
PHYS-4007/5007: Computational Physics

Python Tutorial

Creating Plots in Python

1 Introduction: Download the Sample Codes

Log into your Linux account and open the web browser. Open the course web page at:

http://faculty.etsu.edu/lutter/courses/phys4007/

Scroll down to the Useful Python Programs web page and click the link. Once on this Python
web page, click on the “myplot1.py” link in the table under the Python Plotting Tutorials and
Programs section heading. This will show the program in the web browser GUI.

Now, open a terminal window and change directories to your python subdirectory. Open a
new file called “myplot1.py” (without the double quotes) with emacs at the Linux prompt:

emacs myplot1.py &

where the ampersand symbol (&) puts the emacs session in background so that you can still
enter commands at the Linux prompt. Go back to the web browser GUI highlight all of the
text in the GUI, and copy and paste this program into the emacs GUI. Finally, save this file
and exit the emacs GUI.

Go back to the Python Plotting Tutorials and Programs web page and repeat the actions above
for the “myplot2.py” file. Once you have saved this second file, exit that emacs GUI session
and proceed to the next section below.

2 Examining These Two Python Codes

2.1 Python code: myplot1.py

Let’s now examine each of these codes and highlight what they are doing. Note that both
codes need to be run using python3. The first code, myplot1.py is shown below:

This program will make plots in python, version 3+, using

utilities from matplotlib and numpy.

Always include these next two import commands.

import numpy as np

import matplotlib.pyplot as plt

This shows how to define your own function.

def func(x):

return np.sin(2*np.pi*x)

***** How to make a plot of data with error bars. ******

Generate some fake data.

x1 = np.arange(10) + 2*np.random.randn(10)

y1 = np.arange(10) + 2*np.random.randn(10)

Generate fake errors for the data.

x1err = 2*np.random.random(10)

y1err = 2*np.random.random(10)

Make the plot.

plt.errorbar(x1, y1, xerr=x1err, yerr=y1err, fmt=’bo’)

plt.xlabel(’X Data’, labelpad=10)

plt.ylabel(’Y Data’, labelpad=10)

plt.title(’Random Plot with Error Bars’)

plt.show()

***** How to make a plot of multiple functions. *****

Now make another plot with multiple plots on the same

screen.

x2 = np.arange(1, 19, .4)

y2a = np.log10(x2)

y2b = 0.01 * x2**2

y2c = 0.9 * np.sin(x2)

plt.plot(x2, y2a, ’r-’, label=’y2a’)

plt.plot(x2, y2b, ’b^’, label=’y2b’)

2

plt.plot(x2, y2c, ’go’, label=’y2c’)

plt.plot(x2, y2a+y2b+y2c, ’+’, label=’y2a+y2b+y2c’)

plt.legend(loc=2)

plt.show()

***** How to make more than one plot on a page. *****

We’ll make use of of the defined function ‘func’ from

the beginning of this Python program.

x3a = np.arange(0.0, 4.0, 0.1)

x3b = np.arange(0.0, 4.0, 0.01)

y3a = func(x3a)

y3b = func(x3b)

y3an = y3a + 0.1*np.random.randn(len(x3a))

plt.figure() # Initialize the figure space.

Make 2 plots vertically + 1 horizontally.

Start with the first (upper left).

plt.subplot(211)

plt.plot(x3a, y3a, ’bo’, x3b, y3b, ’r:’)

plt.subplot(212) # Now the 2nd (lower left) plot.

plt.plot(x3a, y3an, ’bo’, x3b, y3b, ’r:’)

plt.show()

Remember that any text written after the pound-sign (#) symbol tells Python that the fol-
lowing text is a comment. The first two executable lines of the code imports the NumPy
library and the pyplot utility from the Matplotlib library and relabels them as np and plt
respectively. The NumPy library contains a variety of math functions and offers multidimen-
sional array creation and manipulation functions. Matplotlib is a Python library that offers
2D and 3D plotting capabilities.

Next, this code shows the user how to define their own functions. In this case, the function
func, loads an array stored in x and calculates the sine of 2π times the values stored in x.
Note that the math sine function is located in the NumPy library.

3

Following this, the code creates two array variables using the NumPy arange function and
random.randn function. Following this, the code makes two array variables containing random
errors data using the NumPy random.random function:

• arange: Returns evenly spaced values within a given interval. Values are generated
within the half-open interval [start, stop) (in other words, the interval including start
but excluding stop). For integer arguments the function is equivalent to the Python
built-in range function, but returns an ndarray rather than a list.

• random.randn: Returns a sample (or samples) from the “standard normal” distribution.
If the argument is positive, int like or int-convertible arguments are provided, randn
generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a
univariate“normal” (Gaussian) distribution of mean 0 and variance 1 (if any of the d i
are floats, they are first converted to integers by truncation). A single float randomly
sampled from the distribution is returned if no argument is provided.

• random.random: The random module implements pseudo-random number generators
for various distributions indicated by the attached function, in this case “.random”.
As such, ‘random.random(N)’ returns the next random floating point number in the
range [N+0.0, N+1.0) for each N in the array of integers from 0 to N-1.

We next create the plot with the following Matplotlib PyPlot utilities:

• .errorbar(x, y, xerr=xerr, yerr=yerr, fmt=”): Plot an errorbar graph using the following
data:

– x: Scalar or an array of data contained in the independent variable.

– y: Scalar or an array of data contained in the dependent variable. Note that the
size of the array stored in y must be the same as that stored in x.

– xerr: Scalar or an array of data containing the length of the error bars which are
drawn horizontally at the +/-value relative to the data stored in x. Note that the
size of the array stored in xerr must be the same as that stored in x. Default is
None.

– yerr: Scalar or an array of data containing the length of the error bars which are
drawn vertically at the +/-value relative to the y data. Note that the size of the
array stored in yerr must be the same as that stored in y. Default is None.

– fmt=’ ’: Plot format string, optional, default: None. If fmt is none (case-insensitive),
only the errorbars are plotted. The properties of the format string are identical
to the defaults used for the plot() function (see below).

• Various plot labeling commands in Matplotlib PyPlot:

4

– .text(x, y, s, fontsize=N, bbox=dict(facecolor=’color’)): Add text string s at an
arbitrary location x & y using data coordinates. The fontsize keyword changes
the size of the font. The bbox keyword will draw a box around the text, filling in
the box with a color indicated in facecolor.

– .xlabel(s): Add a label s (string) to the x-axis.

– .ylabel(s): Add a label s (string) to the y-axis.

– .title(s): Add a main title s (string) above the graph box.

– .figtext(x, y, s): Similar to the text() using relative coordinates – x=0.0 (left side),
1.0 (right side); y=0.0 (bottom), y=1.0 (top).

• .show(): Create the plot on the computer screen.

The next part of this code will create a plot with multiple graphs drawn in the figure. We
first make a set of independent variable data using the NumPy arange utility:

• .arange(start, stop, step): Return evenly spaced values within a given interval.

– start: Start of interval (number, optional). The interval includes this value. The
default start value is 0.

– stop: End of interval (number). The interval does not include this value, except
in some cases where step is not an integer and floating point round-off affects the
length of out.

– step: Spacing between values (number, optional. For any output ‘out’, this is the
distance between two adjacent values, out[i+1] - out[i]. The default step size is 1.
If step is specified, start must also be given.

We then make three dependent variable arrays, one using the NumPy common logarithm
function, one squaring ‘x’, and one using the sine function from NumPy. Following this, we
make 4 different curves on the plot, where the 4th curve is the sum of the three dependent
variable arrays we just described. The Matplotlib PyPlot plot command has the following
parameters that can be passed to it:

• .plot(x, y, string, label=’ ’): Plot lines and/or markers.

– x: Array of numbers containing the independent data (optional).

– y: Array of numbers containing the dependent data.

– string: A string specifying the color, line style, or marker type of the curve. This
string is usually a three-character field ‘CMS’, for color (Table 1), marker (Table
2), and line style (Table 2), respectively.

5

Table 1: Colors used in the plot() and errorbars() utilities.

character color
’b’ blue
’g’ green
’r’ red
’c’ cyan
’m’ magenta
’y’ yellow
’k’ black
’w’ white

Table 2: Markers and line styles used in the plot() and errorbars() utilities.

character description
’-’ solid line style
’- -’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle down marker
’∧’ triangle up marker
’<’ triangle left marker
’>’ triangle right marker
’1’ tri down marker
’2’ tri up marker
’3’ tri left marker
’4’ tri right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin diamond marker
’|’ vline marker
’ ’ hline marker

6

– label=’ ’: Place text string in a separate legend box associating the text with the
plot line color, marker, and style (optional).

Next we need to specify where to place the various legend labels that we passed to the .plot
command, plt.legend(loc=2), where the loc keyword has for different locations: 1 (upper-
right), 2 (upper-left), 3 (lower-left), and 4 (lower-right). We then display the plot with the
plt.show() command.

Our third and final plot created with this code shows the user how to make two separate
plots stacked on top of each other on the same page. Here we create two separate dependent
variable arrays, x3a, x3b, we then create three separate dependent variable arrays, y3a, y3b,
and y3an, using the defined function that we created near the top of the file.

When making two separate plots on the same page, we first need to let Python know that
we plan to do this by issuing the plt.figure() command. Following this, we need to let Python
know how we plan to arrange the individual plots with the plt.subplot(VHI) command, here
V indicates how many plots there will be in the vertical direction, H indicates how many
in the horizontal direction, and I is the marker for which plot we will make first. In our
program here, we have plt.subplot(211), indicating that we are making 2 plots stacked in the
vertical direction, one horizontally, and that we will start with the first top plot.

We once again use the plot command from the Matplotlib Pyplot library, however this time, we
do something a little different by plotting two separate plots using the same plot command:
plt.plot(x3a, y3a, ’bo’, x3b, y3b, ’r:’). Here we plot y3a as a function of x3a using ‘blue’ circles,
then we overplot y3b as a function of x3b using a dotted line. We then issue the command,
plt.subplot(212) to let Python know that we will now make the second lower plot on this
page. Once again, we make two plots using the same plot command. Finally, we tell Python
to display this figure.

2.2 Python code: myplot2.py

This code makes simple plots, but shows how to manipulate main titles, x– and y–axis labels
using LATEX commands, and shows the user how to include and manipulate in-plot text. It
also shows the user how to change the width of lines and change the size of the fonts used
in the text.

This program will make plots in python, version 3+, using

utilities from matplotlib and numpy. This program investigates

the use of the ‘rc’ module of matplotlib.pyplot to change

line widths and font sizes. It also does examples to make

use of LaTeX math symbols in text.

7

Always include these next two import commands.

import numpy as np

import matplotlib.pyplot as plt

***** Make a plot with axis labels & in picture text. *****

x1 = np.arange(1, 19, .4)

y1a = np.log10(x1)

y1b = 0.01 * x1**2

y1c = 0.9 * np.sin(x1)

plt.plot(x1, y1a, ’r-’)

plt.xlabel(’X Data’, labelpad=10)

plt.ylabel(’Log(X)’, labelpad=10)

plt.title(’The Common Log Function’)

plt.text(2.0, 1.2, ’This is an in-picture text.’)

plt.show()

This plot reproduces the plot above, but rotates the in

picture text by 30 degrees.

plt.plot(x1, y1a, ’r-’)

plt.xlabel(’X Data’, labelpad=10)

plt.ylabel(’Log(X)’, labelpad=10)

plt.title(’The Common Log Function’)

plt.text(2.0, 1.2, ’This is an in-picture text.’, rotation=30)

plt.show()

Now reproduce the first plot, but make the lines thicker

(both the plot and axes) and font bigger of all of the

text.

plt.rc(’lines’, linewidth=2)

plt.rc(’font’, size=16)

plt.rc(’axes’, linewidth=2)

plt.plot(x1, y1a, ’r-’)

plt.xlabel(’X Data’, labelpad=10)

plt.ylabel(’Log(X)’, labelpad=10)

plt.title(’The Common Log Function’)

plt.text(2.0, 1.2, ’This is an in-picture text.’)

8

plt.show()

We will now include some LaTeX math commands in the

various text captions.

plt.plot(x1, y1c, ’bo-’)

plt.xlabel(r’Angle θ’)

plt.ylabel(r’sin θ’)

plt.title(’The Sine Function’)

plt.show()

This code will make a grand total of 4 plots. The first plot shows the common logarithm
function. Note the labelpad keyword in the label commands [i.e., plt.xlabel(’X Data’, label-
pad=10) and plt.ylabel(’Log(X)’, labelpad=10)] — this keyword adds space between the axis
label and the axis. This is needed sometimes if the axis label is too close to the numeric
‘tick-mark’ labels fo the axis. This plot also shows the user how to place text within the plot
using the command plt.text(x, y, ’string’), where x and y are the position (in data coordinates)
of the start of the string (i.e., the 3rd entry in this command). Note that one could also use
the .figtext command to place in-plot text using relative coordinates (se Page 5 for details).

The next figure shows how to write ‘in-plot’ text at an angle to the horizontal orientation
using the rotation keyword in the .text command. Here the angle is in degrees, rotated in
the counterclockwise direction (positive values) or clockwise direction (negative numbers).

In the third plot, we introduce ourselves to the rc utility in the Matplotlib Pyplot library.
Note that with this utility, we can carry out a variety of changes to line thicknesses and text
appearances. Note that we could also have made these changes with keywords in the variety
of plotting and labeling commands, but we can make these changes universally within a code
for all plots created in a given code. These commands make the following changes:

• plt.rc(’lines’, linewidth=2): Double the thickness of all lines drawn in a plot.

• plt.rc(’font’, size=16): This follows the font sizes use in LATEX. The default size is 12
point, here we will use 16 point to increase the size of all of the text (i.e., titles, axis
labels, tick labels, and in-plot text).

• plt.rc(’axes’, linewidth=2): Double the thickness of the axes lines.

The 4th and final plot made from this code makes a plot of the sine function and uses LATEX
math symbols in the axes labels. This is done by including the letter ‘r’ before the string to

9

be printed and enclosing the LATEX command between the dollar sign ($) symbols, similar
to way we include equations inside paragraphs in a LATEX file.

3 Running These Two Python Codes

For the two codes that you have saved on your Linux account, make sure that you are in the
subdirectory where you saved these files and enter the following from the Linux prompt:

python3 myplot1.py

You will see a GUI pop up containing your plot. At the bottom of this GUI, you will see
7 control buttons that will do a variety of different options to this figure. Here we will just
use the last button which will allow us to make a ‘hardcopy’ version of this figure. Click this
button now. You will now see a second GUI pop up with the title “Save the figure”. Follow
this sequence to make an encapsulated postscript file of this figure:

• From the window containing all of the subdirectories in your login directory, scroll
over to the directory where you want to save this figure file (typically this will be the
directory where your Python code is located and double clikck that directory.

• Note that the Potable Network Graphics (*.png) format is the default for saved pic-
ture files. Go to the Filies of type: pulldown menu bar and select the second entry,
Encapsulated Postscript (*.eps).

• Note however that the filename is still listed as a ‘.png’ file. Change this name to
figure 1.eps and click the Save button.

• Following this, quit this plot GUI by clicking the red-x button on the top-left of this
GUI.

Once that GUI disappears, a new plot GUI will appear with the second plot. Repeat as we
did above making sure that your new filename is unique from the already created file. If you
don’t come up with a unique name, a GUI will pop up asking if you wish to overwrite the
previous file. Repeat once again for the third plot.

Now run the second code with

python3 myplot2.py

Again, making sure that you have unique filenames for all of the ‘.eps’ files you have created.

10

Once you have finished running these two codes, you can view these files on the computer
screen by using the Linux Ghostview command:

gv figure 1.eps

From the Ghostview GUI, you can carry out a variety of options pertaining to the figure in
the GUI. For now, just quit the GUI by depressing the ‘File’ button at the top left of the
GUI and scroll down to ‘Quit’ and release the mouse button (note, keep depressing the right
mouse button until you have selected the ‘Quit’ option).

Feel free to investigate all of the figures that you have saved to your subdirectory.

4 Make Your Own Code From Scratch

Using the information contained in these two sample codes, make your own code that will
do the following:

• Create a plot of the function

y = sin(x) ∗ exp(−x/100)
,

where x is an array containing 10,000 elements from 0 (zero) to 999.

• Include axes labels and a main plot title.

• Include an in-plot text string containing the equation above written using LATEX math
symbols.

Finally, when the Python plot GUI appears, save this figure as a regular postscript file (i.e.,
filename ending in ‘.ps’). When done, print this postscript file out using the Linux ‘lpr’
command. I’ll give instructions for doing this on the board in class.

11

