
 375

CHAPTER SEVENTEEN

Intel 80x86 Assembly Language

In Chapter 15, we developed a generic assembly language and its
associated machine code. This language was presented to create a few
simple programs and present how the CPU executed code. In this
chapter, the assembly language of the Intel 80x86 processor family is
introduced along with the typical syntax for writing 80x86 assembly
language programs. This information is then used to write a sample
program for the 80x86 processor.

This chapter is meant to serve as an introduction to programming the
Intel 80x86 using assembly language. For more detailed instruction,
refer to one of the resources listed at the end of this chapter.

17.1 Assemblers versus Compilers
For a high-level programming language such as C, there is a two-

step process to produce an application from source code. To begin with,
a program called a compiler takes the source code and converts it into
machine language instructions. This is a complex task that requires a
detailed understanding of the architecture of the processor. The
compiler outputs the resulting sequence of machine code instructions to
a file called an object file. The second step takes one or more object
files and combines them by merging addressing information and
generating necessary support code to make the final unit operate as an
application. The program that does this is called a linker.

In order for the linker to operate properly, the object files must
follow certain rules for format and addressing to clearly show how one
object file interrelates with the others.

A similar two-step process is used to convert assembly language
source code into an application. It begins with a program called an
assembler. The assembler takes an assembly language program, and
using a one-to-one conversion process, converts each line of assembly
language to a single machine code instruction. Because of this one-to-
one relation between assembly language instructions and machine code
instructions, the assembly language programmer must have a clear
understanding of how the processor will execute the machine code. In

376 Computer Organization and Design Fundamentals

other words, the programmer must take the place of the compiler by
converting abstract processes to the step-by-step processor instructions.

As with the compiler, the output of the assembler is an object file.
The format and addressing information of the assembler's object file
should mimic that of the compiler making it possible for the same
linker to be used to generate the final application. This means that as
long as the assembly language programmer follows certain rules when
identifying shared addressing, the object file from an assembler should
be capable of being linked to the object files of a high-level language
compiler.

The format of an assembly language program depends on the
assembler being used. There are, however, some general formatting
patterns that are typically followed. This section presents some of those
standards.

Like most programming languages, assembly language source code
must follow a well-defined syntax and structure. Unlike most
programming languages, the lines of assembly language are not
structurally interrelated. In a language such as C, for example,
components such as functions, if-statements, loops, and switch/case
blocks utilize syntax to indicate the beginning and end of a block of
code that is to be treated as a unit. Blocks of code may be contained
within larger blocks of code producing a hierarchy of execution. In
assembly language, there is no syntax to define blocks of code;
formatting only applies to a single line of code. It is the execution of
the code itself that is used to logically define blocks within the
program.

17.2 Components of a Line of Assembly Language
As shown in Figure 17-1, a line of assembly language code has four

fields: a label, an opcode, a set of operands, and comments. Each of
these fields must be separated by horizontal white space, i.e., spaces or
tabs. No carriage returns are allowed as they identify the beginning of a
new line of code. Depending on the function of a particular line, one or
more of the fields may be omitted.

The first field of a line is an optional label field. A label is used to
identify a specific line of code or the memory location of a piece of
data so that it may be referenced by other lines of assembly language.
The assembler will translate the label into an address for use in the
object file. As far as the programmer is concerned, however, the label

 Chapter 17: Intel 80x86 Assembly Language 377

may be used any time an address reference is needed to that particular
line. It is not necessary to label all lines of assembly language code,
only the ones that are referred to by other lines of code.

Figure 17-1 Format of a Line of Assembly Language Code

A label is a text string much like a variable name in a high-level
language. There are some rules to be obeyed when defining a label.

• Labels must begin in the first column with an alphabetic character.

Subsequent characters may be numeric.
• It must not be a reserved string, i.e., it cannot be an assembly

language instruction nor can it be a command to the assembler.
• Although a label may be referenced by other lines of assembly

language, it cannot be reused to identify a second line of code
within the same file.

• In some cases, a special format for a label may be required if the
label's function goes beyond identification of a line within a file. A
special format may be needed, for example, if a high-level
programming language will be referencing one of the assembly
language program's functions.

The next field is the instruction or opcode field. The instruction

field contains the assembly language command that the processor is
supposed to execute for this line of code. An instruction must be either
an assembly language instruction (an opcode) or an instruction to the
assembler (an assembler directive).

The third field is the operand field. The operand field contains the
data or operands that the assembly language instruction needs for its
execution. This includes items such as memory addresses, constants, or

label <opcode> <operand(s)> ;comment field

Label uniquely identifying
line (optional)

Assembly language
command to be executed

Text after semi-colon is
ignored to end of line

List of operands
required by opcode

378 Computer Organization and Design Fundamentals

register names. Depending on the instruction, there may be zero, one,
two, or three operands, the syntax and organization of which also
depends on the instruction.

The last field in a line of assembly language is the comment field.
As was mentioned earlier, assembly language has no structure in the
syntax to represent blocks of code. Although the specific operation of a
line of assembly language should be clear to a programmer, its purpose
within the program usually is not. It is therefore imperative to comment
assembly language programs. In addition to the standard use of
comments, comments in assembly language can be used to:

• show where functions or blocks of code begin and end;
• explain the order or selection of commands (e.g., where a shift left

has replaced a multiplication by a power of two); or
• identify obscure values (e.g., that address 037816 represents the data

registers of the parallel port).

A comment is identified with a preceding semi-colon, ';'. All text

from the semi-colon to the end of the line is ignored. This is much like
the double-slash, "//", used in C++ or the quote used in Visual Basic to
comment out the remaining text of a line. A comment may be alone in a
line or it may follow the last necessary field of a line of code.

17.3 Assembly Language Directives
There are exceptions in an assembly language program to the

opcode/operand lines described in the previous section. One of the
primary exceptions is the assembler directive. Assembler directives are
instructions to the assembler or the linker indicating how the program
should be created. Although they have the same format as an assembly
language instruction, they do not translate to object code. This section
will only address a few of the available directives. Please refer to one
of the resources listed at the end of this chapter for more information on
the assembler directives used with the Intel 80x86.

17.3.1 SEGMENT Directive
One of the most important directives with respect to the final

addressing and organization of the application is SEGMENT. This
directive is used to define the characteristics and or contents of a

 Chapter 17: Intel 80x86 Assembly Language 379

segment. (See Chapter 16 for a description of segments and their use
with the 80x86 processor.)

There are three main segments: the code segment, the data segment,
and the stack segment. To define these segments, the assembly
language file is divided into areas using the SEGMENT directive. The
beginning of the segment is defined with the keyword SEGMENT
while its end is defined using the keyword ENDS. Figure 17-2 presents
the format and parameters used to define a segment.

label SEGMENT alignment combine 'class'
 • •
 • •
 • •

label ENDS

Figure 17-2 Format and Parameters Used to Define a Segment

The label uniquely identifies the segment. The SEGMENT directive
label must match the corresponding ENDS directive label.

The alignment attribute indicates the "multiple" of the starting
address for the segment. For a number of reasons, either the processor
or the operating system may require that a segment begin on an address
that is divisible by a certain power of two. The align attribute is used to
tell the assembler what multiple of a power of two is required. The
following is a list of the available settings for alignment.

• BYTE – There is no restriction on the starting address.
• WORD – The starting address must be even, i.e., the binary address

must end in a zero.
• DWORD – The starting address must be divisible by four, i.e., the

binary address must end in two zeros.
• PARA – The starting address must be divisible by 16, i.e., the

binary address must end in four zeros.
• PAGE – The starting address must be divisible by 256, i.e., the

binary address must end in eight zeros.

The combine attribute is used to tell the linker if segments can be

combined with other segments. The following is a list of a few of the
available settings for the combine attribute.

380 Computer Organization and Design Fundamentals

• NONE – The segment is to be located independently of the other

segments and is logically considered separate.
• PUBLIC or COMMON – The segment may be combined with

other segments of the same name and class.
• STACK – Works like PUBLIC for stack segments.

The class attribute helps the assembler classify the information

contained in the segment. This is important in order to organize the
data, code, and other information that the linker will be partitioning into
segments when it comes time to create the final application. Typical
values are 'Data', 'Code', or 'Stack'. Note that the apostrophes are to be
included as part of the attribute value.

17.3.2 .MODEL, .STACK, .DATA, and .CODE Directives
Instead of going to the trouble of defining the segments with the

SEGMENT directive, a programmer may select a memory model. By
defining the memory model for the program, a basic set of segment
definitions is assumed. The directive .MODEL can do this. Figure 17-3
presents the format of the .MODEL directive.

 .MODEL memory_model

Figure 17-3 Format of the .MODEL Directive

Table 17-1 presents the different types of memory models that can
be used with the directive. The memory models LARGE and HUGE
are the same except that HUGE may contain single variables that use
more than 64K of memory.

There are three more directives that can be used to simplify the
definition of the segments. They are .STACK, .DATA, and .CODE.
When the assembler encounters one of these directives, it assumes that
it is the beginning of a new segment, the type being defined by the
specific directive used (stack, data, or code). It includes everything that
follows the directive in the same segment until a different segment
directive is encountered.

The .STACK directive takes an integer as its operand allowing the
programmer to define the size of the segment reserved for the stack.

 Chapter 17: Intel 80x86 Assembly Language 381

The .CODE segment takes a label as its operand indicating the
segment's name.

Table 17-1 Memory Models Available for use with .MODEL

Memory Model Segment Definitions
TINY Code, data, and, stack in one 64K segment
SMALL One code segment less than or equal to 64K

One data segment less than or equal to 64K
MEDIUM Multiple code segments of any size

One data segment less than or equal to 64K
COMPACT One code segment less than or equal to 64K

Multiple data segments of any size
LARGE Multiple code segments of any size

Multiple data segments of any size
HUGE Multiple code segments of any size

Multiple data segments of any size
FLAT One 4 Gig memory space

17.3.3 PROC Directive
The next directive, PROC, is used to define the beginning of a

block of code within a code segment. It is paired with the directive
ENDP which defines the end of the block. The code defined between
PROC and ENDP should be treated like a procedure or a function of a
high-level language. This means that jumping from one block of code
to another is done by calling it like a procedure.

Figure 17-4 Format and Parameters Used to Define a Procedure

As with the SEGMENT directive, the labels for the PROC directive
and the ENDP directive must match. The attribute for PROC is either

label PROC NEAR or FAR

label ENDP

382 Computer Organization and Design Fundamentals

NEAR or FAR. A procedure that has been defined as NEAR uses only
an offset within the segment for addressing. Procedures defined as FAR
need both the segment and offset for addressing.

17.3.4 END Directive
Another directive, END, is used to tell the assembler when it has

reached the end of all of the code. Unlike the directive pairs
SEGMENT and ENDS and PROC and ENDP, there is no
corresponding directive to indicate the beginning of the code.

17.3.5 Data Definition Directives
The previous directives are used to tell the assembler how to

organize the code and data. The next class of directives is used to
define entities that the assembler will convert directly to components to
be used by the code. They do not represent code; rather they are used to
define data or constants on which the application will operate.

Many of these directives use integers as their operands. As an aid to
programmers, the assembler allows these integers to be defined in
binary, decimal, or hexadecimal. Without some indication as to their
base, however, some values could be interpreted as hex, decimal, or
binary (e.g., 100). Hexadecimal values have an 'H' appended to the end
of the number, binary values have a 'B' appended to the end, and
decimal values are left without any suffix.

Note also that the first digit of any number must be a numeric digit.
Any value beginning with a letter will be interpreted by the assembler
as a label instead of a number. This means that when using
hexadecimal values, a leading zero must be placed in front of any
number that begins with A, B, C, D, E, or F.

The first of the defining directives is actually a set of directives used
for reserving and initializing memory. These directives are used to
reserve memory space to hold elements of data that will be used by the
application. These memory spaces may either be initialized or left
undefined, but their size will always be specified.

The primary form of these directives is Dx where a character is
substituted for the 'x' to indicate the incremental size of memory that is
being reserved. For example, a single byte can be reserved using the
directive DB. Figure 17-5 presents some of the define directives and
their format.

 Chapter 17: Intel 80x86 Assembly Language 383

label DB expression ;define a byte
label DW expression ;define a word (2 bytes)
label DD expression ;define a double word
label DQ expression ;define a quad word

Figure 17-5 Format and Parameters of Some Define Directives

The label, which is to follow the formatting guidelines of the label
field defined earlier, is not required. When it is used, the assembler
assigns it the address corresponding to the next element of memory
being reserved. The programmer may then use it throughout their code
to refer back to that address.

The expression after the directive is required. The expression is used
to tell the assembler how much memory is to be reserved and if it is to
be initialized. There are four primary formats for the expression.

• Constants – The expression can be a list of one or more constants.

These constants will be converted to binary and stored in the order
that they were defined.

• String – The expression can be a string. The assembler will divide
the string into its characters and store each character in the
incremental space required by the selected define directive, i.e., DB
reserves memory a byte at a time, DW reserves memory a word at a
time, DD reserves memory a double word at a time, and DQ
reserves memory a quad word at a time.

• Undefined – A question mark (?) can be used to tell the assembler
that the memory is to be reserved, but left undefined.

• Duplicated elements – The keyword DUP may be used to replicate
the same value in order to fill a block of memory.

Figure 17-6 presents some examples of the define directives where

the comment field is used to describe what will be stored in the
reserved memory.

17.3.6 EQU Directive
The next directive, EQU, is in the same class as the define

directives. It is like the #define directive used in C, and like #define, it
is used to define strings or constants to be used during assembly. The
format of the EQU directive is shown in Figure 17-7.

384 Computer Organization and Design Fundamentals

VAR01 DB 23H ;Reserve byte/initialized to
 ;hexadecimal 23
VAR01 DB 10010110B ;Reserve byte/initialized to
 ;binary 10010110
VAR02 DB ? ;Reserve byte/undefined
STR01 DB 'hello' ;Store 'h', 'e', 'l', 'l',
 ;and 'o' in 5 sequential bytes
ARR01 DB 3, 2, 6 'Store the numbers 3, 2, and 6
 ;in 3 sequential bytes
ARR02 DB 4 DUP(?) ;Reserve 4 bytes/undefined
ARR03 DW 4 DUP(0) ;Reserve 4 words (8 bytes) and
 ;initialize to 0

Figure 17-6 Example Uses of Define Directives

label EQU expression

Figure 17-7 Format and Parameters of the EQU Directive

Both the label and the expression are required fields with the EQU
directive. The label, which also is to follow the formatting guidelines of
the label field, is made equivalent to the expression. This means that
whenever the assembler comes across the label later in the file, the
expression is substituted for it. Figure 17-8 presents two sections of
code that are equivalent because of the use of the EQU directive.

ARRAY DB 12 DUP(?)

a.) Reserving 12 bytes of memory without EQU directive

COUNT EQU 12
ARRAY DB COUNT DUP(?)

b.) Reserving 12 bytes of memory using EQU directive

Figure 17-8 Sample Code with and without the EQU Directive

 Chapter 17: Intel 80x86 Assembly Language 385

Note that EQU only assigns an expression to a name at the time of
assembly. No data segment storage area is allocated with this directive.

17.4 80x86 Opcodes
Assembly language instructions can be categorized into four groups:

data transfer, data manipulation, program control, and special
operations. The next four sections introduce some of the Intel 80x86
instructions by describing their function.

17.4.1 Data Transfer
There is one Intel 80x86 opcode that is used to move data: MOV.

As shown in Figure 17-9, the MOV opcode takes two operands, dest
and src. MOV copies the value specified by the src operand to the
memory or register specified by dest.

Figure 17-9 Format and Parameters of the MOV Opcode

Both dest and src may refer to registers or memory locations. The
operand src may also specify a constant. These operands may be of
either byte or word length, but regardless of what they are specifying,
the sizes of src and dest must match for a single MOV opcode. The
assembler will generate an error if they do not.

Section 16.4 showed how the Intel 80x86 uses separate control lines
for transferring data to and from its I/O ports. To do this, it uses a pair
of special data transfer opcodes: IN and OUT. The opcode IN reads
data from an I/O port address placing the result in either AL or AX
depending on whether a byte or a word is being read. The OUT opcode
writes data from AL or AX to an I/O port address. Figure 17-10 shows
the format of these two instructions using the operand accum to identify
either AL or AX and port to identify the I/O port address of the device.

Figure 17-10 Format and Parameters of the IN and OUT Opcodes

 MOV dest, src

 IN accum, port
 OUT port, accum

386 Computer Organization and Design Fundamentals

None of the data transfer opcodes modifies the processor's flags.

17.4.2 Data Manipulation
Intel designed the 80x86 family of processors with plenty of

instructions to manipulate data. Most of these instructions have two
operands, dest and src, and just like the MOV instruction, they read
from src and store in dest. The difference is that the src and dest values
are combined somehow before being stored in dest. Another difference
is that the data manipulation opcodes typically affect the flags.

Take for example the ADD opcode shown in Figure 17-11. It reads
the data identified by src, adds it to the data identified by dest, then
replaces the original contents of dest with the result.

ADD dest, src

Figure 17-11 Format and Parameters of the ADD Opcode

The ADD opcode modifies the processor's flags including the carry
flag (CF), the overflow flag (OF), the sign flag (SF), and the zero flag
(ZF). This means that any of the Intel 80x86 conditional jumps can be
used after an ADD opcode for program flow control.

Many of the other data manipulation opcodes operate the same way.
These include logic operations such as AND, OR, and XOR and
mathematical operations such as SUB (subtraction) and ADC (add with
carry). MUL (multiplication) and DIV (division) are different in that
they each use a single operand, but since two pieces of data are needed
to perform these operations, the AX or AL registers are implied.

Some operations by nature only require a single piece of data. For
example, NEG takes the 2's-complement of a value and stores it back
in the same location. The same is true for NOT (bit-wise inverse),
DEC (decrement), and INC (increment). These commands all use a
single operand identified as dest.

 NEG dest ;Take 2's complement of dest
 NOT dest ;Invert each of the bits of dest
 DEC dest ;Subtract 1 from dest
 INC dest ;Add 1 to dest

Figure 17-12 Format and Parameters of NEG, NOT, DEC, and INC

 Chapter 17: Intel 80x86 Assembly Language 387

As with most processors, the Intel 80x86 processor has a group of
opcodes that are used to shift data. There are two ways to classify shift
instructions: left versus right and arithmetic versus logical. The area
where these classifications are of greatest concern is with a right shift.

Remember from Chapter 3 that left and right shifts are equivalent to
multiplication and division by powers of two. When using a right shift
to perform a division, the most significant bit must be replicated or the
sign of a two's complement value might change from negative to
positive. Therefore, if it is important to maintain the sign of a right-
shifted value, an arithmetic shift right (SAR) should be used, not a
logical shift right (SHR). Since a left shift doesn't have this constraint,
an arithmetic shift left (SAL) and logical shift left (SHL) perform the
same operation and are even identified with the same machine code.

All four of the shift commands use two operands. The first operand,
dest, contains the data to be shifted. It is also the location where the
result will be stored. The second operand, count, indicates the number
of bit positions the piece of data will be shifted.

 SAR dest, count ;Arithmetic shift right
 SHR dest, count ;Logical shift right
 SAL dest, count ;Arithmetic shift left
 SHL dest, count ;Logical shift left

Figure 17-13 Format and Parameters of SAR, SHR, SAL, and SHL

17.4.3 Program Control
As with the generic processor described in Chapter 15, the 80x86

uses both unconditional and conditional jumps to alter the sequence of
instruction execution. When the processor encounters an unconditional
jump or "jump always" instruction (JMP), it loads the instruction
pointer with the address that serves as the JMP's operand. This makes it
so that the next instruction to be executed is at the newly loaded
address. Figure 17-14 presents an example of the JMP instruction.

 JMP LBL01 ;Always jump to LAB01
 . .
 . .
 . .

LBL01: ;Destination for jump

Figure 17-14 Example of a JMP Instruction

388 Computer Organization and Design Fundamentals

The 80x86 has a full set of conditional jumps to provide program
control based on the results of execution. Each conditional jump
examines the flags before determining whether to load the jump
opcode's operand into the instruction pointer or simply move to the
next sequential instruction. Table 17-2 presents a summary of most of
the 80x86 conditional jumps along with the flag settings that force a
jump. (Note that "!=" means "is not equal to")

Table 17-2 Summary of 80x86 Conditional Jumps

Mnemonic Meaning Jump Condition
JA Jump if Above CF=0 and ZF=0
JAE Jump if Above or Equal CF=0
JB Jump if Below CF=1
JBE Jump if Below or Equal CF=1 or ZF=1
JC Jump if Carry CF=1
JE Jump if Equal ZF=1
JG Jump if Greater (signed) ZF=0 and SF=OF
JGE Jump if Greater or Equal (signed) SF=OF
JL Jump if Less (signed) SF != OF
JLE Jump if Less or Equal (signed) ZF=1 or SF != OF
JNA Jump if Not Above CF=1 or ZF=1
JNAE Jump if Not Above or Equal CF=1
JNB Jump if Not Below CF=0
JNBE Jump if Not Below or Equal CF=0 and ZF=0
JNC Jump if Not Carry CF=0
JNE Jump if Not Equal ZF=0
JNG Jump if Not Greater (signed) ZF=1 or SF != OF
JNGE Jump if Not Greater or Equal (signed) SF != OF
JNL Jump if Not Less (signed) SF=OF
JNLE Jump if Not Less or Equal (signed) ZF=0 and SF=OF
JNO Jump if No Overflow OF=0
JNS Jump if Not Signed (signed) SF=0
JNZ Jump if Not Zero ZF=0
JO Jump if Overflow OF=1
JPE Jump if Even Parity PF=1
JPO Jump if Odd Parity PF=0
JS Jump if Signed (signed) SF=1
JZ Jump if Zero ZF=1

 Chapter 17: Intel 80x86 Assembly Language 389

Typically, these conditional jumps come immediately after a
compare. In the Intel 80x86 instruction set, the compare function is
CMP. It uses two operands, setting the flags by subtracting the second
operand from the first. Note that the result is not stored.

The 80x86 provides an additional instruction over that of the generic
processor discussed in Chapter 15. The LOOP instruction was added to
support the operation of a for- or a while-loop. It takes as its only
operand the address of the first instruction of the loop.

Before entering the loop, the CX register is loaded with a count of
the number of times the loop is to be executed. Each time the LOOP
opcode is executed, CX is decremented. As long as CX has not yet
been decremented to zero, the instruction pointer is set back to the first
instruction of the loop, i.e., the address given as the operand of the
LOOP instruction. When CX has been decremented to zero, the LOOP
instruction does not return to the beginning of the loop; instead, it goes
to the instruction after LOOP. Figure 17-15 presents an example where
the LOOP instruction executes a loop 25 times.

 MOV CX,25 ;Load CX with the integer 25
LBL02: ;Beginning of loop
 . .
 . .
 . .

 LOOP LBL02 ;Decrement CX and jump to
 ; LBL02 as long as CX!=0

Figure 17-15 Example of a LOOP Instruction

There is one last set of instructions used to control the flow of the
program, and although they were not mentioned in Chapter 15, they are
common to all processors. These instructions are used to call and return
from a procedure or function.

The CALL opcode is used to call a procedure. It uses the stack to
store the address of the instruction immediately after the CALL opcode.
This address is referred to as the return address. This is the address
that the processor will jump back to after the procedure is complete.

The CALL instruction takes as its operand the address of the
procedure that it is calling. After the return address is stored to the
stack, the address of the procedure is loaded into the instruction pointer.

To return from a procedure, the instruction RET is executed. The
only function of the RET instruction is to pull the return address from
the stack and load it into the instruction pointer. This brings control

390 Computer Organization and Design Fundamentals

back to the original sequence. Figure 17-16 presents an example of the
organization of a procedure call using the CALL and RET instructions.

 CALL PROC01 ;Procedure call to PROC01
 xxx ;Instruction that is returned
 ; to after procedure is called
 . .
 . .
 . .

PROC01: ;Beginning of procedure
 . .
 . .
 . .

 RET ;Return to instruction after
 ; CALL

Figure 17-16 Sample Organization of a Procedure Call

17.4.4 Special Operations
The special operations category is for opcodes that do not fit into

any of the first three categories, but are necessary to fully utilize the
processor's resources. They provide functionality ranging from
controlling the processor flags to supporting the 80x86 interrupt
system.

To begin with, there are seven instructions that allow the user to
manually alter the flags. These are presented in Table 17-3.

Table 17-3 80x86 Instructions for Modifying Flags

Mnemonic Meaning
CLC Clear Carry Flag
CLD Clear Direction Flag
CLI Clear Interrupt Flag (disables maskable interrupts)
CMC Complement Carry Flag
STC Set Carry Flag
STD Set Direction Flag
STI Set Interrupt Flag (enables maskable interrupts)

The next two special instructions are PUSH and PULL. These

instructions operate just as they are described in chapters 15 and 16.
The Intel 80x86 processor's stack is referred to as a post-increment/
pre-decrement stack. This means that the address in the stack pointer is
decremented before data is stored to the stack and incremented after
data is retrieved from the stack.

 Chapter 17: Intel 80x86 Assembly Language 391

There are also some special instructions that are used to support the
operation of the Intel 80x86 interrupts. IRET, for example, is the
instruction used to return from an interrupt service routine. It is used in
the same manner as the RET instruction in a procedure. IRET,
however, is required for interrupts because an interrupt on the 80x86
pushes not only the return address onto the stack, but also the code
segment and processor flags. IRET is needed to pull these two
additional elements off of the stack before returning to the code being
executed before the interrupt.

Another special instruction is the software interrupt, INT. It is a
non-maskable interrupt that calls an interrupt routine just like any
hardware interrupt. In a standard PC BIOS, this interrupt has a full
array of functions ranging from keyboard input and video output to file
storage and retrieval.

The last instruction presented here may not make sense to the novice
assembly language programmer. The NOP instruction has no operation
and it does not affect any flags. Typically, it is used to delete a machine
code by replacing it and its operands with this non-executing opcode.
In addition, a sequence of NOPs can be inserted to allow a programmer
to write over them later with new machine code. This is only necessary
under special circumstances.

17.5 Addressing Modes
The previous section described the 80x86 opcodes and their

operands. This section shows the format that the programmer needs to
use to properly identify the operands. Specifically, the assembler needs
to know whether the programmer is referring to a register, a constant,
or a memory address. Special syntax is used to do just that.

17.5.1 Register Addressing
To identify a register as an operand, simply use the name of the

register for either src or dest. For the 80x86 architecture described in
Chapter 16, these registers include both the 8- and 16-bit general
purpose registers (AX, BX, CX, DX, AL, AH, BL, BH, CL, CH, DL,
and DH), the address registers (SP, BP, DI, SI, and IP), and the
segment registers (CS, DS, SS, and ES). Figure 17-17 presents some
examples of instructions using register addressing.

392 Computer Organization and Design Fundamentals

 MOV AL,BL ;Copy the contents of BL to AL
 CMP BX,CX ;Compare the contents of CX to
 ; the contents of BX
 INC DX ;Increment the contents of DX

Figure 17-17 Examples of Register Addressing

17.5.2 Immediate Addressing
The use of a constant as an operand is referred to as immediate

addressing. In this case, a constant is used instead of a stored value
such as that retrieved from a register or memory. As with the directives
used to define constants in memory, hex, decimal, and binary values
must be identified by appending an 'H' to the end of a hexadecimal
number, appending a 'B' to the end of a binary number, and leaving the
decimal values without any suffix.

Because of the nature of constants, they can only be used as the src
operand. They reserve no space in the data segment, and therefore
cannot have data stored to them. Figure 17-18 presents some examples
of instructions using immediate addressing.

 MOV AX,67D1H ;Place the hex value 67D1 in AX
 CMP BL,01101011B ;Compare the contents of BL to
 ; the binary value 01101011
 ADD CX,9 ;Add decimal 9 to CX

Figure 17-18 Examples of Immediate Addressing

17.5.3 Pointer Addressing
It might be misleading not to distinguish between the six different

forms used to identify an address as an operand. This chapter, however,
is only an introduction to assembly language. At this point it is
sufficient to say that an operand is identified as an address by
surrounding it with brackets []. For example, to make a reference to
hexadecimal address 1000, the operand would be identified as [1000H].

Although the data segment identified by DS is the default segment
when using an address as an operand, the segment may still be
specified within this notation. By using a colon to separate the segment
from the offset, any segment may be used. For example, to ensure that

 Chapter 17: Intel 80x86 Assembly Language 393

the address 1000 was coming from the data segment, the operand
would be identified as [DS:1000H].

The processor can also use the contents of a register as a pointer to
an address. In this case, the register name is enclosed in brackets to
identify it as a pointer. For example, if the contents of BX are being
used as an address pointing to memory, the operand should be entered
as [BX] or [DS:BX].

A constant offset can be added to the pointer if necessary by adding
a constant within the brackets. For example, if the address of interest is
4 memory locations past the address pointed to by the contents of BX,
the operand should be entered as [BX+4] or [DS:BX+4].

While this is not a comprehensive list of the methods for using a
memory address as an operand, it should be a sufficient introduction.
Figure 17-19 presents some examples of using addresses for operands.

MOV AX,[6000H] ;Load AX w/data from address 6000H
MOV AX,[BX] ;Load AX w/data pointed to by the
 ; address contained in BX
MOV AX,[BX+4] ;Load AX w/data 4 memory locations
 ; past address pointed to by BX

Figure 17-19 Examples of an Address being used as an Operand

17.6 Sample 80x86 Assembly Language Programs
Now we need to tie the concepts of assembly language presented in

Chapter 15 to the specifics of the 80x86 assembly language. The best
way to do this is to create a simple program. We begin with the general
framework used to support the program. Figure 17-20 presents the
basic skeleton code of an 80x86 assembly language program.

 .MODEL SMALL
 .STACK 100H
 .DATA
 .CODE
MAIN PROC FAR

MAIN ENDP
 END MAIN

Figure 17-20 Skeleton Code for a Simple Assembly Program

394 Computer Organization and Design Fundamentals

Let's examine this code line-by-line.

• The first line contains the string ".MODEL SMALL". We see from
Table 17-1 that this tells the compiler to use one code segment less
than or equal to 64K and one data segment less than or equal to
64K. The program we are writing here is quite small and will easily
fit in this memory model.

• The next line, ".STACK 100H", tells the instructor to reserve 256
bytes (hexadecimal 100) for the stack.

• The next line, ".DATA", denotes the beginning of the data segment.
All of the data for the application will be defined between the
.DATA and .CODE directives.

• The next line, ".CODE", denotes the beginning of the code
segment. All of the code will be defined after this directive.

• "MAIN PROC FAR" identifies a block of code named main that
will use both the segment and offset for addressing.

• "MAIN ENDP" identifies the end of the block of code named
MAIN.

• "END MAIN" tells the assembler when it has reached the end of all
of the code.

The next step is to insert the data definitions and code that go after

the .DATA and .CODE directives respectively.
The first piece of code we need to write will handle some operating

system house keeping. First, we need to start the program by retrieving
the address that the operating system has assigned to the data segment.
This value needs to be copied to the DS register. We do this with the
two lines of code presented in Figure 17-21. These lines need to be
placed immediately after the MAIN PROC FAR line.

 MOV AX,@DATA ;Get assigned data segment
 ; address from O/S
 MOV DS,AX ;Copy it to the DS register

Figure 17-21 Code to Assign Data Segment Address to DS Register

When the program ends, we need to transfer control back to the
operating system. This is done using a software interrupt. At this point
it is not necessary to understand this process other than to say that when

 Chapter 17: Intel 80x86 Assembly Language 395

the O/S receives this interrupt, it knows that the application is finished
and can be removed from memory. Placing the lines from Figure 17-22
immediately before the line MAIN ENDP in the code will do this.

 MOV AX,4C00H ;Load code indicating normal
 ; program termination
 INT 21H ;Call interrupt to end program

Figure 17-22 Code to Inform O/S that Program is Terminated

At this point, our skeleton code should look like that shown in
Figure 17-23.

 .MODEL SMALL
 .STACK 100H
 .DATA
 .CODE
MAIN PROC FAR
 MOV AX,@DATA ;Load DS with assigned
 MOV DS,AX ; data segment address

 MOV AX,4C00H ;Use software interrupt
 INT 21H ; to terminate program
MAIN ENDP
 END MAIN

Figure 17-23 Skeleton Code with Code Added for O/S Support

Now all we need is a program to write. The program presented here
is a simple mathematical calculation using data from the data segment.
Specifically, we will be calculating the following algebraic expression
where A, B, C, and RESULT are defined to be 16-bit words in the data
segment.

RESULT = (A÷8) + B – C

Let's begin by defining what the data segment is going to look like.

Each of the variables, A, B, C, and RESULT, need to have a word-
sized location reserved in memory for them. Since the first three will be
used as inputs to the expression, they will also need to be initialized.

396 Computer Organization and Design Fundamentals

For the sake of this example, let's initialize them to 10410, 10010, and
5210 respectively. Since RESULT is where the calculated result will be
stored, we may leave that location undefined. Figure 17-24 presents the
four lines of directives used to define this memory.

A DW 104
B DW 100
C DW 52
RESULT DW ?

Figure 17-24 Data Defining Directives for Example Code

This code will be inserted between the .DATA and .CODE directives of
the code in Figure 17-23.

The next step is to write the code to compute the expression. Begin
by assuming the computation will occur in the accumulator register,
AX. The process will go something like this.

• Load AX with value stored at the memory location identified by A.
• Divide AX by eight using the arithmetic right shift instruction.
• After dividing AX, add the value stored at the memory location

identified by B.
• After adding B to AX, subtract the value stored at the memory

location identified by C.
• Lastly, store the result contained in AX to the memory location

RESULT.

Converting this step-by-step sequence into assembly language

results in the code presented in Figure 17-25.

 MOV AX,A ;Load A from memory
 SAR AX,3 ;Divide A by 8
 ADD AX,B ;Add B to (A/8)
 SUB AX,C ;Subtract C from (A/8)+B
 MOV RESULT,AX ;Store (A/8)+B-C to RESULT

Figure 17-25 Step-by-Step Example Operation Converted to Code

The last step is to insert this code after the two lines of code that
load the data segment register but before the two lines of code that

 Chapter 17: Intel 80x86 Assembly Language 397

perform the program termination in Figure 17-23. Figure 17-26
presents the final program.

 .MODEL SMALL
 .STACK 100H
 .DATA
A DW 104
B DW 100
C DW 52
RESULT DW ?
 .CODE
MAIN PROC FAR
 MOV AX,@DATA ;Load DS with assigned
 MOV DS,AX ; data segment address
 MOV AX,A ;Load A from memory
 SAR AX,3 ;Divide A by 8
 ADD AX,B ;Add B to (A/8)
 SUB AX,C ;Subtract C from (A/8)+B
 MOV RESULT,AX ;Store A/8+B-C to RESULT
 MOV AX,4C00H ;Use software interrupt
 INT 21H ; to terminate program
MAIN ENDP
 END MAIN

Figure 17-26 Final Code for Example Assembly Language Program

17.7 Additional 80x86 Programming Resources
This chapter falls short of teaching 80x86 assembly language. It is

meant to serve only as an introduction. There are a number of resources
available both in print and on the web to learn more about
programming the 80x86 in assembly language including:

• Abel, Peter, IBM PC Assembly Language and Programming, 5th

ed., Prentice-Hall, 2001.
• Hyde, Randall, The Art of Assembly Language, No Starch Press,

2003. (Available on-line at http://webster.cs.ucr.edu/AoA/DOS/)
• Intel(R) 186 Processor – Documentation, Intel Corp., on-line,

http://developer.intel.com/design/intarch/intel186/docs_186.htm.

398 Computer Organization and Design Fundamentals

17.8 What's Next?

Over the past seventeen chapters, I have tried to cover three main
areas: representation and manipulation of numbers using digital logic,
combinational logic and memory circuit design, and basic computer
architecture. The intent of this book was never to make the reader a
designer of hardware. Instead, the presentation of hardware was meant
to provide the reader with well-established tools for logic design along
with an understanding of the internals of the computer. The tools can be
applied to software as well as hardware. The understanding of hardware
can also be applied to software design allowing for improved
performance of software applications.

This, however, is merely a beginning. What's the next step for you
the reader? The answer to that question depends on what your interests
are. At this point, you should have the foundation necessary to begin a
deeper study of topics such as advanced computer architecture,
embedded systems design, network design, compiler design, or
microprocessor design. The possibilities are endless.

Problems
1. What character/symbol is used to indicate the start of a comment in

assembly language for the assembler we used in class?

2. Which of the following four strings would make valid assembly
language labels? Explain why the invalid ones are not allowed.

ABC123 123ABC
JUMP HERE LOOP

3. Assume that the register BX contains 568016 when the instruction

SAR BL,3 is executed. What would the new value of BL be?

4. Assuming that CX contains 005516 when the instruction DEC CH
is executed, what will CX contain and how will the flags CF, PF,
SF, and ZF be set afterwards?

5. Below is a summary description of the 80x86 shift arithmetic left
(SAL) instruction:

Usage: SAL dest,count
Modifies flags: CF OF PF SF ZF (AF undefined)
Operation: Shifts the destination left by "count" bits with zeroes
shifted in on right. The Carry Flag contains the last bit shifted out.

 Chapter 17: Intel 80x86 Assembly Language 399

Assuming that AX contains 234516 when the instruction SAL AH,2
is executed, what will AX contain and how will the flags CF, PF,
SF, and ZF be set afterwards?

6. For each of the assembly language commands below, what is the
binary value for the active low signals ^MRDC, ^MWTC, ^IORC,
and ^IOWC.

 ^MRDC ^MWTC ^IORC ^IOWC
mov ah,[5674h]
in bh,1234h
mov [ax],bx
out 4af5h,bh

7. Assume the register BX contains the value 2000h and the table to

the right represents the contents of a short portion of memory.
Indicate what value AL contains after each of the following MOV
instructions.
mov al, ds:[bx]
mov al, ds:[bx+1]
mov ax, bx
mov ax, 2003

8. Of the following jump instructions, indicate which ones will jump

to the address LOOP, which ones will simply execute the next
address (i.e., not jump), and which ones you don't have enough
information to tell.
Instruction Current Flag Settings

je loop sf=0, zf=1, cf=0
jl loop sf=1, zf=0
jng loop sf=0, zf=1, of=0
jne loop sf=0, zf=1, of=1
jnb loop sf=1, zf=0, cf=0
jmp loop sf=0, zf=0, of=0
jge loop zf=0, sf=0, of=1

9. Modify the code in Figure 17-26 to calculate the expression
((4 × A) + B – C) ÷ 32 where A = 4110, B = 14210, and C = 1810.

Address Value
DS:2000 17h
DS:2001 28h
DS:2002 39h
DS:2003 4Ah
DS:2004 5Bh
DS:2005 6Ch

400 Computer Organization and Design Fundamentals

