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Abstract
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II. The Wave Function

A. The Schrödinger Equation.

1. As mentioned in §I of the notes, quantum mechanics approaches

the trajectory problem of Newtonian mechanics quite differently.

On a microscopic level, particles do not follow trajectories, but

instead are characterized by their wave function, Ψ(x, t), where

x is the 1-dimensional position (we will worry about 3-dimensions

later) of the wave function at time t.

a) The wave function is determined from Schrödinger’s

Equation:

ih̄
∂Ψ

∂t
= −

h̄2

2m

∂2Ψ

∂x2 + V Ψ . (II-1)

i) Here, i =
√
−1 and

h̄ =
h

2π
= 1.054573 × 10−34 J s . (II-2)

ii) Whereas Newton’s Second Law, F = ma, is the

most important equation in all of classical physics,

Eq. (II-1) is the most important equation in all of

quantum physics.

b) Given suitable initial conditions [typically, Ψ(x, 0)], the

Schrödinger equation determines Ψ(x, t) for all future times,

just as, in classical mechanics, Newton’s Second Law de-

termines x(t) for all future times.

2. What exactly is the wave function, and what does it do for you

once you got it?

a) Whereas a particle is localized at a point in classical me-

chanics, a wave function is spread out in space =⇒ it is a

function of x for any given time t.
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Figure II–1: A hypothetical wave function. The particle would be relatively likely to be found
near A, and unlikely to be found near B. The shaded area represents the probability of finding the
particle in the range dx.

b) Born came up with a statistical interpretation of the

wave function, which says that |Ψ(x, t)|2 gives the proba-

bility of finding the particle at point x, at time t, or more

precisely,

|Ψ(x, t)|2 dx =

{
probability of finding the particle
between x and (x + dx) at time t.

}

(II-3)

c) The wave function itself is complex, but |Ψ|2 = Ψ∗Ψ

(where Ψ∗ is the complex conjugate of Ψ) is real and non-

negative — as a probability must be.

d) For the hypothetical wave function in Figure (II-1), you

would be quite likely to find the particle in the vicinity of

point A, and relatively unlikely to find it near point B.
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3. From the concept of the wave function, it becomes easier to see

how the Heisenberg Uncertainty Principle arises in nature. The

wave function will not allow you to predict with certainty the

outcome of a simple experiment to measure a particle’s position

— all quantum mechanics has to offer is statistical information

about the possible results.

B. Philosophical Interpretations.

1. The Realist Position:

a) We view the microscopic world as probabilistic due to the

fact that quantum mechanics is an incomplete theory.

b) The particle really was at a specific position (say point C

in Figure II-1), yet quantum mechanics was unable to tell

us so.

c) To the realist, indeterminacy is not a fact of nature, but

a reflection of our ignorance.

d) If this scenario is, in fact, the correct one, then Ψ is not

the whole story — some additional information (known

as a hidden variable) is needed to provide a complete

description of the particle.

2. The orthodox position =⇒ the Copenhagen interpretation:

a) The particle isn’t really anywhere in space. The act of

the measurement forces the particle to take a stand —

though how and why we dare not ask!

b) Observations not only disturb what is to be measured,

they produce it.
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c) Bohr and his followers put forward this interpretation of

quantum mechanics.

d) It is the most widely accepted position of the interpreta-

tion of quantum mechanics in physics.

3. The agnostic position:

a) Refuse to answer! What sense can there be in making

assertions about the status of a particle before a measure-

ment, when the only way of knowing whether you were

right is precisely to conduct the measurement, in which

case what you get is no longer before the measurement.

b) This has been used as a fall-back position used by many

physicists if one is unable to convince another of the or-

thodox position.

4. In 1964, John Bell astonished the physics community by showing

that it makes an observable difference if the particle had a precise

(although unknown) position prior to its measurement.

a) This discovery effectively eliminated the realist position.

b) Bell’s Theorem showed that the orthodox position is the

correct interpretation of quantum mechanics by proving

that any local hidden variable theory is incompatible with

quantum mechanics (see Bell, J.S. 1964, Physics, 1, 195).

c) We won’t get into the details of Bell’s Theorem at this

point in time. Suffice it to say that a particle does not have

a precise position prior to the measurement, any more

than ripples in a pond do =⇒ it is the measurement pro-

cess that insists upon one particular number, and thereby

in a sense creates the specific result.
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5. The act of the measurement collapses the wave function to a

delta function (e.g., a sharp peak) at some position — Ψ soon

spreads out again after the measurement in accordance to the

Schrödinger equation.

C. Probability and Normalization.

1. Because of the statistical interpretation, probability, P , plays

a central role in quantum mechanics.

a) A probability value is the likelihood of a sample point oc-

curring in a given distribution of points, where a sample

point is defined here as a possible outcome of an experi-

ment.

b) A distribution of points can either be a set of discrete

values or a continuous set of values.

2. Discrete Measurements. Below are a few definitions concern-

ing discrete measurements.

a) The total number of particles (or measurements) in a sys-

tem is

N =
∞∑

j=1
N(j) , (II-4)

where N(j) is the number of particles (or measurements)

in state j.

b) The probability of a particle being in state j is

P (j) =
N(j)

N
, (II-5)

whereas the sum of all the probabilities is

∞∑

j=1
P (j) = 1 . (II-6)
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c) The average (or mean) of a particle being found in state

j is

〈j〉 =

∑
jN(j)

N
=

∞∑

j=1
jP (j) , (II-7)

whereas the most probable value of j is MAX(N(j)).

d) The average of the square of a particle being found in

state j is

〈j2〉 =

∑
j2N(j)

N
=

∞∑

j=1
j2P (j) . (II-8)

e) In general, the average value of some function of j is given

by

〈f(j)〉 =
∞∑

j=1
f(j)P (j) . (II-9)

f) The numerical measure of the amount of spread in a dis-

tribution with respect to the average is

∆j = j − 〈j〉 . (II-10)

g) The variance of the distribution is defined as

σ2 ≡ 〈(∆j)2〉 , (II-11)

where σ is called the standard deviation of the mea-

surement.

h) It can be proven that

σ2 = 〈j2〉 − 〈j〉2 . (II-12)

Note that

〈j2〉 ≥ 〈j〉2 . (II-13)
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3. Continuous Measurements. For continuous distributions of

data or measurements, it is often convenient to define the prob-

ability density, ρ(x), as
{
probability that a random measurement

lies between x and (x + dx)

}
= ρ(x) dx . (II-14)

a) For these continuous distributions, the probability that x

lies between a and b (a finite interval) is given by

Pab =
∫ b

a
ρ(x) dx . (II-15)

b) The following equations are also valid:

∫ +∞

−∞
ρ(x) dx = 1 , (II-16)

〈x〉 =
∫ +∞

−∞
xρ(x) dx (II-17)

〈f(x)〉 =
∫ +∞

−∞
f(x)ρ(x) dx (II-18)

σ2 ≡ 〈(∆x)2〉 = 〈x2〉 − 〈x〉2 . (II-19)

-a/2 a/2
x

A 

ρ(
x
)

Figure II–2: Probability density function for a uniform distribution.
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4. A uniform distribution (as shown in Figure II-2) is used when

there is an equal probability that all of the possible measured

values will occur. If we set the probability density to a constant

value of ρ(x) = A between the limits of −a/2 to a/2 (hence the

total width of the distribution is a), the probability integral can

then be used to find the amplitude A with respect to the width

a:

P =
∫ a/2

−a/2
A dx = Aa = 1 , (II-20)

hence the amplitude must be

A =
1

a
(II-21)

for this probability function to be normalizable.

5. Meanwhile, a normal distribution (i.e., a Gaussian distribu-

tion) can be used to describe the distribution of random events

or observations. This distribution function is shown in Figure

(II-3) and described by the equation

ρ(x) =
1√
2πσ

e−(x−µ)2/2σ2

. (II-22)

a) This distribution is centered around the mean, µ.

b) Here σ is the standard deviation of the distribution.

c) The full-width-at-half-maximum (FWHM), Γ, is related

to the standard deviation by

Γ = 2.354 σ . (II-23)

d) The probable error (P.E.) of a normalized distribution is

defined to be the absolute value of the deviation |x − µ|
such that the probability for the deviation of any random

observation |xi − µ| to be less is equal to 1/2 =⇒ that is,
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Figure II–3: Probability density function for a normal distribution.

half of the observations of an event are expected to fall

within the boundaries denoted by µ ± P.E.

P.E. = 0.6745 σ = 0.2865 Γ . (II-24)

6. The statistical interpretation of the wave function (e.g., Eq. II-

3), says that |Ψ(x, t)|2 is the probability density for finding the

particle at point x, at time t. This dictates the following normal-

ization: ∫ +∞

−∞
|Ψ(x, t)|2 dx = 1 . (II-25)

Without this, the statistical interpretation would be nonsense.

a) But is this normalization consistent with Schrödinger’s

equation (i.e., Eq. II-1)? That is, is it really valid for all

time?

b) Let us take the time derivative of the LHS of Eq. (II-25),

then

d

dt

∫ +∞

−∞
|Ψ(x, t)|2 dx =

∫ +∞

−∞

∂

∂t
|Ψ(x, t)|2 dx . (II-26)
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c) Note that the integral is a function only of t, since the

x term(s) will disappear when the limits are applied. As

such, a total derivative (d/dt) is taken for the solution to

the integral on the LHS of Eq. (II-26), but the integrand

(i.e., the function inside the integral) is a function of x as

well as t, so a partial derivative (∂/∂t) must be used when

the derivative is taken inside the integral on the RHS of

Eq. (II-26).

d) By the product rule, we get

∂

∂t
|Ψ|2 =

∂

∂t
(Ψ∗Ψ) = Ψ∗∂Ψ

∂t
+

∂Ψ∗

∂t
Ψ . (II-27)

e) Schrödinger’s equation says that

∂Ψ

∂t
=

ih̄

2m

∂2Ψ

∂x2 − i

h̄
V Ψ , (II-28)

and hence also using Schrödinger’s equation for the com-

plex conjugate of Eq. (II-27) gives

∂Ψ∗

∂t
= − ih̄

2m

∂2Ψ∗

∂x2 +
i

h̄
V Ψ∗ . (II-29)

f) Using these equations in Eq. (II-27) gives

∂

∂t
|Ψ|2 =

ih̄

2m


Ψ∗∂

2Ψ

∂x2 − ∂2Ψ∗

∂x2 Ψ




=
∂

∂x

[
ih̄

2m

(
Ψ∗∂Ψ

∂x
−

∂Ψ∗

∂x
Ψ

)]
. (II-30)

g) The integral in Eq. (II-25) can now be evaluated explicitly:

d

dt

∫ +∞

−∞
|Ψ(x, t)|2 dx =

ih̄

2m

(
Ψ∗∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)∣∣∣∣∣

+∞

−∞
.

(II-31)

h) Ψ(x, t) must go to zero as x → ±∞, otherwise the wave

function would not be normalizable. It follows that
d

dt

∫ +∞

−∞
|Ψ(x, t)|2 dx = 0 , (II-32)
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and hence that the integral on the left is constant (inde-

pendent of time) =⇒ if Ψ is normalized at t = 0, it stays

normalized for all future time. QED

Example II–1. Consider the wave function

Ψ(x, t) = Ae−β2x2/2e−iEt/h̄ .

(a) Find the value of the constant A. (b) If Ψ = 0.5 at x = 0 and t = 0,

what is the value of β?

Solution (a):

The total probability must equal unity, as such
∫ +∞

−∞
|Ψ|2 dx =

∫ +∞

−∞
Ψ∗Ψ dx = 1 .

The complex conjugate of our wave function is

Ψ∗(x, t) = Ae−β2x2/2eiEt/h̄ ,

so our normalization equation becomes

∫ +∞

−∞
Ψ∗(x, t)Ψ(x, t) dx = A2

∫ +∞

−∞
e−β2x2

dx = A2
√√√√ π

β2 = 1 ,

or

A =


β2

π




1/4

.

So our wave function is

Ψ(x, t) =


β2

π




1/4

e−β2x2/2e−iEt/h̄ .

Solution (b):

Set Ψ(0, 0) = 0.5 in the equation above and solve for β:

Ψ(0, 0) =


β2

π




1/4

e0e0 =
1

2
,
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or
β2

π
=

1

16
, β2 =

π

16
, β =

√
π

4
.

D. Momentum

1. For a particle in state Ψ, the expectation value of x is

〈x〉 =
∫ +∞

−∞
Ψ∗(x, t) x Ψ(x, t) dx . (II-33)

The expectation value is the average of repeated measurements

on an ensemble of identically prepared systems, not the average

of repeated measurements on one and the same system.

2. The rate of change of this expectation value is

d〈x〉
dt

=
d

dt

∫ +∞

−∞
Ψ∗ x Ψ dx =

∫ +∞

−∞

(
Ψ∗ x

∂Ψ

∂t
+

∂Ψ∗

∂t
x Ψ

)
dx .

(II-34)

a) Substituting for ∂Ψ/∂t and ∂Ψ∗/∂t from the Schrödinger

equation (e.g., Eq. II-1) gives

d〈x〉
dt

= − i

h̄

∫ +∞

−∞


Ψ∗ x


− h̄2

2m

∂2Ψ

∂x2 + V Ψ




−

− h̄2

2m

∂2Ψ∗

∂x2 + V Ψ∗

 x Ψ


 dx . (II-35)

b) The terms involving V cancel out, and we have

d〈x〉
dt

=
ih̄

2m

∫ +∞

−∞


Ψ∗ x

∂2Ψ

∂x2 − ∂2Ψ∗

∂x2 x Ψ


 dx . (II-36)

c) Separate out the second term of the integrand, and inte-

grate by parts as follows:

∫ ∞

−∞
xΨ︸︷︷︸
u

∂2Ψ∗

∂x2 dx
︸ ︷︷ ︸

dv

=


xΨ︸︷︷︸

u

∂Ψ∗

∂x︸ ︷︷ ︸
v




+∞

−∞

−
∫ +∞

−∞

∂Ψ∗

∂x︸ ︷︷ ︸
v

∂(x Ψ)

∂x
dx

︸ ︷︷ ︸
du

.

(II-37)
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d) Since Ψ must be in the form of a group of limited spatial

extent in order that the uncertainty in the x coordinate be

relatively small, both the wave function and its derivatives

must go to zero faster than x → ±∞. Consequently the

integrand term is equal to zero, and we have

∫ ∞

−∞
xΨ

∂2Ψ∗

∂x2 dx = −
∫ +∞

−∞

∂(x Ψ)

∂x︸ ︷︷ ︸
u

∂Ψ∗

∂x
dx

︸ ︷︷ ︸
dv

. (II-38)

e) Integrating by parts again,

∫ +∞

−∞

∂(x Ψ)

∂x

∂Ψ∗

∂x
dx = −


∂(x Ψ)

∂x
Ψ∗




+∞

−∞
+
∫ +∞

−∞
Ψ∗∂

2(xΨ)

∂x2 dx .

(II-39)

Reducing this again gives the following result for Eq. (II-

38):

∫ ∞

−∞
xΨ

∂2Ψ∗

∂x2 dx =
∫ +∞

−∞
Ψ∗∂

2(xΨ)

∂x2 dx . (II-40)

f) Putting this back into Eq. (II-36), we have

d〈x〉
dt

=
ih̄

2m

∫ +∞

−∞
Ψ∗


x

∂2Ψ

∂x2 − ∂2(xΨ)

∂x2


 dx . (II-41)

Consider the bracket in the integrand, it can be written

x
∂2Ψ

∂x2 −
∂2(x Ψ)

∂x2 = x
∂2Ψ

∂x2 −
∂

∂x

(
x

∂Ψ

∂x
+ Ψ

)

= x
∂2Ψ

∂x2 − x
∂2Ψ

∂x2 −
∂Ψ

∂x
−

∂Ψ

∂x

= −2
∂Ψ

∂x
. (II-42)

g) Consequently,

d〈x〉
dt

= −ih̄

m

∫ +∞

−∞

(
Ψ∗∂Ψ

∂x

)
dx . (II-43)
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h) At this point, we will postulate that the expectation value

of the velocity of the particle is equal to the time derivative

of the expectation value of the position of the particle :

〈v〉 =
d〈x〉
dt

. (II-44)

i) Eq. (II-43) tells us, then, how to calculate 〈v〉 directly

from Ψ.

3. Actually, it is customary to work with momentum (p = mv),

rather than velocity:

〈p〉 ≡ m
d〈x〉
dt

= −ih̄
∫ +∞

−∞

(
Ψ∗∂Ψ

∂x

)
dx . (II-45)

a) Let’s write expressions for 〈x〉 and 〈p〉 in a more suggestive

way

〈x〉 =
∫ +∞

−∞
Ψ∗(x)Ψ dx (II-46)

〈p〉 =
∫ +∞

−∞
Ψ∗

(
h̄

i

∂

∂x

)
Ψ dx . (II-47)

b) We say that the operator x represents position, and the

operator (h̄/i)(∂/∂x) represents momentum, in quantum

mechanics =⇒ to calculate expectation values, we sand-

wich the appropriate operator between Ψ∗ and Ψ and in-

tegrate.

4. All such dynamic variables can be written in terms of position

and momentum. Kinetic energy is

〈T 〉 =
〈p2〉
2m

=
−h̄2

2m

∫ +∞

−∞
Ψ∗


 ∂2

∂x2


Ψ dx . (II-48)

E. The Uncertainty Principle

1. The uncertainty in the measurement of an event is nothing

more than the standard deviation σ =
√

σ2 of the measurement

(e.g., Eq. II-19).
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2. Hence, the Heisenberg Uncertainty Principle can be rewrit-

ten in the form

σx σp ≥
h̄

2
, (II-49)

where σx is the standard deviation in the x-position and σp is the

standard deviation in the corresponding momentum.

3. We shall see from this point forward, that wave functions that

describe real particles always obey Eq. (II-49). We shall prove

this relation in §IV of the notes.

Example II–2. Consider the wave function of Example II-1:

Ψ(x, t) =


β2

π




1/4

e−(β2x2/2+iEt/h̄) .

Show that this wave function satisfies the Heisenberg Uncertainty Relation-

ship.

Solution:

First, calculate the various expectation values.

〈x〉 =
∫ +∞

−∞

√√√√β2

π
e−(β2x2/2−iEt/h̄) x e−(β2x2/2+iEt/h̄) dx

=

√√√√β2

π

∫ +∞

−∞
x e−β2x2

dx = 0 ,

since we are integrating an odd function over an even interval.

〈x2〉 =
∫ +∞

−∞

√√√√β2

π
e−(β2x2/2−iEt/h̄) x2 e−(β2x2/2+iEt/h̄) dx

=

√√√√β2

π

∫ +∞

−∞
x2 e−β2x2

dx = 2

√√√√β2

π

∫ +∞

0
x2 e−β2x2

dx

= 2

√√√√β2

π

1

4β2

√√√√ π

β2 =
1

2β2 .
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〈p〉 =
∫ +∞

−∞

√√√√β2

π
e−(β2x2/2−iEt/h̄)

(
h̄

i

∂

∂x

)
e−(β2x2/2+iEt/h̄) dx

=

√√√√β2

π

h̄

i

∫ +∞

−∞
e−β2x2/2 (−β2x) e−β2x2/2 dx

= −
√√√√β2

π

h̄

i
β2

∫ +∞

−∞
x e−β2x2

dx = 0 ,

again, since we are integrating and odd function over an even interval.

〈p2〉 =
∫ +∞

−∞

√√√√β2

π
e−(β2x2/2−iEt/h̄)

(
h̄

i

∂

∂x

)2

e−(β2x2/2+iEt/h̄) dx

= −
√√√√β2

π
h̄2

∫ +∞

−∞
e−β2x2/2 ∂2

∂x2 e−β2x2/2 dx

= −
√√√√β2

π
h̄2

∫ +∞

−∞
e−β2x2/2 ∂

∂x

(
−β2x e−β2x2/2

)
dx

=

√√√√β2

π
h̄2 β2

∫ +∞

−∞
e−β2x2/2

[
e−β2x2/2 + x

(
−β2x

)
e−β2x2/2

]
dx

=

√√√√β2

π
h̄2 β2

∫ +∞

−∞
e−β2x2 (

1 − β2x2
)

dx

=

√√√√β2

π
h̄2 β2

∫ +∞

−∞

(
e−β2x2 − β2x2 e−β2x2

)
dx

=

√√√√β2

π
h̄2 β2

{∫ +∞

−∞
e−β2x2

dx −
∫ +∞

−∞
β2x2 e−β2x2

dx
}

=

√√√√β2

π
h̄2 β2

{
2
∫ +∞

0
e−β2x2

dx − 2β2
∫ +∞

0
x2 e−β2x2

dx
}

=

√√√√β2

π
h̄2 β2

{
2 ·

1

2β

√
π − 2β2 ·

1

4β2

√
πβ2

}

=

√√√√β2

π
h̄2 β2





√√√√ π

β2 − 1

2

√√√√ π

β2





=

√√√√β2

π
h̄2 β2





1

2

√√√√ π

β2



 =

1

2
h̄2 β2 .
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Finally, using these values in the definition of the standard deviations:

σx =
√
〈x2〉 − 〈x〉2

=

√√√√ 1

2β2 − 0 =

√√√√ 1

2β2 =
1√
2β

=

√
2

2β

and

σp =
√
〈p2〉 − 〈p〉2

=

√√√√1

2
h̄2 β2 − 0 =

1√
2

h̄ β =

√
2 h̄ β

2
.

So

σx σp =

√
2

2β
·
√

2 h̄ β

2
=

2h̄ β

4β
=

1

2
h̄ .

√
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