MATH 1720 – Precalculus – Final Exam, Fall, 2002

- 1. (Not on the final for spring)
- 2. The domain of the function $f(x) = \sqrt{2 x}$ is the set of numbers x satisfying: (A) $x \le 2$ (B) $x \ne 2$ (C) $x \ge 2$ (D) all real numbers
- 3. Consider the functions $f(x) = x^3 + x^2$ and $g(x) = x^2 + 1$. Then (A) f and g are both even (B) f is odd and g is even (C) f is neither even nor odd and g is even (D) f and g are neither even nor odd

4. Write the expression for the function whose graph is the graph of $y = x^3$ but shifted down 4 units and left 5 units. (A) $y = (x-5)^3 - 4$ (B) $y = (x+5)^3 - 4$ (C) $y = (x-5)^3 + 4$ (D) $y = (x-4)^3 - 5$

5. Given
$$f(x) = 2x + 3$$
 and $g(x) = \sqrt{x}$, find $(f \circ g)(x)$.
(A) $(f \circ g)(x) = \sqrt{2x + 3}$ (B) $(f \circ g)(x) = (2x + 3)\sqrt{x}$
(C) $(f \circ g)(x) = 2\sqrt{x} + 3$ (D) $(f \circ g)(x) = 2\sqrt{x + 3}$

6. Find the vertex V and the x-intercepts x_1 and x_2 of the quadratic function $f(x) = 2x^2 - 8x$. (A) V(2, -8); $x_1 = 0$, $x_2 = 4$ (B) V(2, -4); $x_1 = 0$, $x_2 = 4$ (C) V(0, 0); $x_1 = -2$, $x_2 = 4$ (D) V(0,0); $x_1 = 2$, $x_2 = -8$

7. Which of the following functions might have the graph pictured here? (A) $y = \frac{1}{2}(x^2 - 1)(x - 2)$ (B) $y = \frac{1}{2}(x^2 + 1)(x - 2)$ (C) $y = (x^2 - 1)(1 - \frac{x}{2})$ (D) y = -(x - 1)(x - 2)

8. Find the vertical and horizontal asymptotes of the function $f(x) = \frac{2x}{x-5}$. (A) Vertical: x = 5; Horizontal: y = 0 (B) Vertical: x = 2; Horizontal: y = 1(C) Vertical: x = 2; Horizontal: y = 5 (D) Vertical: x = 5; Horizontal: y = 2

9. Find the inverse of the function
$$f(x) = \frac{1}{x-2}$$
.
(A) $f^{-1}(x) = x-2$ (B) $f^{-1}(x) = \frac{1}{x} + 2$ (C) $f^{-1}(x) = \frac{1}{x+2}$ (D) $f^{-1}(x) = x+2$

- 11. Give the domain *D*, range *R*, and the *x*-intercept *X* of the function $y = \lim x$. (A) $D = \{x \mid x > 0\}$; R = all real numbers; X = 1(B) D = all real numbers; $R = \{y \mid y > 0\}$; X = 1(C) $D = \{x \mid x > 0\}$; $R = \{y \mid y > 0\}$; X = 1(D) D = all real number; R = all real numbers; X = 0
- 12. Solve the equation: $\log_4 x + \log_4 (x 3) = 1$. (A) x = 4 or x = 1 (B) x = 3.5 (C) x = 4 (D) no solution
- 13. Iodine 131 is a radioactive material that decays according to the function $A(t) = A_0 e^{-0.087t}$, where A_0 is the initial amount present and A is the amount present at time t (in years). Determine how long it takes for 250 grams of iodine 131 to decay to 50 grams. (A) 19 years (B) 5 years (C) 50 years (D) 10 years
- 14. Find the length of the arc of a circle with radius 10 cm subtended by a central angle of 45°. (A) 450 cm (B) $\frac{40}{\pi}$ cm (C) $\frac{\pi}{40}$ cm (D) $\frac{5\pi}{2}$ cm
- 15. Find $\sin \frac{\pi}{6}$ and $\tan \frac{\pi}{3}$: (A) $\frac{1}{2}$, $\sqrt{3}$ (B) $\frac{\sqrt{3}}{2}$, $\sqrt{3}$ (C) $\frac{1}{2}$, $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{3}}{2}$, $\frac{\sqrt{3}}{3}$
- 16. Suppose that $\cos \theta = 3/5$ and θ lies in Quadrant IV. Find $\sin \theta$ and $\tan \theta$. (A) $\sin \theta = 4/5$, $\tan \theta = -4/3$ (B) $\sin \theta = -4/5$, $\tan \theta = -4/3$ (C) $\sin \theta = 4/5$, $\tan \theta = 4/3$ (C) $\sin \theta = -4/5$, $\tan \theta = 4/3$
- 17. Determine the equation of the sine function which has amplitude 2 and period 4. (A) $y = 2 \sin (4x)$ (B) $y = 2 \sin \left(\frac{\pi}{2}x\right)$ (C) $y = 4 \sin (2x)$ (D) $y = 4 \sin \left(\frac{\pi}{4}x\right)$
- 18. For what values of x between 0 and 2π does $y = \sec x$ have vertical asymptotes? (A) $\frac{\pi}{2}$, $\frac{3\pi}{2}$ (B) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (C) 0, π , 2π (D) There are no vertical asymptotes.

19. Find the exact value of $\tan^{-1}(-1)$ and $\cos^{-1}(-1)$. (A) $\frac{3\pi}{4}$, π (B) $\frac{\pi}{4}$, 0 (C) $\frac{3\pi}{4}$, $\frac{3\pi}{2}$ (D) $\frac{-\pi}{4}$, π

20. Which of the following equals
$$1 - \frac{\sin^2 \theta}{1 - \cos \theta}$$
?
(A) $\cos \theta$ (B) $-\cos \theta$ (C) $1 - \sin \theta$ (D) $1 + \sin \theta$

21. If
$$\sin \theta = \frac{1}{3}$$
 and θ lies in Quadrant II, find the exact value of $\sin\left(\theta + \frac{\pi}{6}\right)$.
(A) $\frac{5}{6}$ (B) $\frac{\sqrt{3} + \sqrt{8}}{6}$ (C) $\frac{\sqrt{3} - \sqrt{8}}{6}$ (D) $\frac{\sqrt{3} - 1}{2}$

22. If
$$\cos \theta = \frac{-3}{5}$$
 and $\pi < \theta < \frac{3\pi}{2}$, then find $\cos\left(\frac{\theta}{2}\right)$.
(A) $\frac{-3}{10}$ (B) $\frac{\sqrt{5}}{5}$ (C) $\frac{-2\sqrt{5}}{5}$ (D) $\frac{-\sqrt{5}}{5}$

23. What are the first four positive solutions of the equation $\sin(2\theta) = \frac{1}{2}$?

(A)	π 5π 13π 17π	_(B) π 5π 13π 17π
	6, 6, 6, 6	(B) $\frac{12}{12}$, $\frac{12}{12}$, $\frac{12}{12}$, $\frac{12}{12}$
(C)	π 2π 7π 8π	(D) π 5π 7π 11π
	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	(D) $\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$

24.	Find	alls	soluti	ons in	the i	nterv	al $[0, 2\pi]$ for the equation $2\cos^2\theta$ –	-1 = 0.		
	(A)	π	7π	(B)	3π	5π	(C) $\frac{\pi}{2}$ $\frac{3\pi}{5\pi}$ $\frac{5\pi}{7\pi}$	(D)	π	5π
	(\mathbf{n})	4'	4	(D)	4'	4	4 4 4 4	(D)	3'	3

25. A ship, off-shore from a vertical cliff known to be 200 feet high, takes a sighting of the top of a cliff. If the angle of elevation is found to be 15 degrees, approximately how far off-shore is the ship?
(A) 3000 feet
(B) 1500 feet
(C) 500 feet
(D) 750 feet

	,			,	()			
Answers								
1. D	2. A	3. C	4. B	5. C	6. A	7. C		
8. D	9. B	10. D	11. A	12. C	13. A	14. D		
15. A	16. B	17. B	18. A	19. D	20. B	21. C		
22. D	23. B	24. C	25. D					