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CHAPTER TWO 

Numbering Systems 

Chapter one discussed how computers remember numbers using 
transistors, tiny devices that act like switches with only two positions, 
on or off. A single transistor, therefore, can only remember one of two 
possible numbers, a one or a zero. This isn't useful for anything more 
complex than controlling a light bulb, so for larger values, transistors 
are grouped together so that their combination of ones and zeros can be 
used to represent larger numbers. 

This chapter discusses some of the methods that are used to 
represent numbers with groups of transistors or bits. The reader will 
also be given methods for calculating the minimum and maximum 
values of each representation based on the number of bits in the group. 

2.1 Unsigned Binary Counting 
The simplest form of numeric representation with bits is unsigned 

binary. When we count upward through the positive integers using 
decimal, we start with a 0 in the one's place and increment that value 
until we reach the upper limit of a single digit, i.e., 9. At that point, 
we've run out of the "symbols" we use to count, and we need to 
increment the next digit, the ten's place. We then reset the one's place to 
zero, and start the cycle again. 

 
Ten's
place 

One's
place 

 0 
 1 
 2 
 3 
 : 
 8 
 9 
1 0 

Figure 2-1   Counting in Decimal 

Since computers do not have an infinite number of transistors, the 
number of digits that can be used to represent a number is limited. This 
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would be like saying we could only use the hundreds, tens, and ones 
place when counting in decimal.  

This has two results. First, it limits the number of values we can 
represent. For our example where we are only allowed to count up to 
the hundreds place in decimal, we would be limited to the range of 
values from 0 to 999. 

Second, we need a way to show others that we are limiting the 
number of digits. This is usually done by adding leading zeros to the 
number to fill up any unused places. For example, a decimal 18 would 
be written 018 if we were limited to three decimal digits. 

Counting with bits, hereafter referred to as counting in binary, is 
subject to these same issues. The only difference is that decimal uses 
ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) while binary only uses two 
symbols (0 and 1).  

To begin with, Figure 2-2 shows that when counting in binary, we 
run out of symbols quickly requiring the addition of another "place" 
after only the second increment. 

 
 
 
 
 
 
 
 

Figure 2-2   Counting in Binary 

If we were counting using four bits, then the sequence would look 
like:  0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 
1010, 1011, 1100, 1101, 1110, and 1111. Notice that when restricted to 
four bits, we reach our limit at 1111, which happens to be the fifteenth 
value. It should also be noted that we ended up with 2 x 2 x 2 x 2 = 16 
different values. With two symbols for each bit, we have 2n possible 
combinations of symbols where n represents the number of bits. 

In decimal, we know what each digit represents: ones, tens, 
hundreds, thousands, etc. How do we figure out what the different 
digits in binary represent?  If we go back to decimal, we see that each 
place can contain one of ten digits. After the ones digit counts from 0 to 

0
1

10
11

100
101

Another digit is added when we run 
out of symbols for the first column.

Another digit is added when we run out 
of symbols for the second column. 
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9, we need to increment the tens place. Subsequently, the third place is 
incremented after 9 tens and 9 ones, i.e., 99 increments, have been 
counted. This makes it the hundreds place. 

In binary, the rightmost place is considered the ones place just like 
decimal. The next place is incremented after the ones place reaches 1. 
This means that the second place in binary represents the value after 1, 
i.e., a decimal 2. The third place is incremented after a 1 is in both the 
ones place and the twos place, i.e., we've counted to a decimal 3. 
Therefore, the third place represents a decimal 4. Continuing this 
process shows us that each place in binary represents a successive 
power of two. 

Figure 2-3 uses 5 bits to count up to a decimal 17. Examine each 
row where a single one is present in the binary number. This reveals 
what that position represents. For example, a binary 01000 is shown to 
be equivalent to a decimal 8. Therefore, the fourth bit position from the 
right is the 8’s position. 

 
Decimal 

value 
Binary 
value 

 Decimal 
value 

Binary 
value 

0 00000  9 01001 
1 00001  10 01010 
2 00010  11 01011 
3 00011  12 01100 
4 00100  13 01101 
5 00101  14 01110 
6 00110  15 01111 
7 00111  16 10000 
8 01000  17 10001 

Figure 2-3   Binary-Decimal Equivalents from 0 to 17 

This information will help us develop a method for converting 
unsigned binary numbers to decimal and back to unsigned binary. 

Some of you may recognize this as "base-2" math. This gives us a 
method for indicating which representation is being used when writing 
a number down on paper. For example, does the number 100 represent 
a decimal value or a binary value?  Since binary is base-2 and decimal 
is base-10, a subscript "2" is placed at the end of all binary numbers in 
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this book and a subscript "10" is placed at the end of all decimal 
numbers. This means a binary 100 should be written as 1002 and a 
decimal 100 should be written as 10010. 

2.2 Binary Terminology 
When writing values in decimal, it is common to separate the places 

or positions of large numbers in groups of three digits separated by 
commas. For example, 34532374510 is typically written 345,323,74510 
showing that there are 345 millions, 323 thousands, and 745 ones. This 
practice makes it easier to read and comprehend the magnitude of the 
numbers. Binary numbers are also divided into components depending 
on their application. Each binary grouping has been given a name. 

To begin with, a single place or position in a binary number is called 
a bit, short for binary digit. For example, the binary number 01102 is 
made up of four bits. The rightmost bit, the one that represents the ones 
place, is called the Least Significant Bit or LSB. The leftmost bit, the 
one that represents the highest power of two for that number, is called 
the Most Significant Bit or MSB. Note that the MSB represents a bit 
position. It doesn't mean that a '1' must exist in that position. 

The next four terms describe how bits might be grouped together. 
 
• Nibble – A four bit binary number 
• Byte – A unit of storage for a single character, typically an eight 

bit (2 nibble) binary number (short for binary term) 
• Word – Typically a sixteen bit (2 byte) binary number 
• Double Word – A thirty-two bit (2 word) binary number 

 
The following are some examples of each type of binary number. 
 
Bit 12 
Nibble 10102 
Byte 101001012 
Word 10100101111100002 
Double Word 101001011111000011001110111011012 
 

2.3 Unsigned Binary to Decimal Conversion 
As shown in section 2.1, each place or position in a binary number 

corresponds to a specific power of 2 starting with the rightmost bit 
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which represents 20=1. It is through this organization of the bits that we 
will convert binary numbers to their decimal equivalent. Figure 2-4 
shows the bit positions and the corresponding powers of two for each 
bit in positions 0 through 7. 

 
Numbered bit 

position 7 6 5 4 3 2 1 0 

Corresponding 
power of 2 27 26 25 24 23 22 21 20 

Decimal equivalent 
of power of 2 128 64 32 16 8 4 2 1 

Figure 2-4   Values Represented By Each of the First 8 Bit Positions 

To begin converting an unsigned binary number to decimal, identify 
each bit position that contains a 1. It is important to note that we 
number the bit positions starting with 0 identifying the rightmost bit. 

Next, add the powers of 2 for each position containing a 1. This sum 
is the decimal equivalent of the binary value. An example of this 
process is shown in Figure 2-5 where the binary number 101101002 is 
converted to its decimal equivalent. 

 
 
 
 
 
 
 
 

Figure 2-5   Sample Conversion of 101101002 to Decimal 

This brings up an important issue when representing numbers with a 
computer. Note that when a computer stores a number, it uses a limited 
number of transistors. If, for example, we are limited to eight 
transistors, each transistor storing a single bit, then we have an upper 
limit to the size of the decimal value we can store.  

Bit Position 7 6 5 4 3 2 1 0 
Binary Value 1 0 1 1 0 1 0 0 

 

 101101002 =  27 + 25 + 24 + 22

 = 12810 + 3210 + 1610 + 410 
 = 18010 
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The largest unsigned eight bit number we can store has a 1 in all 
eight positions, i.e., 111111112. This number cannot be incremented 
without forcing an overflow to the next highest bit. Therefore, the 
largest decimal value that 8 bits can represent in unsigned binary is the 
sum of all powers of two from 0 to 7. 

 
 111111112 =  27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 
  =  128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 
  =  25510 

 
If you add one to this value, the result is 256 which is 28, the power 

of two for the next bit position. This makes sense because if you add 1 
to 111111112, then beginning with the first column, 1 is added to 1 
giving us a result of 0 with a 1 carry to the next column. This 
propagates to the MSB where a final carry is passed to the ninth bit. 
The final value is then 1000000002 = 25610. 

 
111111112 + 1  =  1000000002  =  25610  =  28 

 
Therefore, the maximum value that can be represented with 8 bits in 
unsigned binary is 28 – 1 = 255. 

It turns out that the same result is found for any number of bits. The 
maximum value that can be represented with n bits in unsigned binary 
is 2n – 1. 

 
 Max unsigned binary value represented with n bits  =  2n – 1 (2.1) 

 
We can look at this another way. Each digit of a binary number can 

take on 2 possible values, 0 and 1. Since there are two possible values 
for the first digit, two possible values for the second digit, two for the 
third, and so on until you reach the n-th bit, then we can find the total 
number of possible combinations of 1's and 0's for n-bits by 
multiplying 2 n-times, i.e., 2n.  

How does this fit with our upper limit of 2n-1?  Where does the "-1" 
come from?  Remember that counting using unsigned binary integers 
begins at 0, not 1. Giving 0 one of the bit patterns takes one away from 
the maximum value. 
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2.4 Decimal to Unsigned Binary Conversion 

Converting from decimal to unsigned binary is a little more 
complicated, but it still isn't too difficult. Once again, there is a well-
defined process. 

To begin with, it is helpful to remember the powers of 2 that 
correspond to each bit position in the binary numbering system. These 
were presented in Figure 2-4 for the powers of 20 up to 27. 

What we need to do is separate the decimal value into its power of 2 
components. The easiest way to begin is to find the largest power of 2 
that is less than or equal to our decimal value. For example if we were 
converting 7510 to binary, the largest power of 2 less than or equal to 
7510 is 26 = 64. 

The next step is to place a 1 in the location corresponding to that 
power of 2 to indicate that this power of 2 is a component of our 
original decimal value. 

Next, subtract this first power of 2 from the original decimal value. 
In our example, that would give us 7510 – 6410 = 1110. If the result is not 
equal to zero, go back to the first step where we found the largest 
power of 2 less than or equal to the new decimal value. In the case of 
our example, we would be looking for the largest power of 2 less than 
or equal to 1110 which would be 23 = 8. 

When the result of the subtraction reaches zero, and it eventually 
will, then the conversion is complete. Simply place 0's in the bit 
positions that do not contain 1's. Figure 2-6 illustrates this process 
using a flowchart. 

If you get all of the way to bit position zero and still have a non-zero 
result, then one of two things has happened. Either there was an error in 
one of your subtractions or you did not start off with a large enough 
number of bits. Remember that a fixed number of bits, n, can only 
represent an integer value up to 2n – 1. For example, if you are trying to 
convert 31210 to unsigned binary, eight bits will not be enough because 
the highest value eight bits can represent is 28 – 1 = 25510. Nine bits, 
however, will work because its maximum unsigned value is 29 – 1 = 
51110. 
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Figure 2-6   Decimal to Unsigned Binary Conversion Flow Chart 

Example 
Convert the decimal value 13310 to an 8 bit unsigned binary number. 

Solution 
Since 13310 is less than 28 – 1 = 255, 8 bits will be sufficient for this 

conversion. Using Figure 2-4, we see that the largest power of 2 less 
than or equal to 13310 is 27 = 128. Therefore, we place a 1 in bit 
position 7 and subtract 128 from 133. 

 
Bit position 7 6 5 4 3 2 1 0 

 1        
 

133 – 128 = 5 

Start 

End 

Find the largest power of 2  
less than or equal to the  

decimal value being converted 

Place a 1 in the bit  
position corresponding to  

that power of 2 

Subtract that power of 2 from 
the decimal value. This will 
be the new decimal value. 

Is new  
decimal value equal  

to zero? 
Yes 

No 
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Our new decimal value is 5. Since this is a non-zero value, our next 
step is to find the largest power of 2 less than or equal to 5. That would 
be 22 = 4. So we place a 1 in the bit position 2 and subtract 4 from 5. 

 
Bit position 7 6 5 4 3 2 1 0 

 1     1   
 

5 – 4 = 1 
 
Our new decimal value is 1, so find the largest power of 2 less than 

or equal to 1. That would be 20 = 1. So we place a 1 in the bit position 0 
and subtract 1 from 1. 

 
 

Bit position 7 6 5 4 3 2 1 0 
 1     1  1 

 
1 – 1 = 0 

 
Since the result of our last subtraction is 0, the conversion is 

complete. Place zeros in the empty bit positions. 
 

Bit position 7 6 5 4 3 2 1 0 
 1 0 0 0 0 1 0 1 

 
And the result is: 
 

13310 = 100001012 

2.5 Binary Representation of Analog Values 
Converting unsigned (positive) integers to binary is only one of the 

many ways that computers represent values using binary bits. This 
chapter still has two more to cover, and Chapter 3 will cover even 
more. 

This section focuses on the problems and solutions of trying to map 
real world values such as temperature or weight from a specified range 
to a binary integer. For example, a computer that uses 8 bits to 
represent an integer is capable of representing 256 individual values 
from 0 to 255. Temperature, however, is a floating-point value with 
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unrealistic upper and lower limits. Can we get a computer to represent a 
temperature using eight bits?  The answer is yes, but it will cost us in 
the areas of resolution and range. 

Another example of analog values is the pattern of sound waves 
such as that from music. Figure 2-7 represents such a signal. 

 

 

Figure 2-7   Sample Analog Signal of Sound 

Remember that a single binary bit can be set to only one of two 
values: logic 1 or logic 0. Combining many bits together allows for a 
range of integers, but these are still discrete values. The real world is 
analog, values represented with floating-point measurements capable of 
infinite resolution. To use an n-bit binary number to represent analog, 
we need to put some restrictions on what is being measured. 

First, an n-bit binary number has a limited range. We saw this when 
converting unsigned positive integers to binary. In this case, the lower 
limit was 0 and the upper limit was 2n-1. To use n-bits to represent an 
analog value, we need to restrict the allowable range of analog 
measurements. This doesn't need to be a problem.  

For example, does the typical bathroom scale need to measure 
values above 400 pounds? If not, then a digital system could use a 10-
bit binary number mapped to a range from zero to 400 pounds. A 
binary 00000000002 could represent zero pounds while 11111111112 
could represent 400 pounds.  

What is needed next is a method to map the values inside the range 
zero to 400 pounds to the binary integers in the range 00000000002 to 
11111111112. To do this, we need a linear function defining a one-to-
one mapping between each binary integer and the analog value it 
represents. To do this, we turn to the basic math expression for a linear 
function.  

 
y = mx + b 
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This function defines m as the rate of the change in y with respect to 
changes in x and b as the value y is set to when x equals 0. We can use 
this expression to map a binary integer x to an analog value y. 

The slope of this function, m, can be calculated by dividing the 
range of analog values by the number of intervals defined by the n-bit 
binary integer. The number of intervals defined by the n-bit binary 
integer is equal to the upper limit of that binary number if it were being 
used as an unsigned integer, i.e., 2n-1. 

 
Range of analog values m = Number of intervals of binary integer 

 
Max analog value - Min analog value m = 2n – 1 (2.2)

 
Let's go back to our example of the kitchen scale where the 

maximum analog value is 400 pounds while the minimum is zero 
pounds. If a 10-bit binary value is used to represent this analog value, 
then the number of intervals of the binary integer is 210 – 1 = 1023. 
This gives us a slope of: 

 
400 pounds – 0 pounds m = 1023 binary increments = 0.391 pounds/binary increment 

 
That means that each time the binary number increments, e.g., 

01101100102 goes to 01101100112, it represents an increment in the 
analog value of 0.391 pounds. Since a binary value of 00000000002 
represents an analog value of 0 pounds, then 00000000012 represents 
0.391 pounds, 00000000102 represents 2 × 0.391 = 0.782 pounds, 
00000000112 represents 3 × 0.391 = 1.173 pounds, and so on. 

In some cases, the lower limit might be something other than 0. This 
is important especially if better accuracy is required. For example, a 
kitchen oven may have an upper limit of 600oF. If zero were used as the 
lower limit, then the temperature range 600oF – 0oF = 600oF would 
need to be mapped to the 2n possible binary values of an n-bit binary 
number. For a 9-bit binary number, this would result in an m of: 

 
600oF– 0oF m = 29 – 1 = 1.1742 degrees/binary increment 
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Does an oven really need to measure values below 100oF though?  If 
not, a lower limit of 100oF could be used reducing the size of the 
analog range to 500oF. This smaller range would improve the accuracy 
of the system because each change in the binary value would result in a 
smaller increment in the analog value. 

 
600oF– 100oF m = 29 – 1 = 0.9785 degrees/binary increment 

 
The smaller increment means that each binary value will be a more 

accurate representation of the analog value. 
This non-zero lower limit is realized as a non-zero value for b in the 

linear expression y=mx + b. Since y is equal to b when x is equal to 
zero, then b must equal the lower limit of the range. 

 
b = Minimum analog value 2.3

 
The final expression representing the conversion between an analog 

value at its binary representation is shown in Equation 2.4. 
 

Amax - Amin 
Acalc = ( 2n - 1 * X) + Amin (2.4)

 
where: 
 

Acalc = analog value represented by binary value 
Amax = maximum analog value 
Amin = minimum analog value 
X = binary value representing analog value 
n = number of bits in binary value 

Example 
Assume that the processor monitoring the temperature of an oven 

with a temperature range from 100oF to 600oF measures a 9-bit binary 
value of 0110010102. What temperature does this represent? 

Solution 
Earlier, we calculated the rate of change, m, for an oven with a 

temperature range from 100oF to 600oF is 500oF ÷ 511 binary 
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increments. Substituting this along with our minimum analog value of 
100oF into Equation 2.4 gives us: 

 
500 temperature = 511 

oF/binary increment * binary value + 100oF 

 
If the processor monitoring the temperature of this oven reads a 

binary value of 0110010102, the approximate temperature can be 
determined by converting 0110010102 to decimal and inserting it into 
the equation above. 

 
 0110010102  = 27 + 26 + 23 + 21  
  = 128 + 64 + 8 + 2 
  = 20210 
 

500oF temperature = 511 * 202 + 100oF 

 
temperature = 297.65oF 

 
The value from the above example is slightly inaccurate. The binary 

value 0110010102 actually represents a range of values 0.9785oF wide 
centered around or with a lower limit of 297.65oF. Only a binary value 
with an infinite number of bits would be entirely accurate. Since this is 
not possible, there will always be a gap or resolution associated with a 
digital system due to the quantized nature of binary integer values. That 
gap is equivalent to the increment or rate of change of the linear 
expression. 

 
Analog range Resolution = 2n – 1 (2.5)

Example 
Assume that the analog range of a system using a 10-bit analog-to-

digital converter goes from a lower limit of 5 ounces to an upper limit 
of 11 ounces. What is the resolution of this system? 

Solution 
To determine the resolution, we begin with the analog range. 
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 Analog range  = Max analog value - Min analog value 

  = 11 ounces – 5 ounces  
  = 6 ounces 
 
Substituting this range into equation 2.5 and using n=10 to represent 

the number of bits, we get: 
 

6 ounces Resolution = 210 - 1 
 

6 ounces  = 1023 increments
 

= 0.005865 oz/inc 
 
If we examine the results of the example above, we see that our 

system can measure 0 ounces, 0.005865 ounces, 0.011730 ounces, (2 * 
0.005865 ounces), 0.017595 (3 * 0.005865 ounces), and so on, but it 
can never represent the measurement 0.015 ounces. Its resolution is not 
that good. In order to get that resolution, you would need to increase 
the number of bits in the binary integer or reduce the analog range. 

Example 
How many bits would be needed for the example above to improve 

the resolution to better than 0.001 ounces per increment? 

Solution 
Each time we increase the number of bits in our binary integer by 

one, the number of increments in the range is approximately doubled. 
For example, going from 10 bits to 11 bits increases the number of 
increments in the range from 210 – 1 = 1023 to 211 – 1 = 2047. The 
question is how high do we have to go to get to a specified resolution? 
To answer that, let's begin by setting Equation 2.5 to represent the fact 
that we want a resolution of better than 0.001 ounces/increment. 

 
6 ounces 0.001 oz/inc. > 2n – 1 

 
Solving for 2n – 1 gives us: 
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6 ounces  2n – 1 > 0.001 oz/inc. 
 

2n – 1 > 6,000 increments
 
By substituting different integers for n into the above equation, we 

find that n=13 is the lowest value of n for which a resolution better than 
0.001 ounces/increment is reached. n=13 results in a resolution of  
6 ÷ 8191 = 0.0007325 ounces/increment. 

2.6 Sampling Theory 
The previous discussion of the integer representation of analog 

values shows how the number of bits can affect the roundoff error of 
the representation. In general, an n-bit analog-to-digital converter 
divides the analog range into 2n – 1 increments. Figure 2-8 presents 
four graphs, each with a different number of bits providing different 
levels of resolution. The figure shows how the addition of a bit can 
improve the resolution of the values represented by the binary integers. 

Earlier, it was mentioned how a computer can only capture a "snap 
shot" or sample of an analog voltage. This is sufficient for slowly 
varying analog values, but if a signal is varying quickly, details might 
be missed. To improve the signal's digital representation, the rate at 
which the samples are taken, the sampling rate, needs to be increased. 

There is also a chance of missing a higher frequency because the 
sampling rate is too slow. This is called aliasing, and there are 
examples of it in everyday life.  

When riding in a car at night, you may have noticed that at times the 
wheels of an adjacent car appear to be spinning at a different rate than 
they really are or even appear to spin backwards. (If you have no idea 
what I'm talking about, watch the wheels of the car next to you the next 
time you are a passenger riding at night under street lights.)   

The effect is caused by the fact that the light from street lamps 
actually pulses, a fact that is usually not detectable with the human eye. 
This pulsing provides a sampling rate, and if the sampling rate is not 
fast enough for the spinning wheel, the wheel appears to be spinning at 
a different rate than it really is. Street lights are not necessary to see this 
effect. Your eye has a sampling rate of its own which means that you 
may experience this phenomenon in the day time. 
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2-bits – 4 levels 
 

3-bits – 8 levels 
 

4-bits – 16 levels 
 

5-bits – 32 levels 
 

Figure 2-8   Effects of Number of Bits on Roundoff Error 

Aliasing is also the reason fluorescent lights are never used in 
sawmills. Fluorescent lights blink much like a very fast strobe light and 
can make objects appear as if they are not moving. If the frequency of 
the fluorescent lights and the speed of a moving saw blade are 
multiples of each other, it can appear as if the spinning blade is not 
moving at all. 

Both of these examples are situations where aliasing has occurred. If 
a signal's frequency is faster than the sampling rate, then information 
will be lost, and the collected data will never be able to duplicate the 
original. 

The graphs in Figure 2-9 show how different sampling rates can 
result in different interpretations of the collected data, the dark points 
representing the samples. Note that the bottom-right graph represents a 
good sampling rate. When the computer reproduces the signal, the 
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choppiness of the reproduction will be removed due to the natural 
filtering effects of analog circuitry. 

 

  

  

Figure 2-9   Aliasing Effects Due to Slow Sampling Rate 

To avoid aliasing, the rate at which samples are taken must be more 
than twice as fast as the highest frequency you wish to capture. This is 
called the Nyquist Theorem. For example, the sampling rate for audio 
CDs is 44,100 samples/second. Dividing this number in half gives us 
the highest frequency that an audio CD can play back, i.e., 22,050 Hz.  

For an analog telephone signal, a single sample is converted to an 8-
bit integer. If these samples are transmitted across a single channel of a 
T1 line which has a data rate of 56 Kbps (kilobits per second), then we 
can determine the sampling rate.  

 
56,000 bits/second Sampling rateT1 = 8 bits/sample 

 
Sampling rateT1 = 7,000 samples/second 

 
This means that the highest analog frequency that can be transmitted 

across a telephone line using a single channel of a T1 link is 7,000÷2 = 
3,500 Hz. That's why the quality of voices sent over the telephone is 
poor when compared to CD quality. Although telephone users can still 
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recognize the voice of the caller on the opposite end of the line when 
the higher frequencies are eliminated, their speech often sounds muted. 

2.7 Hexadecimal Representation 
It is usually difficult for a person to look at a binary number and 

instantly recognize its magnitude. Unless you are quite experienced at 
using binary numbers, recognizing the relative magnitudes of 
101011012 and 101001012 is not immediate (17310 is greater than 
16510). Nor is it immediately apparent to us that 10011011012 equals 
62110 without going through the process of calculating 512 + 64 + 32 + 
8 + 4 + 1. 

There is another problem: we are prone to creating errors when 
writing or typing binary numbers. As a quick exercise, write the binary 
number 10010111111011010010001112 onto a sheet of paper. Did you 
make a mistake? Most people would have made at least one error. 

To make the binary representation of numbers easier on us humans, 
there is a shorthand representation for binary values. It begins by 
partitioning a binary number into its nibbles starting at the least 
significant bit (LSB). An example is shown below: 

 
The number: 1001011110110100100111 

…can be divided into: 10 0101 1110 1101 0010 0111
 
Next, a symbol is used to represent each of the possible 

combinations of bits in a nibble. We start by numbering them with the 
decimal values equivalent to their binary value, i.e.: 

 
00002 = 010 
00012 = 110 
00102 = 210 

:  :  : 
10002 = 810 
10012 = 910 

 
At 9, however, we run out of decimal characters. There are six more 

nibbles to label, so we begin using letters: A, B, C, D, E, and F. These 
represent the decimal values 1010, 1110, 1210, 1310, 1410, and 1510 
respectively. 
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10102 = A 
10112 = B 

:  :  : 
11112 = F 

 
Table 2-1 presents the mapping between the sixteen patterns of 1's 

and 0's in a binary nibble and their corresponding decimal and 
hexadecimal (hex) values. 

Table 2-1   Converting Binary to Decimal and Hexadecimal 

Binary Decimal Hex  Binary Decimal Hex 
0000 0 0  1000 8 8 
0001 1 1  1001 9 9 
0010 2 2  1010 10 A 
0011 3 3  1011 11 B 
0100 4 4  1100 12 C 
0101 5 5  1101 13 D 
0110 6 6  1110 14 E 
0111 7 7  1111 15 F 

 
Another way to look at it is that hexadecimal counting is also similar 

to decimal except that instead of having 10 numerals, it has sixteen. 
This is also referred to as a base-16 numbering system. 

How do we convert binary to hexadecimal? Begin by dividing the 
binary number into its nibbles (if the number of bits is not divisible by 
4, add leading zeros), then nibble-by-nibble use the table above to find 
the hexadecimal equivalent to each 4-bit pattern. For example: 

 
The number: 1001011110110100100111 

…is divided into: 0010 0101 1110 1101 0010 0111
...which translates to: 2 5 E D 2 7 

 
Therefore, 10010111101101001001112 = 25ED2716. Notice the use 

of the subscript "16" to denote hexadecimal representation. 
Going the other way is just as easy. Translating 5D3F2116 to binary 

goes something like this: 
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The hexadecimal value: 5 D 3 F 2 1 

…translates to: 0101 1101 0011 1111 0010 0001
 
Therefore, 5D3F2116 = 0101110100111111001000012. 
It is vital to note that computers do not use hexadecimal, humans do. 

Hexadecimal provides humans with a reliable, short-hand method of 
writing large binary numbers. 

2.8 Binary Coded Decimal 
When was the last time you multiplied your house number by 5?  Or 

have you ever added 215 to your social security number?  These 
questions seem silly, but they reveal an important fact about numbers. 
Some numbers do not need to have mathematical operations performed 
on them, and therefore, do not need to have a mathematically correct 
representation in binary. 

In an effort to afford decimal notation the same convenience of 
conversion to binary that hex has, Binary Coded Decimal (BCD) was 
developed. It allows for fast conversion to binary of integers that do not 
require mathematical operations. 

As in hex, each decimal digit represents a nibble of the binary 
equivalent. Table 2-2 shows the conversion between each decimal digit 
and the binary equivalent. 

Table 2-2   Converting BCD to Decimal 

BCD  
Nibble 

Decimal 
Digit 

 BCD 
Nibble 

Decimal 
Digit 

0000 0  1000 8 
0001 1  1001 9 
0010 2  1010 Invalid 
0011 3  1011 Invalid 
0100 4  1100 Invalid 
0101 5  1101 Invalid 
0110 6  1110 Invalid 
0111 7  1111 Invalid 

 
For example, the BCD value 0001 0110 1001 0010 equals 169210. 
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It is important to note that there is no algorithmic conversion 
between BCD and decimal. BCD is only a method for representing 
decimal numbers in binary. 

Another item of note is that not all binary numbers convert from 
BCD to decimal. 0101 1011 0101 for example is an illegal BCD value 
because the second nibble, 1011, does not have a corresponding 
decimal value. 

There are two primary advantages of BCD over binary. First, any 
mathematical operation based on a factor of ten is simpler in BCD. 
Multiplication by ten, for example, appends a nibble of zeros to the 
right side of the number. All it takes to truncate or round a base-10 
value in BCD is to zero the appropriate nibbles. Because of this 
advantage, BCD is used frequently in financial applications due to legal 
requirements that decimal values be exactly represented. Binary cannot 
do this for fractions as we shall see in Chapter 3. 

The second advantage is that conversion between entered or 
displayed numeric characters and the binary value being stored is fast 
and does not require much code. 

The primary disadvantage is that unless the operation is based on a 
power of ten, mathematical operations are more complex and require 
more hardware. In addition, BCD is not as compact as unsigned binary 
and may require more memory for storage. 

BCD can be used to represent signed values too, although there are 
many implementations. Different processor manufacturers use different 
methods making it hard to select a standard. One of the easiest ways to 
represent negative numbers in BCD is to add a nibble at the beginning 
of the number to act as a plus/minus sign. By using one of the illegal 
BCD values to represent a negative sign and another to represent a 
positive sign, BCD values can be made negative or positive. Binary 
values of 1010, 1100, or 1110 typically mean the number is positive 
while binary values of 1011 or 1101 mean the number is negative. For 
example, –1234 in signed BCD would be 1101 0001 0010 0011 0100 
while +1234 would be 1100 0001 0010 0011 0100. BCD values 
preceded with 1111 typically indicate unsigned values. 

2.9 Gray Codes 
The use of binary counting sequences is common in digital 

applications. For example, an n-bit binary value can be used to identify 
the position of a rotating shaft as being within one of 2n different arcs. 
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As the shaft turns, a sensor can detect which of the shaft's arcs it is 
aligned with by reading a digital value and associating it with a specific 
arc. By remembering the previous position and timing the changes 
between positions, a processor can also compute speed and direction. 

Figure 2-10 shows how a shaft's position might be divided into eight 
arcs using three bits. This would allow a processor to determine the 
shaft's position to within 360o/8 = 45o. 

 
 
 
 
 
 
 
 
 

Figure 2-10   Eight Binary Values Identifying Rotating Shaft Position 

One type of shaft position sensor uses a disk mounted to the shaft 
with slots cut into the disk at different radii representing different bits. 
Light sources are placed on one side of the disk while sensors on the 
other side of the disk detect when a hole is present, i.e., the sensor is 
receiving light. Figure 2-11 presents a disk that might be used to 
identify the shaft positions of the example from Figure 2-10. 

 

 

Figure 2-11   Example of a Position Encoder 
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In its current position in the figure, the slots in the disk are lined up 
between the second and third light sensors, but not the first. This means 
that the sensor will read a value of 110 indicating the shaft is in 
position number 1102 = 6. 

There is a potential problem with this method of encoding. It is 
possible to read the sensor at the instant when more than one gap is 
opening or closing between its light source and sensor. When this 
happens, some of the bit changes may be detected while others are not. 
If this happens, an erroneous measurement may occur.  

For example, if the shaft shown above turns clockwise toward 
position 1012 = 5, but at the instant when the sensor is read, only the 
first bit change is detected, then the value read will be 1112 = 7 
indicating counter-clockwise rotation. 

To solve this problem, alternate counting sequences referred to as 
the Gray code are used. These sequences have only one bit change 
between values. For example, the values assigned to the arcs of the 
above shaft could follow the sequence 000, 001, 011, 010, 110, 111, 
101, 100. This sequence is not correct numerically, but as the shaft 
turns, only one bit will change as the shaft turns from one position to 
the next. 

There is an algorithm to convert an n-bit unsigned binary value to its 
corresponding n-bit Gray code. Begin by adding a 0 to the most 
significant end of the unsigned binary value. There should now be n 
boundaries between the n+1 bits. For each boundary, write a 0 if the 
adjacent bits are the same and a 1 if the adjacent bits are different. The 
resulting value is the corresponding n-bit Gray code value. Figure 2-12 
presents an example converting the 6 bit value 1000112 to Gray code. 

 
 
 
 
 
 
 
 
 

Figure 2-12   Conversion from Unsigned Binary to Gray Code 

1 0 0 0 1 10Add zero to left-
most side of the 
value to convert 

1 1 0 0 1 0

Adjacent bits that are 
different generate a 1. 

Adjacent bits that are 
the same generate a 0. 
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Using this method, the Gray code for any binary value can be 
determined. Table 2-3 presents the full Gray code sequence for four 
bits. The shaded bits in third column are bits that are different then the 
bit immediately to their left. These are the bits that will become ones in 
the Gray code sequence while the bits not shaded are the ones that will 
be zeros. Notice that exactly one bit changes in the Gray code from one 
row to the next and from the bottom row to the top row. 

Table 2-3   Derivation of the Four-Bit Gray Code 

Decimal Binary
Binary  

w/starting 
zero 

Gray 
Code 

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 0 1 1 0 0 1 0
4 0 1 0 0 0 0 1 0 0 0 1 1 0
5 0 1 0 1 0 0 1 0 1 0 1 1 1
6 0 1 1 0 0 0 1 1 0 0 1 0 1
7 0 1 1 1 0 0 1 1 1 0 1 0 0
8 1 0 0 0 0 1 0 0 0 1 1 0 0
9 1 0 0 1 0 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 0 1 0 1 1 1 1
11 1 0 1 1 0 1 0 1 1 1 1 1 0
12 1 1 0 0 0 1 1 0 0 1 0 1 0
13 1 1 0 1 0 1 1 0 1 1 0 1 1
14 1 1 1 0 0 1 1 1 0 1 0 0 1
15 1 1 1 1 0 1 1 1 1 1 0 0 0

 

2.10 What's Next? 
In this chapter, we've covered the different methods of representing 

values, specifically positive integers, using digital circuitry. In addition 
to counting integers, the issues surrounding the conversion of analog or 
"real world" values to digital were examined along with some of the 
problems encountered when sampling. Finally, two methods of binary 
representation were presented: hexadecimal and BCD. 
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Chapter 3 examines the special needs surrounding the digital 
representation of addition, subtraction, and floating-point values. It also 
introduces the operation of the processor in handling some arithmetic 
functions. 

Problems 
1. What is the minimum number of bits needed to represent 76810 

using unsigned binary representation? 

2. What is the largest possible integer that can be represented with a 
6-bit unsigned binary number? 

3. Convert each of the following values to decimal. 
a) 100111012       b) 101012       c) 1110011012       d) 011010012 

4. Convert each of the following values to an 8-bit unsigned binary 
value. 
a) 3510       b) 10010       c) 22210       d) 14510 

5. If an 8-bit binary number is used to represent an analog value in 
the range from 010 to 10010, what does the binary value 011001002 
represent? 

6. If an 8-bit binary number is used to represent an analog value in 
the range from 32 to 212, what is the accuracy of the system?  In 
other words, if the binary number is incremented by one, how 
much change does it represent in the analog value? 

7. Assume a digital to analog conversion system uses a 10-bit integer 
to represent an analog temperature over a range of -25oF to 125oF. 
If the actual temperature being read was 65.325oF, what would be 
the closest possible value that the system could represent? 

8. What is the minimum sampling rate needed in order to successfully 
capture frequencies up to 155 KHz in an analog signal? 

9. Convert the following numbers to hexadecimal. 
a) 10101111001011000112 
b) 100101010010011010012 
c) 011011010010100110012 
d) 101011001000102 

10. Convert each of the following hexadecimal values to binary. 
a) ABCD16       b) 1DEF16       c) 864516       d) 925A16 
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11. True or False:  A list of numbers to be added would be a good 

candidate for conversion using BCD. 

12. Determine which of the following binary patterns represent valid 
BCD numbers (signed or unsigned). Convert the valid ones to 
decimal. 
a.) 1010111100101100011 
b.) 10010101001001101001 
c.) 01101101001010011001 
d.) 11000110010000010000 
e.) 1101100101110010 
f.) 111100010010010101101000 
g.) 10101100100010 

13. Convert the decimal number 9640410 to BCD. 

14. Create the 5-bit Gray code sequence. 

 

 


