PHYS-4007/5007: Computational Physics

Programming Tutorial
Help with Fortran and Python on the Brown Hall 264 Computers

1 Fortran Tutorial.

1.1 Code Creation.

Last week we created two directories in your login directory using

> mkdir fortran

> mkdir python

and we created a Fortran code in the fortran subdirectory using emacs as shown below:

123456789T123456. . .
PROGRAM MYCODE
C
C This is my first Fortran code.
C
INTEGER I, J, I_INDEX(100)
REAL PI, LLCOEFF(100)
REAL*8 DPI, SSCOEFF(100), BBOUT(100)
C
PI = 3.14159
DPI = 3.14159265359D0
C
C Calculate integer and single precision arrays.

DO 52 I =1, 100
I_INDEX(I) = Ix*2
LLCOEFF(I) = FLOAT(I**2) * SIN(PI*FLOAT(I)/10.)
52 CONTINUE

C
C Calculate double precision arrays. This DO loop has an error.
C
DO 1005 J =1, 100
SSCOEFF (J) = COS(DPI*DFLOAT(J)/8.0D0)
BBOUT (J) = SSCOEFF(J) * DEXP(-DFLOAT(J)/300.D0)

52 CONTINUE

Output this data to the screen in ordered columns.

This next DO loop has an error in it.

QaQaQaaa

DO 2344 I =1, 200
WRITE(*, 2340) I, I_INDEX(I), LLCOEFF(I), SSCOEFF(I),
1 BBOUT (1)

This FORMAT statement has two errors in it,
one minor and one severe.

QaQaQ

2340 FORMAT (2X,215,2X,F8.4,2X,1PE12.2)
2344 CONTINUE
C
STOP
END

This code was to be saved on a USB stick at the end of last week’s tutorial. If you are using
a different computer than last week, make sure you copy this code file from your USB stick
to the fortran subdirectory on the machine you are currently using.

1.2 Compiling the Code.

In the code above note that I purposely included a few programming errors, some you will
see when compiling and others when you run the code. You will need to fix these in order for
the code to run successfully (see the next subsection). Also note that one should be careful
with variable types when carrying out calculations:

e One should only have integer-type for integer statement arithmetic,
e only floats (i.e., REAL) for single-precision calculation statements,

e only doubles (i.e., REAL*8 or DOUBLE PRECISION) for double-precision calculation
statements,

e only characters in string statements, etc.

On the Tutorial web page linked to the course web page, there is a PDF document that lists
some of the standard math, type conversion, and operational functions found in Fortran.
Print this out and keep it as reference for when you are doing Fortran programming. Make
sure you pay attention to these tables when doing your homework, exams, and optional

project for this course. Information on working with character strings in Fortran can be
found in Appendix B of the course notes.

At the Unix prompt from your fortran subdirectory, enter the following command:
> gfortran —o mycode.exe mycode.f

Note that you will see a variety of warning and error messages output to your terminal
window.

1.3 Fixing the Compile Error in Our Sample Fortran Code

Edit your file with emacs and make the following correction to your code:
> emacs mycode.f &

You should have noted one error, while compiling the code:

e The ‘DO 1005’ loop has an error in the numbered CONTINUE statement that closes
this DO loop. As can be seen, instead of ‘562 ~ CONTINUE’ we should have written
‘1005 CONTINUE’ — this error occurred since I did a clip and paste from the previous
DO loop and I forgot to change the label number associated with CONTINUE.

Now recompile your code with:
> gfortran —o mycode.exe mycode.f

At this point we should see no more errors.

1.4 Running this Fortran Code

Assuming we have fixed the compile error, the gfortran command above will make an ex-
ecutable file called mycode.exe. To run this code one simply types at the Unix prompt
(remember this is labeled here as *>’):

> ./mycode.exe

Here the ./’ tells Unix that the executable file is in the current directory. This will result in
an output of 200 lines of numbers in column format showing the results of the calculations
in your code. Some of the output will look ‘strange’ due to the errors I purposely included
in this code. We will address these operational errors now.

3

e In the ‘DO 2344’ loop, variable | steps from 1 (one) to 200, yet the variables that are
being printed are only 100 element arrays. As such, there is no telling what would be

output for the | = 101 to | = 200 elements in this output — it could be zeros, or it
could be “jibberish.” Change this DO loop ending number from 100 to 200.

e In the ‘2340 FORMAT’ statement, our first 2 variables are integers and we allowed
5 spaces for each integer which is more than sufficient for the values stored in these
variables. However, the first floating point number array, LLCOEFF, will contain
values that will be too large for the 8 spaces we have allowed with the 4 spaces after
the decimal point. This results in “******** heing printed instead of numbers for some
of the values. We can fix this by changing the ‘8’ to a ‘10’ in the ‘F’ FORMAT code
(i.e., F10.4).

e There are two arrays that are being printed out in scientific format, SSCOEFF(I) and
BBOUT(I), yet the 2340 FORMAT statement has only one format code listed for these
variables (i.e., IPE12.2). As such, this will either cause the code to crash during a run
or produce strange output for the subsequent numbers in the following lines of output.
To fix this, we just need to change ‘1PE12.2’ to ‘1P2E12.2” in the FORMAT statement.

Once these changes are made, recompile your code with the gfortran command as shown
above, then rerun your code with

> ./mycode.exe

At this point, we should no longer have any errors associated with the code. Here is this
code again printed with the corrections in place. One can access this corrected code on the
Tutorial web page linked to the course web page by clicking on the second ‘mycode.f’ link.

123456789T123456. . .
PROGRAM MYCODE
C
C This is my first Fortran code.
C
INTEGER I, J, I_INDEX(100)
REAL PI, LLCOEFF(100)
REAL*8 DPI, SSCOEFF(100), BBOUT(100)
C
PI = 3.14159
DPI = 3.14159265359D0
C
C Calculate integer and single precision arrays.
C

DO 52 I =1, 100
I_INDEX(I) = I*2
LLCOEFF(I) = FLOAT(I**2) * SIN(PI*FLOAT(I)/10.)

4

52 CONTINUE
C
C Calculate double precision arrays. Fixed the label
C statement number for CONTINUE.
C
DO 1005 J =1, 100

SSCOEFF (J) = COS(DPI*DFLOAT(J)/8.0DO0)
BBOUT(J) = SSCOEFF(J) * DEXP(-DFLOAT(J)/300.D0)
1005 CONTINUE
C
C Output this data to the screen in ordered columns.
C
C Fixed error in maximum I, was 200, should be 100.
C
DO 2344 I =1, 100
WRITE(*, 2340) I, I_INDEX(I), LLCOEFF(I), SSCOEFF(I),
1 BBOUT(I)
C
C Fixed errors in FORMAT statement: F8.2 should be F10.2 and
C there should be a 2 in 1PE format code.
C

2340 FORMAT (2X,215,2X,F10.4,2X,1P2E12.2)
2344 CONTINUE
C

STOP

END

Feel free to play around with this code you made (by once again editing it in emacs). Try
mistyping some of the lines in this code and see what compilation errors this may cause.

2 Python Tutorial.

There are many free online tutorials that teach programming in python. We will use one of
these now. This site uses version 3 of python. On your terminal screen, leave the fortran
subdirectory and go into the python subdirectory:

>cd ..
> cd python

Now start the python3 interpreter:

> python3

You will now see the python screen prompt: >>>.

Open up the Firefox web browser software (i.e., the “blue-orange” icon on the left side of the
screen), and open the following web site:

https: //www.learnpython.org/

Note that on this web site, you can either run the coding tutorial on the web page by clicking
the “RUN” icon, or you can type the coding in your python3 terminal if there is only one
line of code. For multiple lines of code, I recommend that you create a file with those lines
of code using the emacs editor. Go through as many tutorial steps as you like during this
tutorial class. I encourage you to also visit this site on your own to teach yourself python.

Once you are through with this python tutorial, enter the following in your python terminal:
>>> exit()

The parentheses are required since python uses functions to carry out commands.

