Fi, are zero =⇒ static equilibrium.

4. When working with coupled oscillators, one must define a frame

of reference from which the measurements are made. For in-

stance, one could define the reference point to be the left wall

of the system (Case A) as shown in Figure (VII-1), then the net

VII–40 PHYS-4007/5007: Computational Physics

k
1

k
2

k
3m

1
m

2

x
1

x
2

L
w

L
1

L
2

L
3

Figure VII–2: A two-mass coupled harmonic oscillator with the origins for each coordinate set at
the mass’s equilibrium positions (i.e., Case B).

force equations become

F1 = m1ẍ1 = −k1(x1 − L1) +

k2(x2 − x1 − L2) (VII-108)

F2 = m2ẍ2 = −k2(x2 − x1 − L2)

+k3(Lw − x2 − L3) . (VII-109)

5. To solve these equations, we can use the matrix techniques that

have been described earlier in this section (e.g., Gaussian elimina-

tion or LU decomposition) by writing these equations in matrix

form:




F1

F2



 =





−k1 − k2 k2

k2 −k2 − k3









x1

x2



 (VII-110)

−




−k1L1 + k2L2

−k2L2 + k3(L3 − Lw)





or

F = KA · x − b (VII-111)

6. One could also choose the equilibrium positions of each block as

the reference (Case B — see Figure VII-2), and write the net

force equations as

Donald G. Luttermoser, ETSU VII–41

F1 = m1ẍ1 = −k1x1 − k2(x1 − x2) (VII-112)

F2 = m2ẍ2 = −k3x2 − k2(x2 − x1) . (VII-113)

7. In matrix form, Case B takes the form of




F1

F2



 =





−k1 − k2 k2

k2 −k2 − k3









x1

x2



 (VII-114)

or in shorthand notation

F = KB · x . (VII-115)

As can be seen, the unstretched lengths of the springs do not

enter into the second case since measurements are being made

from equilibrium positions.

