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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



VIII. Numerical Solution of Ordinary Differential
Equations (ODE)

A. Introduction

1. Many important problems in engineering and the physical sci-

ences require the determination of a function satisfying an equa-

tion containing derivatives of the unknown function. Perhaps the

most familiar example is Newton’s Second Law of Motion:

m
d2r(t)

dt2
= F



t, r(t),
dr(t)

dt



 . (VIII-1)

a) The position r(t) of a particle of mass m is acted upon

by a force F , which may be a function of time t, position

r(t), and the velocity dr(t)/dt.

b) To determine the motion of the particle acted upon by a

given force F it is necessary to find a function r satisfying

Eq. (VIII-1).

c) It also is important to set up a coordinate system first

with respect to the motion of the mass before setting up

the equations to be solved.

d) Since the force due to gravity is pointing in the opposite

direction of r, we get

m
d2r(t)

dt2
= −mg . (VIII-2)

Integrating Eq. (VIII-2) we have

dr(t)

dt
= −gt + c1 , (VIII-3)

r(t) = −
1

2
gt2 + c1t + c2 , (VIII-4)

where c1 and c2 are constants of integration.
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e) To determine r(t) completely, it is necessary to specify two

additional conditions, such as the position and velocity

of the particle of some instant of time =⇒ these initial

conditions then give the value of c1 and c2. These are

often referred to as time-dependent problems.

f) There are some problems where it is more convenient to

give conditions at the boundaries of the integration path

=⇒ boundary conditions. These are often referred to

as time-independent problems.

g) In order to completely solve a differential equation, one

needs either initial or boundary conditions.

2. If a differential equation (DE) depends on a single independent

variable and only an ordinary derivative appears in the DE, then

such a DE is called an ordinary differential equation (ODE).

a) For the following definitions, let’s assume that the variable

x represents the independent variable (similar to what is

often done in a mathematics course), and y = u(x) is the

dependent variable (y is given by some function u of the

independent variable x).

b) The order of an ODE is the order of the highest derivative

that appears in the equation. Eqs. (VIII-1) and (VIII-2)

are second order differential equations, and Eq. (VIII-3)

is a first order DE.

c) It is convenient to follow the usual notation in the theory

of DEs to represent du(x)/dx, d2u(x)/dx2, ..., dnu(x)/dxn

with the notation y′, y′′, ..., y(n). Thus Eq. (VIII-1) is writ-

ten as

F
(

x, y, y′, ..., y(n)
)

= 0. (VIII-5)
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d) Occasionally, other letters will be used instead of x for

the independent variable and y for the dependent vari-

able (i.e., function) — the meaning will be clear from the

context.

e) We shall assume that it is always possible to solve a given

ODE for the highest derivative, obtaining

y(n) = f
(

x, y, y′, y′′, ..., y(n−1)
)

. (VIII-6)

f) A second important classification of ODEs is according to

whether they are linear or nonlinear. The DE in Eq.

(VIII-5) is said to be linear if F is a linear function of

the variables y, y′, ..., y(n). Thus the general linear ODE

of order n is

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = g(x). (VIII-7)

g) An equation which is not of the form in Eq. (IV-7) is a

nonlinear equation. For example, the equation for the

motion of a pendulum is nonlinear:

d2θ

dt2
+

g

`
sin θ = 0. (VIII-8)

3. If a DE depends upon several independent variables, it is called a

partial differential equation (PDE) =⇒ the DE contains par-

tial derivatives (e.g., ∂/∂t) instead of ordinary derivatives (e.g.,

d/dt). The wave equation is a good example of a PDE:

a2∂
2u(x, t)

∂x2
=

∂2u(x, t)

∂t2
. (VIII-9)
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B. Numerical Methods

1. Terminology:

a) Shooting or marching methods: The solution is cal-

culated step by step by starting at one boundary and in-

tegrating toward the other. The step size is the change

(e.g., ∆x) in independent variable used in a shooting or

marching scheme.

b) Iterative method: A repetitive process by which suc-

cessively more accurate approximations to the solution

are obtained. An iteration is one cycle of the repetitive

process.

c) Difference equation: An approximation to a DE where

a derivative is replaced by a quotient.

d) Relaxation method: A solution is calculated every-

where at once by solving a set of difference equations in

an iterative fashion.

e) Computational mesh or grid: The independent vari-

able is represented by a set of discrete values (e.g., a set

layers of given thickness in a stellar atmosphere) called

grid points, zones, or cells. The ∆xi (or ∆ri, ∆Mi,

etc.) is called the grid spacing or mesh size or inter-

val.

∆xi ≡ xi+1 − xi. (VIII-10)

f) A model then becomes the set of physical properties spec-

ified at all the grid points, e.g.,

{Pi, Ti, Fi, ρi} at zones xi. (VIII-11)
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g) An evolution is a sequence of models at different times

tn. Each model is a generation or cycle. Each successive

advance forward in time is called the time step and

∆t ≡ tn+1 − tn (VIII-12)

is called the time step size.

h) Truncation error (TE) is the per step (for shooting

schemes) or per mesh (for relaxation schemes) error in

the calculation of the dependent variables. Cumulative

truncation error (CE) is the total such error across the

grid.

i) Roundoff error is error introduced by the finite number

of digits carried by the computer. The higher precision

you use, the smaller the roundoff error.

j) The order of a numerical scheme is the power of the mesh

size or step size in the highest order terms which are ac-

curately represented by a numerical scheme. Some books

use the TE, some the CE, to define this, and so there is

often some confusion. This definition of order should not

be confused with the order of the ODE.

k) Explicit schemes: One where values at the next step

are obtained by a direct algebraic computation involving

only values from the previous step.

l) Implicit schemes: One where new values must be solved

for iteratively.

2. Expansions:

a) Often there are times (especially at boundaries) where

singularities appear in an equation (i.e., divide by zero).
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During these times, one must use expansions to avoid

these formal singularities. For instance, in the hydrostatic

equilibrium equation:

dP

dr
= −ρ

GMr

r2
, (VIII-13)

as r → 0, Mr → 0, so the RHS → 0/0!

b) One must use the boundary conditions to develop Taylor

expansions away from the singularities.

i) The Taylor expansion takes the form

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · · ,

(VIII-14)

where the symbol (· · ·) means higher-order terms

that are usually dropped from the derivation.

ii) An alternative, equivalent form of the Taylor se-

ries used in numerical analysis is

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(ζ), (VIII-15)

where ζ is a value between x and x + h.

iii) We have not dropped any terms in Eq. (VIII-

15); this expansion has a finite number of terms.

Taylor’s theorem guarantees that there exists some

value ζ for which Eq. (VIII-15) is true, but it doesn’t

tell us what that value is.

c) With Taylor expansions in mind, we can transform the

derivative formula from

f ′(x) = lim
h→0

f(x + h)− f(x)

h
, (VIII-16)
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to

f ′(x) =
f(x + h)− f(x)

h
−

1

2
hf ′′(ζ), (VIII-17)

where x ≤ ζ ≤ x + h as covered in §VI.A.

i) This equation is known as the right derivative

formula.

ii) The last term on the right is the truncation er-

ror =⇒ it is the error introduced by the truncation

of the Taylor series.

iii) Since we don’t know the value of ζ a priori, the

f ′′(x) term (truncate) is usually dropped and we

say the error was we make by neglecting this term

is the truncation error, and as such, Eq. (VIII-17)

is often written as

f ′(x) =
f(x + h)− f(x)

h
+ O(h), (VIII-18)

where the truncation error term is now just speci-

fied by its order in h.

iv) Note that the truncation error is linear in h, the

smaller we make h, the smaller our TE, however,

the more calculations we have to make, which re-

sults in larger roundoff errors.

v) Keep in mind that the truncation error depends

on the approximation used in the algorithm, whereas

the roundoff error depends on the hardware.
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d) Note that we also can reduce the size of the TE by intro-

ducing a centered formula for the derivative equation:

f ′(x) = lim
h→0

f(x + h)− f(x− h)

2h
. (VIII-19)

i) This formula is said to be centered in x.

ii) While this formula looks very similar to Eq. (VIII-

17), there is a big difference when h is finite, since

a Taylor expansion of this form of the derivative

takes on the following form:

f ′(x) =
f(x + h)− f(x− h)

2h
−

1

6
h2f (3)(ζ),

(VIII-20)

where f (3) is the 3rd derivative of f(x) and x−h ≤

ζ ≤ x + h.

iii) The TE is now quadratic in h, a big improvement

over Eq. (VIII-17).

iv) From this formalism, it can be shown that the

Taylor expansion of the second derivative is

f ′′(x) =
f(x + h) + f(x− h)− 2f(x)

h2
−

1

12
h2f (4)(ζ),

(VIII-21)

where x−h ≤ ζ ≤ x+h. Again, the TE is quadratic

in h.

e) Selecting values of h: What do you pick for h?

i) First, define the absolute error as

ε = |(true value) − (computed value)|. (VIII-22)

ii) Neglecting roundoff error, to make the TE term in

Eq. (VIII-20) small with respect to the other term
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in this equation, then choose

h <

√

√

√

√

6ε

|f (3)(ζ)|
. (VIII-23)

iii) Generally, we don’t know f (3), but often we can

set a bound. For example, if f(x) = sin(x), then

|f (3)(ζ)| ≤ 1 so if we want an absolute error of

ε ≈ 10−6 (a typical value), then we should take

h ≈ 2× 10−3.

iv) If we cannot estimate an upper bound, then arbi-

trarily pick a value of h, use it, try a smaller value

of h, compare the two answers, and if they are close

enough, assume everything is fine and your answer

is converged. If not, keep on choosing smaller val-

ues of h (i.e., iterate) until the above is true. This

is not universally true however!

3. Shooting Methods:

a) Assume we have a DE given by dy/dx = f(x, y) as shown

in Figure (VIII-1). Now, given (xj , yj) for all j ≤ i, obtain

(xi+1, yi+1). This is the standard technique in the shoot-

ing or marching method. There are a variety of ways

to carry out such a calculation.

b) Euler’s Method: Assume we wish to follow the motion

of a mass m using Newton’s 2nd Law of Motion. The

equation of motion that we want to solve numerically is

d~v

dt
= ~a(~r, ~v) =

1

m
~F, (VIII-24)

where
d~r

dt
= ~v (VIII-25)
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Figure VIII–1: Data points given by the DE dy/dx = f(x, y).

and ~a is the acceleration. Euler’s method uses the right

derivative formula (see Eq. VIII-18), where we replace the

grid step h with the time step τ . The equations of motion

become

~v(t + τ)− ~v(t)

τ
+ O(τ) = ~a[~r(t), ~v(t)]

(VIII-26)

~r(t + τ)− ~r(t)

τ
+ O(τ) = ~v(t) (VIII-27)

or

~v(t + τ) = ~v(t) + τ~a[~r(t), ~v(t)] + O(τ 2)

(VIII-28)

~r(t + τ) = ~r(t) + τ~v(t) + O(τ 2). (VIII-29)

Notice that τO(τ) = O(τ 2).

i) We introduce the notation:

fn ≡ f [(n − 1)τ ]; n = 1, 2, ... (VIII-30)

so f1 = f(t = 0). Our equations for the Euler

method (dropping the error term) now take the
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form

~vn+1 = ~vn + τ~an (VIII-31)

~rn+1 = ~rn + τ~vn. (VIII-32)

ii) The calculation of trajectory would proceed as

follows:

1. Specify the initial conditions ~ri and ~vi.

2. Choose a time step τ .

3. Calculate the acceleration given the current ~r and ~v.

4. Use the Euler method to compute the new ~r and ~v.

5. Go to step 3 until enough trajectory points have been

computed.

iii) The truncation error in such a scheme is

TE =
1

2
τ 2
i

d2r

dt2

∣

∣

∣

∣

∣

∣

i

. (VIII-33)

Note that from Eqs. (VIII-26,27), Euler’s method

is 1st order accurate.

iv) The cumulative error is

CEN ≈
1

2

N
∑

i=1

τ 2
i

d2r

dt2

∣

∣

∣

∣

∣

∣

i

,

≈
1

2
N

(

tN − t0
N

)2 d2r

dt2

≈
1

2

(

tN − t0
N

)

(tN − t0)
d2r

dt2

≈
1

2
∆t(tN − t0)

d2r

dt2
(VIII-34)

or CE ∼ O(∆t).
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c) Euler-Cromer and Midpoint Methods: A modified

version of Euler’s method is

~vn+1 = ~vn + τ~an (VIII-35)

~rn+1 = ~rn + τ~vn+1. (VIII-36)

i) The updated velocity is used in the second equa-

tion. This formula is called the Euler-Cromer method.

ii) Notice that the TE is still of order τ 2.

iii) We can modify this further to come up with the

midpoint method,

~vn+1 = ~vn + τ~an (VIII-37)

~rn+1 = ~rn + τ
~vn + ~vn+1

2
. (VIII-38)

iv) Plugging the velocity equation into the position

equation, we see that

~rn+1 = ~rn + τ~vn +
1

2
~anτ

2. (VIII-39)

v) The TE is still of order τ 2 in the velocity equa-

tion, but for position the TE is now τ 3. Unfortu-

nately, this midpoint method gives good results for

relatively few physical systems (projectile motion

is one of them).

d) Second-Order Runge-Kutta Method: Runge-Kutta

(RK) schemes establish higher derivatives by calculating

intermediate (or provisional) values of y in the interval

(xi, xi+1).

i) Second-order RK involves 2 substeps per step:

(1) yp
i+1 = yi + ∆xif(xi, yi) (VIII-40)
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(2) yi+1 = yi +
∆xi

2
[f(xi, yi)+

f(xi+1, y
p
i+1)] , (VIII-41)

where the superscript p represents provisional.

ii) Since RK schemes are widely used in computa-

tional physics, especially 4th-order RK, we will de-

vote an entire subsection to it (see below).

e) Predictor-Corrector Methods: These use (xj, yj) for

j ≤ i to establish higher derivatives dny/dxn. We will not

cover these methods in detail in this course.

4. Relaxation (Henyey) Methods: In these methods, one solves

all equations at all grid points at once. In our example here, let’s

assume we have a spherical distribution of gas.

a) Grid: First, one needs to set up a grid of independent

variable values from one boundary to the other. Let’s

assume that ri corresponds to this grid, then the grid is

represented as ri, i = 0, 1, ..., N or N + 1 grid points.

b) Model: The model is defined as the set of dependent

variables at each grid point, e.g., {Pi, Ti,Mri, Lri} at ri

for 4N + 4 unknowns.

c) Then the Differential Equations take on the form

dP

dr
= f1(P, T,Mr, Lr, r) (VIII-42)

dT

dr
= f2(P, T,Mr, Lr, r) (VIII-43)

dMr

dr
= f3(P, T,Mr, Lr, r) (VIII-44)

dLr

dr
= f4(P, T,Mr, Lr, r). (VIII-45)
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d) Differencing Schemes:

i) Forward differencing:

Pi+1 − Pi

∆ri

= f1 (Pi, Ti, · · ·) . (VIII-46)

ii) Centered differencing:

Pi+1 − Pi

∆ri

= f1

(

Pi+1 + Pi

2
,
Ti+1 + Ti

2
, · · ·

)

.

(VIII-47)

iii) Backward differencing:

Pi+1 − Pi

∆ri

= f1 (Pi+1, Ti+1, · · ·) . (VIII-48)

e) Boundary Conditions:

i) Center (i.e., boundary 1):

C1 (P0, T0,Mr0, Lr0) = 0

C2 (P0, T0,Mr0, Lr0) = 0. (VIII-49)

ii) Surface (i.e., boundary 2):

S1 (PN , TN ,MrN , LrN) = 0

S2 (PN , TN ,MrN , LrN) = 0. (VIII-50)

f) Difference Equations:

i) Choose one of the differencing schemes and apply

to Eqs. (VIII-42) through (VIII-45).

ii) Plug in known ri values which results in 4N dif-

ference equations, which can be nonlinear algebraic

equations for 4N + 4 unknowns.
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iii) These equations can be written formally as

g1 (Pi, Ti, Mri, Lri, Pi+1, Ti+1, Mri+1, Lri+1) = 0 (VIII-51)

g2 (Pi, Ti, Mri, Lri, Pi+1, Ti+1, Mri+1, Lri+1) = 0 (VIII-52)

g3 (Pi, Ti, Mri, Lri, Pi+1, Ti+1, Mri+1, Lri+1) = 0 (VIII-53)

g4 (Pi, Ti, Mri, Lri, Pi+1, Ti+1, Mri+1, Lri+1) = 0 . (VIII-54)

iv) We have such equations for i = 0, 1, ..., N − 1.

(VIII-51) to (VIII-54) 4N + 4 equations
plus =⇒ in

(VIII-49) and (VIII-50) 4N + 4 unknowns

v) Great! The only problem is that these equations

are not linear. They can’t be solved directly. A gen-

eralized Newton-Raphson iterative scheme is used

to overcome this difficulty.

g) Method:

Guess to solution ←−

↓

Solve linearized Add correction

equations for to the old
corrections guess

↑
−→ Are corrections no

small enough?

yes

↓

Solution

One iterates until the guesses converge to some prescribed

accuracy determined by the size of the corrections.
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jth iteration
{

P
(j)
i , T

(j)
i ,M

(j)
ri , L

(j)
ri

}

jth correction
{

δP
(j)
i , δT

(j)
i , δM

(j)
ri , δL

(j)
ri

}

.

i) Consider one of the difference equations. In gen-

eral,

gm

(

P
(j)
i , T

(j)
i , ..., P

(j)
i+1, ...

)

6= 0.

ii) Say we know
{

P
(j)
i , T

(j)
i , ...

}

and want to calculate

the jth correction. To generate linear equations we

can solve for the jth correction, plug
{

P
(j)
i + δP

(j)
i ,

T
(j)
i + δT

(j)
i , ...

}

into gm, Taylor expand, keep terms

up to first order only in the jth corrections, and then

set it equal to zero.

gm

(

P
(j)
i + δP

(j)
i , ..., P

(j)
i+1 + δP

(j)
i+1, ...

)

= 0

gm

(

P
(j)
i , ..., P

(j)
i+1, ...

)

+

δP
(j)
i

∂g(j)
m

∂Pi

+ δT
(j)
i

∂g(j)
m

∂Ti

+ · · · (VIII-55)

+δP
(j)
i+1

∂g(j)
m ∂Pi

+
· · · = 0

iii) We have now linearized the set of difference equa-

tions. The partial derivatives can be evaluated be-

cause they depend only on the known quantities
{

P
(j)
i , T

(j)
i , ...

}

.

iv) By casting all of Eqs. (VIII-51) to (VIII-54) and

(VIII-49) & (VIII-50), we get

4N + 4 linear for 4N + 4 unknown

equations corrections
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v) Formally,

↔
A ·

−→
δX = −~E

↗ ↖ ↑

matrix of correction error

partials vector vector

(VIII-56)

−→
δX=

















































































δP
(j)
0

δT
(j)
0

δM
(j)
r0

δL
(j)
r0

δP
(j)
1

δT
(j)
1
...

δM
(j)
rN−1

δL
(j)
rN−1

δP
(j)
N

δT
(j)
N

δM
(j)
rN

δL
(j)
rN

















































































~E =























































































C1

(

P
(j)
0 , · · ·

)

C2

(

P
(j)
0 , · · ·

)

g1

(

P
(j)
0 , · · ·

)

g2

(

P
(j)
0 , · · ·

)

g3

(

P
(j)
0 , · · ·

)

g4

(

P
(j)
0 , · · ·

)

g1

(

P
(j)
1 , · · ·

)

...

g3

(

P
(j)
N−1, · · ·

)

g4

(

P
(j)
N−1, · · ·

)

S1

(

P
(j)
N , · · ·

)

S2

(

P
(j)
N , · · ·

)























































































↔

A=



























































∂C1

∂P0

∣

∣

∣

0

∂C1

∂T0

∣

∣

∣

0

∂C1

∂Mr0

∣

∣

∣

0

∂C1

∂Lr0

∣

∣

∣

0

0 0 0 0 0 0 0 0 0

∂C2

∂P0

∣

∣

∣

0

X X X 0 0 0 0 0 0 0 0 0

∂g1

∂P0

∣

∣

∣

1

∂g1

∂T0

∣

∣

∣

1

∂g1

∂Mr0

∣

∣

∣

1

∂g1

∂Lr0

∣

∣

∣

1

∂g1

∂P1

∣

∣

∣

1

∂g1

∂T1

∣

∣

∣

1

∂g1

∂Mr1

∣

∣

∣

1

∂g1

∂Lr1

∣

∣

∣

1

0 0 0 0 0

∂g2

∂P0

∣

∣

∣

1

X X X X X X X 0 0 0 0 0

X X X X X X X X 0 0 0 0 0
X X X X X X X X 0 0 0 0 0

0 0 0 0 ∂g1

∂P1

∣

∣

∣

2

∂g1

∂T1

∣

∣

∣

2

∂g1

∂Mr2

∣

∣

∣

2

∂g1

∂Lr2

∣

∣

∣

2

∂g1

∂P2

∣

∣

∣

2

∂g1

∂T2

∣

∣

∣

2

∂g1

∂Mr2

∣

∣

∣

2

∂g1

∂Lr2

∣

∣

∣

2

0

0 0 0 0 X X X X X X X X 0
0 0 0 0 X X X X X X X X 0
0 0 0 0 X X X X X X X X 0

0 0 0 0 0 0 0 0 ∂g1

∂P2

∣

∣

∣

3

X X X X

0 0 0 0 0 0 0 0 X X X X X
...

· · ·
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vi) The
↔
A matrix has a banded structure and is mostly

empty.
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vii) To solve for the jth correction, this matrix must

be inverted. Numerically, the number of operations

involved is

Full

(4N + 4) × (4N + 4)
∼ (4N + 4)2

Actual

Banded Matrix
∼ 82(4N + 4)

h) Gaussian Elimination: Many methods now exist for

inverting banded matrices. In the last section of the notes,

we were introduced to the Gaussian elimination scheme

for solving sets of linear equations. To solve ODEs using

this technique, do the following:
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i) Start at one corner and solve one block of equa-

tions for some variables in terms of the others, e.g.,

for upper left 2 x 4 block,

δP
(j)
0 = aP0

δM
(j)
r0 + bP0

δL
(j)
r0 + cP0

(VIII-57)

δT
(j)
0 = aT0

δM
(j)
r0 + bT0

δL
(j)
r0 + cT0

.

ii) Store the a, b, c’s.

iii) Substitute Eq. (VIII-57) in the next block and

repeat (i) and (ii) above, e.g.,

δM
(j)
r0 = aMr0

δM
(j)
r1 + bMr0

δL
(j)
r1 + cMr0

δL
(j)
r0 = aLr0

δM
(j)
r1 + bLr0

δL
(j)
r1 + cLr0

.

(VIII-58)

δP
(j)
1 = aP1

δM
(j)
r1 + bP1

δL
(j)
r1 + cP1

δT
(j)
1 = aT1

δM
(j)
r1 + bT1

δL
(j)
r0 + cT1

become the new set of Eqs. (VIII-57) to substitute

into the next block.

iv) Solving the last set of equations at the other end

of the matrix gives δM
(j)
rN(= δM (j)

? ) and δL
(j)
rN(=

δL(j)
? ).

v) Now go backwards and back substitute into the

Eqs. (VIII-58) using the stored a, b, c’s to find all

the jth corrections.
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i) Convergence Criterion: The iterative process is said

to converge when the corrections are as small as desired,

e.g.,

all
|δPi|

Pi

, etc. < C = const.

C ∼ 10−2 to 10−6.

Most codes (at least 1-D) converge after∼3 to 5 iterations.

C. Fourth-Order Runge-Kutta Method

1. When numerically solving ODE, one typically rewrites 2nd and

higher-order DEs into a set of 1st-order DEs:

a) A 2nd-order equation such as

a =
d2x

dt2
. (VIII-59)

b) This can be rewritten as 2 equations:

v =
dx

dt
(VIII-60)

a =
dv

dt
. (VIII-61)

2. As shown above, Euler’s method is a first-order method which is

graphically represented in Figure (VIII-2).

3. The Runge-Kutta method is essentially a modified Euler’s method.

a) Use the derivative at one step to extrapolate the midpoint

value — use the midpoint derivative to extrapolate the

function at the next step (see Figure VIII-3).

b) Evaluates the derivative function twice at each step τ . Cu-

mulative error is of order O(τ 2), a second-order method.
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Figure VIII–2: Euler’s method is a first-order method which is not necessarily accurate.

Figure VIII–3: The Runge-Kutta method is a second-order method which is more accurate than
Euler’s method.
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4. Runge-Kutta methods achieve better results than Euler by using

intermediate computations at intermediate grid steps.

5. The fourth-order rule is the favorite method as it achieves good

accuracy with modest computational complexity.

a) Use derivative of first step to get trial midpoint.

b) Use its derivative at first step to get second trial midpoint.

c) Use its derivative to get a trail end point.

d) Integrate by Simpson’s Rule, using average of two mid-

point estimates.

e) The cumulative error is of fourth order and truncation

error is O(τ 5).

6. The fourth-order RK scheme mathematically is:

~x(t + τ) = ~x(t) +
1

6
τ
(

~F1 + 2~F2 + 2~F3 + ~F4

)

, (VIII-62)

where

~F1 = ~f(~x, t) (VIII-63)

~F2 = ~f

(

~x +
1

2
τ ~F1, t +

1

2
τ

)

(VIII-64)

~F3 = ~f

(

~x +
1

2
τ ~F2, t +

1

2
τ

)

(VIII-65)

~F4 = ~f
(

~x + τ ~F3, t + τ
)

. (VIII-66)

7. Compared with Euler, 4th-order RK has 4 times more calcula-

tions per step, but uses the fourth root as many steps to achieve

convergence (see Figure VIII-4).
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Figure VIII–4: Fourth-order RK with the ~Fi’s in Eqs. (VIII-63) to (VIII-66) being represented with

∆i’s in this figure. Also ~f is given by X in this figure.

8. You may wonder, Why 4th-order and not 8th- or 23rd-order

Runge-Kutta? Well, the higher order methods have better trun-

cation error but also require more computation, hence, more

roundoff error. The optimum, for RK schemes, is 4th order.

9. Sometimes accuracy can be improved through use of an adaptive

step size. Adaptive methods are fairly easy to incorporate and

I refer you to Numerical Recipes for a description on how to

incorporate them.

10. The following program is taken from Numerical Recipes and is a

Fortran 77 version of the 4th-order RK scheme:
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*

* <<<<<<<<<<<<<<<<<<<<<<<<<<<<< RK4 - RK4 - RK4 >>>>>>>>>>>>>>>>>>>>>>>>>>>

*

SUBROUTINE RK4(Y, DYDX, N, X, H, YOUT, DERIVS)

*

* Given values for N variables Y and their derivatives DYDX known at X, use the

* 4th-order Runge-Kutta method to advance the solution over an interval H and

* return the incremented variables as YOUT, which need not be a distinct

* array from Y. The user supplies the subroutine DERIVS(X, Y, DYDX) which

* returns the derivatives DYDX at X.

*

IMPLICIT REAL*8 (A-H,O-Z)

EXTERNAL DERIVS

PARAMETER (NMAX = 10)

DIMENSION Y(N), DYDX(N), YOUT(N), YT(NMAX), DYT(NMAX), DYM(NMAX)

*

HH = H * 0.5D0

H6 = H / 6.D0

XH = X + HH

*

* First step.

*

DO 11 I = 1, N

YT(I) = Y(I) + HH*DYDX(I)

11 CONTINUE

*

* Second step.

*

CALL DERIVS(XH, YT, DYT)

DO 12 I = 1, N

YT(I) = Y(I) + HH*DYT(I)

12 CONTINUE

*

* Third step.

*

CALL DERIVS(XH, YT, DYM)

DO 13 I = 1, N

YT(I) = Y(I) + H*DYM(I)

DYM(I) = DYT(I) + DYM(I)

13 CONTINUE

*

* Fourth step.

*

CALL DERIVS(X+H, YT, DYT)

DO 14 I = 1, N

YOUT(I) = Y(I) + H6*(DYDX(I)+DYT(I)+2.D0*DYM(I))

14 CONTINUE
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*

RETURN

END

D. The Adams Method: The Shampine-Gordon Routine.

1. In 1975, L.F. Shampine and M.K. Gordon wrote a book titled

Computer Solution of Ordinary Differential Equations: The Ini-

tial Value Problem.

a) This textbook described numerical techniques in solving

non-stiff initial value problems in ordinary differential
equations.

b) The ODE code itself is comprised of a few subroutines

and a driver program. The subroutines are

i) DE: Integrates a system of up to 20 first-order

ODEs of the form

DY(I)/DT = F(T, Y(1), Y(2), ..., Y(NEQN))

Y(I) given at T.

This subroutine integrates from T to TOUT. On re-
turn, the parameters in the call list are initialized

for continuing the integration. The user has only

to define a new value of TOUT and call DE again.

ii) STEP: Integrates a system of first order ODEs

over one step, normally from T to T + H, using

a modified divided difference form of the Adams

Pece formulas. Local extrapolation is used to im-
prove absolute stability and accuracy. The code

adjusts its order at step size to control the local

error per unit step in a generalized sense. Special
devices are included to control roundoff error and

to detect when the user is requesting too much ac-

curacy (see program ode.f on the course web pages

for further details).
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iii) INTRP: The methods used in subroutine STEP

approximate the solution near x by a polynomial.

Subroutine INTRP approximates the solution at xout

by evaluating the polynomial there. Information
defining this polynomial is passed from STEP so

INTRP cannot be used alone (see program ode.f on

the Course Web Pages).

c) Note that the user of these routines also has to supply a

subroutine called F which sets up the derivative equations

YP to be solved by DE. An example of such a subroutine

is provided in the ode.f file available on the Course Web
Pages if you wish to use them. If you use any of these

routines, please note that whenever you see a ‘***’ mark

in the far right of the program, these lines have to be
modified to reflect the machine precision, εm, for single

and double precision of the machine on which you are

carrying out these calculations. You can determine this

precision with machin.f program supplied to you on the
Course Web Pages.


