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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-4007/5007:
Computational Physics taught by Dr. Donald Luttermoser at East Tennessee State University.



IX. Computing Trajectories

A. The Physics of Trajectories

1. This section concerns itself with the numerical solution to New-

ton’s Second Law of Motion in a gravitational potential field near

the surface of a large gravitating body.

2. As we saw with Eq. (VIII-1), Newton’s Second Law of Motion

can be written as:

Ftot =
N
∑

i=1

F [t, r(t), v(t)] = ma = m
dv(t)

dt
= m

d2r(t)

dt2
, (IX-1)

where here we are using the standard notation of r ≡ displace-

ment, v ≡ linear velocity, a ≡ linear acceleration, t ≡ time, m ≡

mass of the object, and N is the total number of independent

forces that are acting on the body.

a) The position r(t) of a particle of mass m is acted upon

by the net force Ftot, which may be a function of time t,

position r(t), and the velocity v(t) = dr(t)/dt.

b) The motion of the object can then be described completely

by specifying Ftot and setting initial conditions at t◦ to r

and v.

c) Note that derivatives with respect to time are often writ-

ten with the ‘dot’ notation:

v =
dr(t)

dt
= ṙ (for velocity)

a =
dv(t)

dt
=

d2r(t)

dt2
= r̈ (for acceleration)

so that Newton’s 2nd law can be written as F = mr̈.
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Figure IX–1: The orthogonal (Cartesian) coordinate system.
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3. In classical mechanics, the static potential field is related to a

conservative force by the equation

~F = −~∇U , (IX-2)

where U is the potential energy of the field (a scalar), and the

“del” operator acting on a scalar is referred to as taking the

gradient of the scalar =⇒ it converts a scalar to a vector. The

“del” operator takes first derivatives on each coordinate of the

vector space. As such, it has a different form depending on the

coordinate system:

a) Orthogonal (Cartesian) Coordinates (x, y, z):

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (IX-3)

such that

~∇f(x, y, z) = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
.

b) Spherical-Polar (Spherical) Coordinates (r, θ, φ):

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (IX-4)
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Figure IX–2: The spherical-polar coordinate system.
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Figure IX–3: The circular-cylindrical coordinate system.
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c) Circular-Cylindrical (Cylindrical) Coordinates (ρ, φ, z):

~∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
. (IX-5)

4. In this section, we will be using the gravitational potential field

to describe the potential energy, then from Newton’s Universal

Law of Gravity,

~Fg(r) = −
Gm1 m2

r2
r̂ , (IX-6)

we see that this force only depends upon r and is negative since it

points in the opposite direction of r̂ due to its attractive nature.

In this equation the m’s represent the masses of bodies 1 and 2

which are separated by a distance r. G = 6.673×10−11 N m2/kg2

= 6.673 × 10−8 dyne cm2/g2 is the Universal Gravitation Con-

stant.

a) Using Eq. (IX-6) in conjunction with Eq. (IX-4), we im-

mediately see that U = U(r) since F = F (r).

i) To solve the gradient equation for the potential

energy (Eq. IX-2), we can take the dot product

(i.e., inner product) of both sides of the equation of

Eq. (IX-2) with the differential displacement d~r and

integrate from the initial (1) to the final position

(2).

ii) Since the force here is conservative, the work done

by this force is independent of the path or trajec-

tory taken. Hence, we can use the standard definite

integral instead of a path integral to solve for U :
∫

2

1

~F · d~r = −
∫

2

1

~∇U · d~r (IX-7)

−
∫

2

1

(

Gm1 m2

r2
r̂

)

· (dr r̂) = −
∫

2

1

(

∂U

∂r
r̂

)

· (dr r̂)

∫

2

1

Gm1 m2

r2
dr =

∫

2

1

dU

dr
dr (IX-8)



Donald G. Luttermoser, ETSU IX–5

where the partials become full derivatives since U =

U(r).

iii) Integrating Eq. (IX-8), we get

−
Gm1 m2

r

2

1

=
∫

2

1
dU = U2 − U1 ,

or

U1 − U2 = Gm1 m2

(

1

r2

−
1

r1

)

. (IX-9)

b) From Eq. (IX-9), we can immediately see that the poten-

tial energy for a gravitational field takes on the form

U = −
Gm1 m2

r
. (IX-10)

i) From this equation we see that U → 0 as r → ∞.

ii) Also we can see that gravitational potential en-

ergy is a negative energy.

5. Besides potential energy, any body in motion has a kinetic energy

associated with it.

a) The left-hand side of Eq. (IX-7) is the definition of the

work done on a particle by a force field:

W ≡
∫

2

1

~F · d~r = U1 − U2 . (IX-11)

b) Using Newton’s Second Law of Motion (Eq. IX-1) and

rewriting d~r as (d~r/dt)dt, we can write

~F · d~r =

(

m
d~v

dt

)

·

(

d~r

dt
dt

)

= m
d~v

dt
· ~v dt .

Note that

d

dt
(~v · ~v) = ~v ·

d~v

dt
+

d~v

dt
· ~v = 2

d~v

dt
· ~v ,
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so
d~v

dt
· ~v =

1

2

d

dt
(~v · ~v)

and hence,

~F · d~r =
1

2
m

d

dt
(~v · ~v) dt =

1

2
m

d

dt

(

v2
)

dt

= d

(

1

2
mv2

)

. (IX-12)

c) Now using Eq. (IX-12) in the first part of Eq. (IX-11), we

get

W ≡
∫

2

1

~F · d~r =
∫

2

1
d

(

1

2
mv2

)

=
1

2
mv2

2 −
1

2
mv2

1

= T2 − T1 , (IX-13)

where ‘T ’ represents kinetic energy.

d) Inserting this value for the work in Eq. (IX-11), we see

W = T2 − T1 = U1 − U2

or

T1 + U1 = T2 + U2 (IX-14)

E1 = E2 ,

where E represents the total mechanical energy of the

system.

e) Eq. (IX-14) is called the conservation of mechanical

energy, which is valid only for a conservative force →

forces that do not depend on time, nor the work done by

such a force depending upon the path taken in a trajec-

tory.

6. Whereas the force is equal to the negative gradient of the poten-

tial energy (see Eq. IX-2), the acceleration due to a conservative
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force can be determined from the potential Φ of the force (‘po-

tential’ is the potential energy per unit mass). For gravity

~g ≡ −~∇Φ , (IX-15)

thus

Φ =
U

m
= −

GM

r
. (IX-16)

Note this could also be proven by following the technique shown

in Eqs. (IX-7) through (IX-10). To determine the gravitational

potential, one must know the manner in which mass is distributed

throughout a body.

a) The potential due to a continuous distribution of matter

is

Φ = −G
∫

V

ρ(~r′)

r′
dv′ , (IX-17)

(i.e., a volume integral) where ρ(~r′) is the mass density

over volume element dv′ at distance ~r′ from the origin

integrated over the entire volume V .

b) If mass is distributed over a thin shell (i.e., a surface dis-

tribution), then

Φ = −G
∫

S

ρs

r′
da′ , (IX-18)

(i.e., a surface integral) where ρs is the surface density of

mass (areal mass density), da′ is an area differential, and

the integral is taken over the surface S.

c) Finally, if there is a line source with linear mass density

ρ` of length L,

Φ = −G
∫

L

ρ`

r′
ds′ , (IX-19)

(i.e., a line integral) where ds′ is a length differential on

the line source of gravity.
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7. The work done by a potential field is

dW = −~g · d~r = ~∇Φ · d~r

=
N
∑

i=1

∂Φ

∂xi
dxi = dΦ . (IX-20)

8. When dealing with motion in gravitational fields, there are two

regimes that are typically encountered: (1) trajectories (near

a surface of a large mass, e.g., Earth) and (2) orbits (where 2

masses can be considered as point-like).

a) For orbits, we use the general form of the gravitational

potential as described in Eqs. (IX-10,16):

Ug = −
GMm

r
, (IX-21)

where we are now using M (the larger mass) for m1 and

m (the smaller mass) for m2 and

Φ = −
GM

r
. (IX-22)

Orbits will be covered in §X of these notes.

b) For trajectories, typically the maximum height (ymax =

h) reached is small with respect to R⊕ and hence g ≈

constant. As such, we can write Eqs. (IX-9 and IX-11) as

W = U1 − U2 = GM⊕m

(

1

r2

−
1

r1

)

.

i) If we take point ‘2’ to be the Earth’s surface and

‘1’ to be the position of the projectile, then

∆U = GM⊕ m

(

1

R⊕
−

1

R⊕ + h

)

= GM⊕ m





R⊕ + h

R⊕ (R⊕ + h)
−

R⊕

R⊕ (R⊕ + h)





= GM⊕ m





R⊕ + h − R⊕

R⊕ (R⊕ + h)




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= GM⊕ m





h

R⊕ (R⊕ + h)



 .

ii) If R⊕ is much greater than h (which it will be for

experiments near the Earth’s surface), h � R⊕. As

such, R⊕+h ≈ R⊕ and the equation above becomes

∆U = GM⊕ m





h

R⊕ (R⊕)



 = GM⊕ m





h

R2
⊕





=
GM⊕ mh

R2
⊕

= m
GM⊕

R2
⊕

h . (IX-23)

iii) Using Eqs. (IX-15 and IX-16), we see that

~g = −~∇Φ = −~∇

(

GM⊕

r

)

= −
d

dr

(

GM⊕

r

)

r̂ =
GM⊕

r2
r̂ (IX-24)

and at the Earth’s surface,

g =
GM⊕

R2
⊕

, (IX-25)

where ‘g’ is referred to as the Earth’s surface grav-

ity.

iv) Using Eq. (IX-25) in Eq. (IX-23), we finally get

∆U = mgh = mg∆y ,

where ∆y = y − y◦ = h is just the change in height

from our initial position y◦ (typically the ground)

and y is an arbitrary position in the trajectory

above y◦.

v) If we arbitrarily set y◦ = 0, then the potential

at that position is zero, and y represents the posi-

tion above the ground (y◦). As such, the potential
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energy becomes

U = mgy . (IX-26)

9. Trajectory calculations can be difficult due to non-gravitational

forces that enter the calculations.

a) A drag force due to air friction which usually takes the

form
~Fr = −mkvn~v

v
, (IX-27)

where ~Fr represents the retarding (i.e., drag) force, v is the

magnitude of the velocity, ~v is the velocity vector (hence
~Fr is in the opposite direction of ~v due to the negative sign,

note that the ratio ~v/v is essentially just a unit vector in

the direction of ~v), and k is the drag coefficient. As such,

the total force on the object now becomes

~F = ~Fg + ~Fr . (IX-28)

b) If the downrange distance of the projectile is large enough

such that the Earth’s surface can no longer be represented

as a flat plane, the Earth’s rotation has to be taken into

account. To an observer in the rotating coordinate sys-

tem, the effective force (ignoring air friction) is

~Feff = m~af − m~ω × (~ω × ~r) − 2m~ω × ~vr . (IX-29)

i) ~Ff = m~af is the force in the fixed coordinate sys-

tem (which is just Newton’s 2nd law). This force

is said to be an inertial force since it applies only

to a static coordinate system.

ii) ~Fcf = −m~ω × (~ω × ~r) is the centrifugal force,

which results from trying to write an inertial force

law for a noninertial (i.e., accelerating) reference
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frame (note that ~ω is called the angular velocity).

The minus sign in this term implies that this pseudo-

force (see below) is directed outwards from the cen-

ter of rotation (perpendicular to the axis of rota-

tion).

iii) ~Fcor = −2m~ω × ~vr is the Coriolis force, which

results from the Earth’s rotation (~vr ≡ Earth’s ro-

tational velocity) =⇒ this “force” arises when an

attempt is made to describe motion relative to a ro-

tating body (i.e., the ground moves out from under

you when the projectile is in the air).

iv) Note that the centrifugal and Coriolis forces are

not forces in the usual sense of the word. They are

only introduced so that the inertial (non-accelerat-

ing) frame equation

~F = m~af

(i.e., Newton’s 2nd law) can have a noninertial (ac-

celerating) frame analogous equation:

~Feff = m~ar ,

so that

~Feff = m~af + (noninertial terms).

B. Numerical Solutions for Trajectories.

1. Trajectories with h � R⊕ and x � R⊕.

a) Combining Eqs. (IX-1, 27, & 28), Newton’s 2nd law be-

comes:
∑ ~F = ~Fg + ~Fr = m

d2~r

dt2
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or

m
d2~r

dt2
= −mg ŷ − mkvn ~v

v
, (IX-30)

where we have defined +ŷ in the upward direction.

b) Since the atmospheric drag force is a function of ~v, it is

more convenient to write Eq. (IX-30) as

m
d~v

dt
= −mg ŷ − mkvn ~v

v
d~v

dt
= −g ŷ − kvn ~v

v
(IX-31)

i) At low velocities, n ≈ 1 and the magnitude of the

drag force follows

Fr ≈ −B1 v (IX-32)

=⇒ this is known as Stoke’s law.

ii) As v increases, n → 2 and the drag force follows

Fr ≈ −B2 v2 . (IX-33)

iii) As such, we can write a general form of the drag

force as

Fr ≈ −B1 v − B2 v2 (IX-34)

or

Fr = −
N
∑

i=1

Bi v
i (IX-35)

=⇒ a simple power series in v (note that Bi → 0

faster than vi → ∞ as i → ∞).

iv) The Bi’s are related to the drag coefficient k in

Eqs. (IX-30 & 31).
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c) Since we are dealing with projectiles here, the drag force

will simply be described by Eq. (IX-33). As such, we need

to solve each component of Eq. (IX-31) — hence, we need

to break the drag force into its component forces:

Fr = −mkv2 .

i) Since

v2 = v2

x + v2

y ,

we can write

Fr,x = Fr cos θ = Fr
vx

v
, (IX-36)

where θ is the angle between ~vx and ~v.

ii) Likewise

Fr,y = Fr sin θ = Fr
vy

v
. (IX-37)

iii) Hence, the drag force has components of

Fr,x = −mkvvx

Fr,y = −mkvvy .
(IX-38)

d) The x-component of Newton’s 2nd law gives

dvx

dt
= −kvvx (IX-39)

with
dx

dt
= vx . (IX-40)

e) The y-component gives

dvy

dt
= −g − kvvy (IX-41)

with
dy

dt
= vy . (IX-42)
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f) The solution to these first-order DEs can be found with

simple forward-difference equations:

xi+1 = xi + vx,i ∆t

vx,i+1 = vx,i − kvvx,i ∆t
yi+1 = yi + vy,i ∆t

vy,i+1 = vy,i − g ∆t − kvvy,i ∆t .

(IX-43)

g) Eqs. (IX-43) can be then solved as an initial value problem

as described in §VI with x◦, y◦, v◦, and θ◦ supplied by the

user. From v◦ and θ◦, we first calculate the initial velocity

vector components: vx◦ = v◦ cos θ◦, and vy◦ = v◦ sin θ◦.

i) The ∆t steps are chosen to give the errors that

follow Eq. (VI-15).

ii) Calculations are carried out until a certain τ =

total time is reached or some condition of xi, yi,

vx,i, or vy,i is satisfied.

h) But what is the drag coefficient k?

i) Since the projectile is trying to push air of mass

dmair out of the way, where

dmair ≈ ρA v dt , (IX-44)

where ρ is the density of the air and A is the frontal

area, we can guess that k is a function of ρ [and

possibly t if the object is rotating → then A =

A(t)].

ii) k(y = 0) = k◦ is usually given (based on air tun-

nel measurements), and the following expression is

used for k(y):

k(y) =
ρ(y)

ρ◦
k◦ , (IX-45)
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where ρ◦ is the density of air when the k◦ measure-

ment was made.

i) Now we need a description of ρ(y)!

i) One could supply a data table of ρ as a func-

tion of height (see Appendix B.1 in Fundamentals

of Atmospheric Modeling by Mark Jacobson, 1999,

Cambridge University Press).

ii) One could solve the following set of differential

equations to determine ρ(y):

P = NkBT (ideal gas law) (IX-46)

ρ =
∑

Ni mi (mass conservation) (IX-47)

dP

dy
= −ρ g (hydrostatic equilibrium) (IX-48)

dT

T
=





R

cp





dP

P
(Poisson’s equation) (IX-49)

dQ = cp dT − αdP (energy conserv.)(IX-50)

where P = pressure, T = temperature, N = total

particle density, ρ total mass density, Ni = num-

ber density of species i, mi = mass of species i,

kB = Boltzmann’s constant, g = surface gravity, R

= universal gas constant, cp = specific heat of air

at constant pressure, Q = total heat (determined

from solar radiation incident on the Earth’s atmo-

sphere), and α = specific volume of air.

iii) Note that the solution to these equation would

still only be an approximation since we have left out

condensation, evaporation, sublimation, chemical

reactions, and wind from these equations.
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2. Trajectories with h ∼ R⊕ and x ∼ R⊕.

a) Rotating Coordinate Systems.

i) Let’s consider 2 sets of coordinate axes:

=⇒ one ‘fixed’ = inertial frame (the primed [′]

coordinates),

=⇒ one ‘rotating’ with respect to the fixed system

and possibly in linear motion with respect to the

fixed frame = noninertial frame.

ii) Let point ‘P ’ be a point in space that can both

be measured from either frames, then

~r ′ = ~R + ~r , (IX-51)

where ~r ′ is the radius vector if P in the fixed sys-

tem, ~r is the radius vector of P in the moving sys-

tem, and ~R locates the origin of the moving system

with respect to the fixed system as shown in Figure

IX-4.

y′^

z′̂

x′^

R

→
r′

→
r

ŷ

ẑ

x̂

Figure IX–4: Locating a point in an inertial frame and a noninertial frame.
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iii) The radius vector differential of the moving frame

as measured in the fixed frame is related to the ro-

tation angle differential of the noninertial frame:

(d~r)fixed = d~θ × ~r , (IX-52)

where here, the LHS of the equation is measured

in the fixed frame and the RHS is measured in the

rotating frame.

iv) The time rate of change of ~r as measured in the

fixed frame is

(

d~r

dt

)

fixed

=
d~θ

dt
× ~r = ~ω × ~r , (IX-53)

since the angular velocity ~ω is defined by

~ω ≡
d~θ

dt
. (IX-54)

v) If point P has a velocity (d~r/dt)rot with respect to

the rotating system, this velocity must be added to

~ω × ~r to obtain the time rate of change of ~r in the

fixed system:
(

d~r

dt

)

fixed

=

(

d~r

dt

)

rot

+ ~ω × ~r . (IX-55)

vi) This expression is not just limited to the displace-

ment vector ~r, in fact, for any arbitrary vector ~Q,

we have






d~Q

dt







fixed

=







d~Q

dt







rot

+ ~ω × ~Q . (IX-56)
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vii) Note that the angular acceleration ~̇ω is the same

in both the fixed and rotating systems:
(

d~ω

dt

)

fixed

=

(

d~ω

dt

)

rot

+ ~ω × ~ω
(

d~ω

dt

)

fixed

=

(

d~ω

dt

)

rot

≡ ~̇ω . (IX-57)

viii) As such, the velocity of point P as measured in

the fixed coordinate system is





d~r ′

dt





fixed

=







d~R

dt







fixed

+

(

d~r

dt

)

fixed





d~r ′

dt





fixed

=







d~R

dt







fixed

+

(

d~r

dt

)

rot

+ ~ω × ~r .

If we define

~vf ≡ ~̇rf ≡





d~r ′

dt





fixed

(IX-58)

~V ≡ ~̇Rf ≡







d~R

dt







fixed

(IX-59)

~vr ≡ ~̇rr ≡

(

d~r

dt

)

rot

(IX-60)

we may write

~vf = ~V + ~vr + ~ω × ~r , (IX-61)

where

~vf = velocity relative to the fixed axes

~V = linear velocity of the moving origin

~vr = velocity relative to the rotating axes

~ω = angular velocity of the rotating axes

~ω × ~r = velocity due to the rotation of the moving axes.
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b) The Coriolis Force.

i) Newton’s 2nd law ~F = m~a is only valid in an

inertial frame, therefore

~F = m~af = m

(

d~vf

dt

)

fixed

, (IX-62)

where the differentiation must be carried out with

respect to the fixed system.

ii) If we limit ourselves to cases of constant angu-

lar acceleration (ω̇ = 0), using Eq. (IX-61) we can

write

~F = m~̈Rf +m

(

d~vr

dt

)

fixed

+m~ω×

(

d~r

dt

)

fixed

. (IX-63)

iii) The second term can be evaluated by substitut-

ing ~vr for ~Q in Eq. (IX-56):
(

d~vr

dt

)

fixed

=

(

d~vr

dt

)

rot

+ ~ω × ~vr

= ~ar + ~ω × ~vr , (IX-64)

where ~ar is the acceleration in the rotating coordi-

nate system.

iv) The last term in Eq. (IX-63) can be obtained

directly from Eq. (IX-55):

~ω ×

(

d~r

dt

)

fixed

= ~ω ×

(

d~r

dt

)

rot

+ ~ω × (~ω × ~r)

= ~ω × ~vr + ~ω × (~ω × ~r) .(IX-65)

v) Combining Eqs. (IX-63)-(IX-65), we obtain

~F = m~̈Rf +m~ar+2m~ω×~vr+m~ω×(~ω×~r) , ~̇ω = 0

(IX-66)
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where ~̈Rf is the acceleration of the origin of the

moving coordinate system relative to the fixed sys-

tem.

vi) In the case of trajectories on the Earth’s surface,

the origin of the rotating coordinate system is sta-

tionary (in the ~r direction) with respect to the fixed

coordinate system. As such, ~̈Rf = 0 we can finally

write

~F = m~af = m~ar + m~ω × (~ω × ~r) + 2m~ω × ~vr .

(IX-67)

vii) From this equation, the effective force on a par-

ticle measured by an observer in the rotating frame

is then

~Feff = m~ar = m~af − m~ω × (~ω × ~r) − 2m~ω × ~vr .

(IX-68)

which is what we wrote down in §IX.A of this sec-

tion of the notes in Eq. (IX-29).

c) Coding Problems with h ∼ R⊕ and x ∼ R⊕ —

Part 1: The Fixed Coordinate System.

i) Unlike the preceding case where h � R⊕ and x �

R⊕, for our current problem we must use a three-

dimensional coordinate system.

ii) In reality, the Earth is constantly being subjected

to a variety of motions:

=⇒ The Earth’s own rotation.

=⇒ The Earth’s orbital velocity around the Sun.
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=⇒ The Sun’s orbital velocity about the center of

the Milky Way Galaxy.

=⇒ The Milky Way’s and Andromeda (M31)

galaxy’s motion towards each other.

=⇒ The Local Group of galaxy’s motion in the

Virgo Supercluster of galaxies.

=⇒ The Hubble flow of all of the galaxies, clusters,
and superclusters in the Universe.

As can be seen, quite a lot of velocities to worry

about. However, for our problem here, the Earth’s

rotational velocity will dominate these other veloc-

ities.

iii) Choose the fixed coordinate system’s origin to lie

at the Earth’s center and its ẑ′ direction to lie from

a line from the center to the North Pole (follow-

ing the right-hand rule since the Earth is rotating

counterclockwise as viewed from the North Pole)

=⇒ ~ω = ω ẑ′ = (7.272205 × 10−5 rad/s) ẑ′.

iv) We will use spherical coordinates to describe our

fixed coordinate system, however, instead of θ′ which

is measured from the z′ axis, we will use the lati-

tude angle = λ′ = 90◦− θ′ which is measured from

the x′-y′ plane =⇒ the equatorial plane. Hence,

sin θ′ = cos λ′ and cos θ′ = sin λ′.

v) The ~r ′ vector is measured with respect to the

Earth’s center (= R⊕+z, where z will be the height

in the rotating frame with respect to sea level —

see below). Since the Earth is an oblate spheroid,

an accurate radius for the Earth is obtained with
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the equation

R⊕ =
Req(⊕)

e | sin λ| + 1
, (IX-69)

where Req(⊕) = 6.37853 × 106 m is the equato-

rial radius of the Earth (at sea level), λ is the lati-

tude angle, and e = 0.003393 is the obliquity of the

Earth.

vi) To define a reference point from which φ′ is mea-

sured (i.e., the x′ axis — see Figure IX-2), the back-

ground stars are used as the reference and the di-

rection of the x′ axis is from the center of the Earth

to the vernal equinox on the celestial sphere. The

vernal equinox is the intersection point of the Sun’s

path on the sky (i.e., the ecliptic), which is the

Earth’s orbit projected onto the sky, and the

celestial equator, which is the Earth’s equatorial

plane projected on the sky.

=⇒ φ′ completes one revolution in one sidereal

day (= 24 sidereal hours exactly).

vii) Whereas the Earth’s coordinate system is based

on latitude (lines parallel to the equator) and lon-

gitude (lines ⊥ to latitude that run from the North

to South Poles), both measured in degrees, the

sky’s coordinates are declination (DEC, like lat-

itude and measured in degrees) and right ascen-

sion (RA, like longitude, but measured in units of

time).
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viii) Local sidereal time is determined by the cur-

rent RA directly on the local celestial meridian

=⇒ hence 0hr sidereal time occurs when the ver-

nal equinox is on the local meridian.

ix) The time used in the changing φ′ calculation is

based on Universal Time =⇒ 0hr UT occurs when

the vernal equinox is on the celestial meridian

of the Prime Meridian in Greenwich, England

which marks 0◦ longitude. The celestial meridian

is an imaginary line on the sky that connects the

north point on the horizon, the zenith (point di-

rectly overhead), and the south point on the hori-

zon – it separates the east side of the sky from the

west side of the sky. As such, Universal Time is the

local sidereal time at the Prime Meridian.

x) The Earth is subjected to extremely small, but

unpredictable, variations in its rotation rate (mainly

due to gravitational perturbations from other bod-

ies in the Solar System and a non-smooth slow-

ing down due to the tides raised from the Sun and

Moon). To precisely predict the positions of bod-

ies in the Solar System, we require a steady time

standard.

=⇒ Universal Time is then replaced by Ephemeris

Time (E.T.) in celestial mechanics.

=⇒ At the beginning of 1900 A.D., an ephemeris

second was defined as 1/31,556,925.97474 the

length of the tropical year 1900 and both U.T.
and E.T. were in agreement.

=⇒ Today, these times differ by about 56 seconds.
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xi) However for this course, we will just use U.T. To

calculate φ′, use the following formula:

φ′ = 2π
tU.T.

24 hr
, (IX-70)

where tU.T. is the current Universal Time in decimal

sidereal hours.

xii) As such, your code should have the ability for

the user to input:

=⇒ A time of launch (in U.T. sidereal

hours).

=⇒ The latitude of launch (in decimal
degrees).

=⇒ The altitude of the ground with

respect to sea level.

d) Coding Problems with h ∼ R⊕ and x ∼ R⊕ —

Part 2: The Rotating Coordinate System.

i) We now have all of the fixed (primed ) frame coor-

dinates (i.e., r′, λ′, and φ′), we now need the rotat-

ing frame coordinates.

=⇒ x is defined in the eastern direction.

=⇒ y is defined in the northern direction.

=⇒ z is the altitude (which follows from the right-

hand rule).

ii) Rotational coordinate frame transformations are

then made with

r =
(

x2 + y2 + z2
)1/2

(IX-71)
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θ = cos−1





z

(x2 + y2 + z2)1/2



 (IX-72)

φ = tan−1
y

x
, (IX-73)

where r is measured from the launch point (the

rotating origin), θ is the angle from the z (i.e., al-

titude) axis (note that this makes θ different from

what it was in the h � R⊕ case when it was mea-

sured from the ground), and φ is the angle sub-

tended from the east point on the horizon moving

towards north.

iii) Now your code should allow the user to input:

=⇒ A launch velocity (typically in m/s)

= ṙ.

=⇒ The projection angle of launch (in

decimal degrees) = γ.

=⇒ The direction angle with respect to
the east direction rotating towards

north = φ.

iv) Then from these in input, r will be determined

in the next step and θ = 90◦ − γ.

e) Coding Problems with h ∼ R⊕ and x ∼ R⊕ —

Part 3: Solving the System of Equations.

i) Calculate the Coriolis and centrifugal cross prod-

ucts in Eq. (IX-68).

ii) Solve for vr in Eq. (IX-61) by using the forward-

difference technique shown in Eqs. (IX-43). How-

ever, now, replace y with z and the two x equations
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become four — 2 for x and 2 for y which will now

have the same functional form. Also, instead of

g, now use ar from Eq. (IX-68) in the z direction

where af = g in this equation.

iii) Solve for the unknowns: downrange distance, max-

imum height, impact velocity, etc.


